1
|
Zhang Q, Zhao YX, Li LF, Fan QQ, Huang BB, Du HZ, Li C, Li W. Metabolism-Related Adipokines and Metabolic Diseases: Their Role in Osteoarthritis. J Inflamm Res 2025; 18:1207-1233. [PMID: 39886385 PMCID: PMC11780177 DOI: 10.2147/jir.s499835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025] Open
Abstract
Osteoarthritis (OA) affects several joints but tends to be more prevalent in those that are weight-bearing, such as the knees, which are the most heavily loaded joints in the body. The incidence and disability rates of OA have continued to increase and seriously jeopardise the quality of life of middle-aged and older adults. However, OA is more than just a wear and tear disease; its aetiology is complex, and its pathogenesis is poorly understood. Metabolic syndrome (MetS) has emerged as a critical driver of OA development. This condition contributes to the formation of a distinct phenotype, termed metabolic syndrome-associated osteoarthritis (MetS-OA),which differs from other metabolically related diseases by its unique pathophysiological mechanisms and clinical presentation. As key mediators of MetS, metabolic adipokines such as leptin, lipocalin, and resistin regulate inflammation and bone metabolism through distinct or synergistic signaling pathways. Their modulation of inflammatory responses and bone remodeling processes plays a critical role in the pathogenesis and progression of OA. Due to their central role in regulating inflammation and bone remodeling, metabolic adipokines not only deepen our understanding of MetS-OA pathogenesis but also represent promising targets for novel therapeutic strategies that could slow disease progression and improve clinical outcomes in affected patients.
Collapse
Affiliation(s)
- Qian Zhang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Yi Xuan Zhao
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Long Fei Li
- Cerebrovascular Disease Ward, The First People’s Hospital of Ping Ding Shan, Pingdingshan, Henan, People’s Republic of China
| | - Qian Qian Fan
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Bin Bin Huang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Hong Zhen Du
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Chen Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| |
Collapse
|
2
|
Thangaraj SV, Bellingham M, Lea R, Evans N, Sinclair K, Padmanabhan V. Developmental programming: Sex-specific effects of prenatal exposure to a real-life mixture of environmental chemicals on liver function and transcriptome in sheep. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125630. [PMID: 39756566 DOI: 10.1016/j.envpol.2025.125630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Humans are chronically exposed to a mixture of environmental chemicals (ECs), many with metabolic and endocrine disrupting potential, contributing to non-communicable disease burden. Understanding the effects of chronic exposure to low-level mixtures of ECs requires an animal model that reflects real-world conditions, lags behind studies on single ECs. Biosolids, from wastewater treatment, offers a real-life model to investigate the developmental health risks from EC mixtures. Prenatal biosolids exposure studies have documented metabolic perturbations including heavier thyroid glands in male fetuses and reduced bodyweight in prepubertal male lambs followed by catchup growth. We hypothesized that maternal preconceptional and gestational exposure of sheep to biosolids programs sex-specific transcriptional and functional changes in the offspring liver. Ewes (F0) were grazed on either inorganic fertilizer (C) or biosolids-treated pastures (BTP) preconception till parturition. All lambs (n = 15/group with male n = 7/group and females n = 8/group) were raised on Control pastures until euthanasia at 9.5 weeks. Next generation sequencing of liver RNA and DESeq2 was used to identify exposure-specific differentially expressed genes (DEG) and sex-differentially expressed genes (SDG). Liver function was assessed with markers of oxidative stress, triglyceride and fibrosis markers. Control lambs exhibited 647 SDGs confirming the inherent sexual dimorphism in hepatic gene expression. A sex-stratified analysis identified 10 DEG, mostly affecting metabolism, in male and none in female lambs. Biosolids exposure diminished the sexual dimorphism in hepatic gene expression barring 41 genes, potentially due to the increase in androgenic steroids found in F0 maternal circulation. Additionally, BTP male lambs showed elevated plasma triglyceride and a trend towards increased liver triglyceride concentrations. The identified effects of prenatal exposure to low-dose mixture of ECs via biosolids, in a precocial species paralleling human developmental patterns holds translational importance for understanding the sexually dimorphic origin of non-communicable diseases.
