1
|
Veluthakal R, Esparza D, Hoolachan JM, Balakrishnan R, Ahn M, Oh E, Jayasena CS, Thurmond DC. Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. Int J Mol Sci 2024; 25:1504. [PMID: 38338783 PMCID: PMC10855860 DOI: 10.3390/ijms25031504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. β-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between β-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| | | | | | | | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| |
Collapse
|
2
|
Arroum T, Pham L, Raisanen TE, Morse PT, Wan J, Bell J, Lax R, Saada A, Hüttemann M, Weksler-Zangen S. High Sucrose Diet-Induced Subunit I Tyrosine 304 Phosphorylation of Cytochrome c Oxidase Leads to Liver Mitochondrial Respiratory Dysfunction in the Cohen Diabetic Rat Model. Antioxidants (Basel) 2023; 13:19. [PMID: 38275639 PMCID: PMC10812566 DOI: 10.3390/antiox13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The mitochondrial oxidative phosphorylation process generates most of the cellular energy and free radicals in mammalian tissues. Both factors play a critical role in numerous human diseases that could be affected by reversible phosphorylation events that regulate the function and activity of the oxidative phosphorylation complexes. In this study, we analyzed liver mitochondria of Cohen diabetes-sensitive (CDs) and Cohen diabetes-resistant (CDr) rats, using blue native gel electrophoresis (BN-PAGE) in combination with mitochondrial activity measurements and a site-specific tyrosine phosphorylation implicated in inflammation, a known driver of diabetes pathology. We uncovered the presence of a specific inhibitory phosphorylation on tyrosine 304 of catalytic subunit I of dimeric cytochrome c oxidase (CcO, complex IV). Driven by a high sucrose diet in both CDr and CDs rats, Y304 phosphorylation, which occurs close to the catalytic oxygen binding site, correlates with a decrease in CcO activity and respiratory dysfunction in rat liver tissue under hyperglycemic conditions. We propose that this phosphorylation, specifically seen in dimeric CcO and induced by high sucrose diet-mediated inflammatory signaling, triggers enzymatic activity decline of complex IV dimers and the assembly of supercomplexes in liver tissue as a molecular mechanism underlying a (pre-)diabetic phenotype.
Collapse
Affiliation(s)
- Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Taryn E. Raisanen
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Rachel Lax
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel; (R.L.); (A.S.)
- The Hadassah Diabetes Center, Hadassah Medical Center, Jerusalem 9112102, Israel
- The Liver Research Laboratory, Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Ann Saada
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel; (R.L.); (A.S.)
- Department of Genetics, Hadassah Medical Center, Jerusalem 9112102, Israel
- Department of Medical Laboratory Sciences, Hadassah Academic College, Jerusalem 9101001, Israel
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Sarah Weksler-Zangen
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel; (R.L.); (A.S.)
- The Hadassah Diabetes Center, Hadassah Medical Center, Jerusalem 9112102, Israel
- The Liver Research Laboratory, Hadassah Medical Center, Jerusalem 9112102, Israel
| |
Collapse
|
3
|
Garcia-Gaona E, García-Gregorio A, García-Jiménez C, López-Olaiz MA, Mendoza-Ramírez P, Fernandez-Guzman D, Pillado-Sánchez RA, Soto-Pacheco AD, Yareni-Zuñiga L, Sánchez-Parada MG, González-Santiago AE, Román-Pintos LM, Castañeda-Arellano R, Hernández-Ortega LD, Mercado-Sesma AR, Orozco-Luna FDJ, Villa-Angulo C, Villa-Angulo R, Baptista-Rosas RC. mtDNA Single-Nucleotide Variants Associated with Type 2 Diabetes. Curr Issues Mol Biol 2023; 45:8716-8732. [PMID: 37998725 PMCID: PMC10670651 DOI: 10.3390/cimb45110548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Type 2 diabetes (T2D) is a chronic systemic disease with a complex etiology, characterized by insulin resistance and mitochondrial dysfunction in various cell tissues. To explore this relationship, we conducted a secondary analysis of complete mtDNA sequences from 1261 T2D patients and 1105 control individuals. Our findings revealed significant associations between certain single-nucleotide polymorphisms (SNPs) and T2D. Notably, the variants m.1438A>G (rs2001030) (controls: 32 [27.6%], T2D: 84 [72.4%]; OR: 2.46; 95%CI: 1.64-3.78; p < 0.001), m.14766C>T (rs193302980) (controls: 498 [36.9%], T2D: 853 [63.1%]; OR: 2.57, 95%CI: 2.18-3.04, p < 0.001), and m.16519T>C (rs3937033) (controls: 363 [43.4%], T2D: 474 [56.6%]; OR: 1.24, 95%CI: 1.05-1.47, p = 0.012) were significantly associated with the likelihood of developing diabetes. The variant m.16189T>C (rs28693675), which has been previously documented in several studies across diverse populations, showed no association with T2D in our analysis (controls: 148 [13.39] T2D: 171 [13.56%]; OR: 1.03; 95%CI: 0.815-1.31; p = 0.83). These results provide evidence suggesting a link between specific mtDNA polymorphisms and T2D, possibly related to association rules, topological patterns, and three-dimensional conformations associated with regions where changes occur, rather than specific point mutations in the sequence.