Collapse
Affiliation(s)
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard Lea
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Neil Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kevin Sinclair
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | |
Collapse
|
3
|
Sólis-Suarez DL, Cifuentes-Mendiola SE, González-Alva P, Rodríguez-Hernández AP, Martínez-Dávalos A, Llamosas-Hernandez FE, Godínez-Victoria M, García-Hernández AL. Lipocalin-2 as a fundamental protein in type 2 diabetes and periodontitis in mice. J Periodontol 2024. [PMID: 39189666 DOI: 10.1002/jper.24-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Lipocalin-2 (LCN-2) is an osteokine that suppresses appetite, stimulates insulin secretion, regulates bone remodeling, and is induced by proinflammatory cytokines. The aim of this work was to investigate the participation of LCN-2 in periodontitis associated with type 2 diabetes (T2D) by evaluating alveolar bone loss, glycemic control, inflammation, and femur fragility. METHODS A murine model of periodontitis with T2D and elevated LCN-2 concentration was used. Functional LCN-2 inhibition was achieved using an anti-LCN-2 polyclonal antibody, and isotype immunoglobulin G was used as a control. The alveolar bone and femur were evaluated by micro-CT. Glucose metabolism was determined. Tumor necrosis factor (TNF-α) and receptor activator of nuclear factor kappa-B ligand (RANKL) levels in alveolar bone lysates were quantified using ELISA, and serum cytokines were quantified using flow cytometry. A three-point bending test was performed in the femur, and RANKL levels were measured in femur lysates using ELISA. RESULTS Functional inhibition of LCN-2 in T2D-periodontitis mice decreased alveolar bone loss in buccal and palatal surfaces and preserved the microarchitecture of the remaining bone, decreased TNF-α and RANKL in alveolar bone, reduced hyperglycemia, glucose intolerance, and insulin resistance, and increased insulin production through improving the functionality of pancreatic β cells. Furthermore, this inhibition increased serum free-glycerol levels, decreased serum interleukin (IL)-6, increased serum IL-4, and reduced femur fragility and RANKL expression in the femur. CONCLUSIONS LCN-2 participates in periodontitis associated with T2D. Inhibiting its function in mice with T2D and periodontitis improves pancreatic β-cell function, and glucose metabolism and decreases inflammatory cytokines and bone-RANKL levels, which results in the preservation of femoral and alveolar bone microarchitecture. PLAIN LANGUAGE SUMMARY In this study, we explored the role of a bone protein known as lipocalin-2 (LCN-2) in the connection between periodontitis and type 2 diabetes (T2D). Periodontitis is a destructive gum and alveolar bone disease. LCN-2 levels are increased in both T2D and periodontitis. Using a mouse model of T2D with periodontitis, we examined how blocking LCN-2 function affected various aspects of these two diseases. We found that this inhibition led to significant improvements. First, it reduced alveolar bone loss and preserved bone structure by decreasing local inflammation and bone resorption. Second, it improved glucose and lipid metabolism, leading to better blood-sugar control and decreased insulin resistance. Blocking the functions of LCN-2 also decreased systemic inflammation throughout the body and strengthened bone integrity. Overall, our results suggest that LCN-2 plays a crucial role in the periodontitis associated with T2D. By inhibiting LCN-2 function, we were able to improve pancreatic function, improve glucose metabolism, reduce inflammation, and enhance bone health. Targeting LCN-2 could be a promising strategy for the harmful effects of T2D and periodontitis.
Collapse
Affiliation(s)
- Diana Laura Sólis-Suarez
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico (UNAM), State of Mexico, Mexico, Mexico
- Postgraduate Course in Dental Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Saúl Ernesto Cifuentes-Mendiola
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico (UNAM), State of Mexico, Mexico, Mexico
| | - Patricia González-Alva
- Laboratory of Tissue Bioengineering, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | | | - Arnulfo Martínez-Dávalos
- Endo-periodontology Department, Physics Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | | | - Marycarmen Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ana Lilia García-Hernández
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico (UNAM), State of Mexico, Mexico, Mexico
| |
Collapse
|
4
|
Xiao H, Li W, Qin Y, Lin Z, Qian C, Wu M, Xia Y, Bai J, Geng D. Crosstalk between Lipid Metabolism and Bone Homeostasis: Exploring Intricate Signaling Relationships. RESEARCH (WASHINGTON, D.C.) 2024; 7:0447. [PMID: 39165638 PMCID: PMC11334918 DOI: 10.34133/research.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Bone is a dynamic tissue reshaped by constant bone formation and bone resorption to maintain its function. The skeletal system accounts for approximately 70% of the total volume of the body, and continuous bone remodeling requires quantities of energy and material consumption. Adipose tissue is the main energy storehouse of the body and has a strong adaptive capacity to participate in the regulation of various physiological processes. Considering that obesity and metabolic syndrome have become major public health challenges, while osteoporosis and osteoporotic fractures have become other major health problems in the aging population, it would be interesting to explore these 2 diseases together. Currently, an increasing number of researchers are focusing on the interactions between multiple tissue systems, i.e., multiple organs and tissues that are functionally coordinated together and pathologically pathologically interact with each other in the body. However, there is lack of detailed reviews summarizing the effects of lipid metabolism on bone homeostasis and the interactions between adipose tissue and bone tissue. This review provides a detailed summary of recent advances in understanding how lipid molecules and adipose-derived hormones affect bone homeostasis, how bone tissue, as a metabolic organ, affects lipid metabolism, and how lipid metabolism is regulated by bone-derived cytokines.
Collapse
Affiliation(s)
- Haixiang Xiao
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei 230022, China
| | - Wenming Li
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yi Qin
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhixiang Lin
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Chen Qian
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Mingzhou Wu
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yu Xia
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, Jingjiang People’s Hospital Affiliated to Yangzhou University, Jingjiang 214500, Jiangsu Province, China
| | - Dechun Geng
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
5
|
Chakraborty A, Yang C, Kresak JL, Silver AJ, Feier D, Tian G, Andrews M, Sobanjo OO, Hodge ED, Engelbart MK, Huang J, Harrison JK, Sarkisian MR, Mitchell DA, Deleyrolle LP. KR158 Spheres Harboring Slow-Cycling Cells Recapitulate High-Grade Glioma Features in an Immunocompetent System. Cells 2024; 13:938. [PMID: 38891070 PMCID: PMC11171638 DOI: 10.3390/cells13110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) poses a significant challenge in clinical oncology due to its aggressive nature, heterogeneity, and resistance to therapies. Cancer stem cells (CSCs) play a critical role in GBM, particularly in treatment resistance and tumor relapse, emphasizing the need to comprehend the mechanisms regulating these cells. Also, their multifaceted contributions to the tumor microenvironment (TME) underline their significance, driven by their unique properties. This study aimed to characterize glioblastoma stem cells (GSCs), specifically slow-cycling cells (SCCs), in an immunocompetent murine GBM model to explore their similarities with their human counterparts. Using the KR158 mouse model, we confirmed that SCCs isolated from this model exhibited key traits and functional properties akin to human SCCs. KR158 murine SCCs, expanded in the gliomasphere assay, demonstrated sphere forming ability, self-renewing capacity, positive tumorigenicity, enhanced stemness and resistance to chemotherapy. Together, our findings validate the KR158 murine model as a framework to investigate GSCs and SCCs in GBM pathology, and explore specifically the SCC-immune system communications, understand their role in disease progression, and evaluate the effect of therapeutic strategies targeting these specific connections.
Collapse
Affiliation(s)
- Avirup Chakraborty
- Adam Michael Rosen Neuro-Oncology Laboratories, Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (A.J.S.)
- Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL 32608, USA
| | - Changlin Yang
- Adam Michael Rosen Neuro-Oncology Laboratories, Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (A.J.S.)
- Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL 32608, USA
| | - Jesse L. Kresak
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Aryeh J. Silver
- Adam Michael Rosen Neuro-Oncology Laboratories, Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (A.J.S.)
| | - Diana Feier
- Adam Michael Rosen Neuro-Oncology Laboratories, Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (A.J.S.)
| | - Guimei Tian
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - Michael Andrews
- College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Olusegun O. Sobanjo
- Adam Michael Rosen Neuro-Oncology Laboratories, Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (A.J.S.)
| | - Ethan D. Hodge
- Adam Michael Rosen Neuro-Oncology Laboratories, Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (A.J.S.)
| | - Mia K. Engelbart
- Adam Michael Rosen Neuro-Oncology Laboratories, Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (A.J.S.)
| | - Jianping Huang
- Adam Michael Rosen Neuro-Oncology Laboratories, Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (A.J.S.)
- Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL 32608, USA
| | - Jeffrey K. Harrison
- Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL 32608, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32603, USA
| | - Matthew R. Sarkisian
- Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL 32608, USA
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Duane A. Mitchell
- Adam Michael Rosen Neuro-Oncology Laboratories, Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (A.J.S.)
- Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL 32608, USA
| | - Loic P. Deleyrolle
- Adam Michael Rosen Neuro-Oncology Laboratories, Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (A.J.S.)
- Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL 32608, USA
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Tang L, Ye J. Commentary: Mammokine directs beige adipocytes to reserve energy for milk production in breast. Acta Pharm Sin B 2024; 14:1472-1476. [PMID: 38486985 PMCID: PMC10935006 DOI: 10.1016/j.apsb.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 03/17/2024] Open
Affiliation(s)
- Lina Tang
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
- Research Center for Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
7
|
Bao Y, Yan Z, Shi N, Tian X, Li J, Li T, Cheng X, Lv J. LCN2: Versatile players in breast cancer. Biomed Pharmacother 2024; 171:116091. [PMID: 38171248 DOI: 10.1016/j.biopha.2023.116091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Lipocalin 2 (LCN2) is a secreted glycoprotein that is produced by immune cells, including neutrophils and macrophages. It serves various functions such as transporting hydrophobic ligands across the cellular membrane, regulating immune responses, keeping iron balance, and fostering epithelial cell differentiation. LCN2 plays a crucial role in several physiological processes. LCN2 expression is upregulated in a variety of human diseases and cancers. High levels of LCN2 are specifically linked to breast cancer (BC) cell proliferation, apoptosis, invasion, migration, angiogenesis, immune regulation, chemotherapy resistance, and prognosis. As a result, LCN2 has gained attention as a potential therapeutic target for BC. This article offered an in-depth review of the advancement of LCN2 in the context of BC occurrence and development.
Collapse
Affiliation(s)
- Yuxiang Bao
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Zhongliang Yan
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Nianmei Shi
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Xiaoyan Tian
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Jiayang Li
- Office of Drug Clinical Trial Institution, the Affiliated Hospital of Zunyi Medical University, Zunyi 563099, China
| | - Taolang Li
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Xiaoming Cheng
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, China.
| | - Junyuan Lv
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
8
|
Sciarretta F, Ceci V, Tiberi M, Zaccaria F, Li H, Zhou ZY, Sun Q, Konja D, Matteocci A, Bhusal A, Verri M, Fresegna D, Balletta S, Ninni A, Di Biagio C, Rosina M, Suk K, Centonze D, Wang Y, Chiurchiù V, Aquilano K, Lettieri-Barbato D. Lipocalin-2 promotes adipose-macrophage interactions to shape peripheral and central inflammatory responses in experimental autoimmune encephalomyelitis. Mol Metab 2023; 76:101783. [PMID: 37517520 PMCID: PMC10448472 DOI: 10.1016/j.molmet.2023.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023] Open
Abstract
OBJECTIVE Accumulating evidence suggests that dysfunctional adipose tissue (AT) plays a major role in the risk of developing multiple sclerosis (MS), the most common immune-mediated and demyelinating disease of the central nervous system. However, the contribution of adipose tissue to the etiology and progression of MS is still obscure. This study aimed at deciphering the responses of AT in experimental autoimmune encephalomyelitis (EAE), the best characterized animal model of MS. RESULTS AND METHODS We observed a significant AT loss in EAE mice at the onset of disease, with a significant infiltration of M1-like macrophages and fibrosis in the AT, resembling a cachectic phenotype. Through an integrative and multilayered approach, we identified lipocalin2 (LCN2) as the key molecule released by dysfunctional adipocytes through redox-dependent mechanism. Adipose-derived LCN2 shapes the pro-inflammatory macrophage phenotype, and the genetic deficiency of LCN2 specifically in AT reduced weight loss as well as inflammatory macrophage infiltration in spinal cord in EAE mice. Mature adipocytes downregulating LCN2 reduced lipolytic response to inflammatory stimuli (e.g. TNFα) through an ATGL-mediated mechanism. CONCLUSIONS Overall data highlighted a role LCN2 in exacerbating inflammatory phenotype in EAE model, suggesting a pathogenic role of dysfunctional AT in MS.
Collapse
Affiliation(s)
| | - Veronica Ceci
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Fabio Zaccaria
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Haoyun Li
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Zhong-Yan Zhou
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiyang Sun
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Daniels Konja
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Alessandro Matteocci
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; PhD program in Immunology, Molecular Medicine and Applied biotechnologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Martina Verri
- Pathology Unit, University Hospital Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Sara Balletta
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Andrea Ninni
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudia Di Biagio
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marco Rosina
- Neurology Unit, Fondazione PTV Policlinico Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Daniele Lettieri-Barbato
- IRCCS, Fondazione Santa Lucia, 00179 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
9
|
Wu S, Zhang X, Wang Y, Zheng H, Zhu M. Lipid Metabolism Reprogramming of Immune Cells in Acne: An Update. Clin Cosmet Investig Dermatol 2023; 16:2391-2398. [PMID: 37675181 PMCID: PMC10478778 DOI: 10.2147/ccid.s424478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
Acne vulgaris is one of the most widespread skin conditions and the main reason for visiting a dermatologist. Inflammatory response and abnormal infiltrations of immune cells are the main pathogenesis of acne. The increased lipid is the prerequisite for the acne, and the perturbation of lipid composition and content is consistent with the severity of acne. Furthermore, the increased lipid production not only contributes to the occurrence and development of acne, but also sensitizes the function of immune cells. The lipid metabolic dysfunction aggravates the severity of local tissue and provides pro-inflammatory-cytokine cues, which indicates the crucial roles of lipid metabolism on immune cells. Recent advances have demonstrated the lipid metabolism reprogramming of various immune cells in acne lesion. The abnormal lipid accumulation, lipolysis, and fatty acid oxidation lead to the activation and differentiation of immune cells, which promotes the pro-inflammatory cytokines production. Thus, this review discusses the emerging role of lipid metabolism reprogramming of immune cells in the progress of acne and aims to constitute food for others' projects involved in acne research.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Dermatology, Key Laboratory of Vascular Biology and Translational Medicine, Education Department of Hunan Province, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Xi Zhang
- Department of Physical Education and Health Promotion, Hunan University of Technology and Business, Changsha, Hunan, People’s Republic of China
| | - Yun Wang
- Department of Dermatology, Key Laboratory of Vascular Biology and Translational Medicine, Education Department of Hunan Province, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Huie Zheng
- Department of Dermatology, Key Laboratory of Vascular Biology and Translational Medicine, Education Department of Hunan Province, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Mingfang Zhu
- Department of Dermatology, Key Laboratory of Vascular Biology and Translational Medicine, Education Department of Hunan Province, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
10
|
Jing C, Wang J, Xie Y, Zhang J, Guo Y, Tian T, Tang J, Ju F, Wang C, Liu Y, Zhang Z, Yang X, Zhang H. Investigation of the growth performance, blood status, gut microbiome and metabolites of rabbit fed with low-nicotine tobacco. Front Microbiol 2022; 13:1026680. [PMID: 36312940 PMCID: PMC9615924 DOI: 10.3389/fmicb.2022.1026680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Tobacco contains a large amount of bioactive ingredients which can be used as source of feed. The objective of this study was to evaluate the effects of dietary addition of low-nicotine tobacco (LNT) on the growth performance, blood status, cecum microbiota and metabolite composition of meat rabbits. A total of 80 Kangda meat rabbits of similar weight were assigned randomly as four groups, and three of them were supplemented with 5%, 10%, and 20% LNT, respectively, with the other one fed with basal diet as control group. Each experiment group with 20 rabbits was raised in a single cage. The experiments lasted for 40 days with a predictive period of 7 days. The results revealed that LNT supplementation had no significant effect on the growth performance, but increased the half carcass weight compared with control group. Dietary supplemention of LNT decreased the triglycerides and cholesterol content in rabbit serum, and significantly increased the plasma concentration of lymphocytes (LYM), monocytes, eosinophils, hemoglobin HGB and red blood cells. In addition, LNT supplementation significantly changed the microbial diversity and richness, and metagenomic analysis showed that LNT supplementation significantly increased Eubacterium_siraeum_group, Alistipes, Monoglobus and Marvinbryantia at genus level. Moreover, LC–MS data analysis identified a total of 308 metabolites that markedly differed after LNT addition, with 190 significantly upregulated metabolites and 118 significantly downregulated metabolites. Furthermore, the correlation analysis showed that there was a significant correlation between the microbial difference and the rabbit growth performance. Overall, these findings provide theoretical basis and data support for the application of LNT in rabbits.
Collapse
Affiliation(s)
- Changliang Jing
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jiahao Wang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yi Xie
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jianhui Zhang
- Sichuan Tobacco Science Research Institute, Chengdu, China
| | - Yixuan Guo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Tian Tian
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jing Tang
- Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuzhu Ju
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Chunkai Wang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yanhua Liu
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhongfeng Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xingyou Yang
- Sichuan Tobacco Science Research Institute, Chengdu, China
- *Correspondence: Xingyou Yang,
| | - Hongbo Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Hongbo Zhang,
| |
Collapse
|