Collapse
Affiliation(s)
- Enrique Garcia-Gaona
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico;
| | - Alhelí García-Gregorio
- Facultad de Enfermería Región Poza Rica-Tuxpan, Universidad Veracruzana, Veracruz 91700, Mexico;
| | - Camila García-Jiménez
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Mexico;
| | | | - Paola Mendoza-Ramírez
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico;
| | | | | | - Axel David Soto-Pacheco
- Facultad de Medicina Extensión Los Mochis, Universidad Autónoma de Sinaloa, Sinaloa 81223, Mexico; (R.A.P.-S.); (A.D.S.-P.)
| | - Laura Yareni-Zuñiga
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (L.Y.-Z.); (L.M.R.-P.); (A.R.M.-S.)
| | - María Guadalupe Sánchez-Parada
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (M.G.S.-P.); (A.E.G.-S.); (R.C.-A.); (L.D.H.-O.)
- Centro de Investigación Multidisciplinaria en Salud, Universidad de Guadalajara, Tonalá 45425, Mexico
| | - Ana Elizabeth González-Santiago
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (M.G.S.-P.); (A.E.G.-S.); (R.C.-A.); (L.D.H.-O.)
- Centro de Investigación Multidisciplinaria en Salud, Universidad de Guadalajara, Tonalá 45425, Mexico
| | - Luis Miguel Román-Pintos
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (L.Y.-Z.); (L.M.R.-P.); (A.R.M.-S.)
- Centro de Investigación Multidisciplinaria en Salud, Universidad de Guadalajara, Tonalá 45425, Mexico
| | - Rolando Castañeda-Arellano
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (M.G.S.-P.); (A.E.G.-S.); (R.C.-A.); (L.D.H.-O.)
- Centro de Investigación Multidisciplinaria en Salud, Universidad de Guadalajara, Tonalá 45425, Mexico
| | - Luis Daniel Hernández-Ortega
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (M.G.S.-P.); (A.E.G.-S.); (R.C.-A.); (L.D.H.-O.)
- Centro de Investigación Multidisciplinaria en Salud, Universidad de Guadalajara, Tonalá 45425, Mexico
| | - Arieh Roldán Mercado-Sesma
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (L.Y.-Z.); (L.M.R.-P.); (A.R.M.-S.)
- Centro de Investigación Multidisciplinaria en Salud, Universidad de Guadalajara, Tonalá 45425, Mexico
| | | | - Carlos Villa-Angulo
- Laboratorio de Bioinformática y Biofotónica, Instituto de Ingeniería Universidad Autónoma de Baja California, Mexicali 21100, Mexico; (C.V.-A.); (R.V.-A.)
| | - Rafael Villa-Angulo
- Laboratorio de Bioinformática y Biofotónica, Instituto de Ingeniería Universidad Autónoma de Baja California, Mexicali 21100, Mexico; (C.V.-A.); (R.V.-A.)
| | - Raúl C. Baptista-Rosas
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (L.Y.-Z.); (L.M.R.-P.); (A.R.M.-S.)
- Centro de Investigación Multidisciplinaria en Salud, Universidad de Guadalajara, Tonalá 45425, Mexico
- Hospital General de Occidente, Secretaría de Salud Jalisco, Zapopan 45170, Mexico
| |
Collapse
|
4
|
Zhang X, Luo Z, Li J, Lin Y, Li Y, Li W. Sestrin2 in diabetes and diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1274686. [PMID: 37920252 PMCID: PMC10619741 DOI: 10.3389/fendo.2023.1274686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zirui Luo
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiahong Li
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yaxuan Lin
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yu Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Paula VG, Sinzato YK, Gallego FQ, Cruz LL, Aquino AMD, Scarano WR, Corrente JE, Volpato GT, Damasceno DC. Intergenerational Hyperglycemia Impairs Mitochondrial Function and Follicular Development and Causes Oxidative Stress in Rat Ovaries Independent of the Consumption of a High-Fat Diet. Nutrients 2023; 15:4407. [PMID: 37892483 PMCID: PMC10609718 DOI: 10.3390/nu15204407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
We analyzed the influence of maternal hyperglycemia and the post-weaning consumption of a high-fat diet on the mitochondrial function and ovarian development of the adult pups of diabetic rats. Female rats received citrate buffer (Control-C) or Streptozotocin (for diabetes induction-D) on postnatal day 5. These adult rats were mated to obtain female pups (O) from control dams (OC) or from diabetic dams (OD), and they received a standard diet (SD) or high-fat diet (HFD) from weaning to adulthood and were distributed into OC/SD, OC/HFD, OD/SD, and OD/HFD. In adulthood, the OGTT and AUC were performed. These rats were anesthetized and euthanized for sample collection. A high percentage of diabetic rats were found to be in the OD/HFD group (OD/HFD 40% vs. OC/SD 0% p < 0.05). Progesterone concentrations were lower in the experimental groups (OC/HFD 0.40 ± 0.04; OD/SD 0.30 ± 0.03; OD/HFD 0.24 ± 0.04 vs. OC/SD 0.45 ± 0.03 p < 0.0001). There was a lower expression of MFF (OD/SD 0.34 ± 0.33; OD/HFD 0.29 ± 0.2 vs. OC/SD 1.0 ± 0.41 p = 0.0015) and MFN2 in the OD/SD and OD/HFD groups (OD/SD 0.41 ± 0.21; OD/HFD 0.77 ± 0.18 vs. OC/SD 1.0 ± 0.45 p = 0.0037). The number of follicles was lower in the OD/SD and OD/HFD groups. A lower staining intensity for SOD and Catalase and higher staining intensity for MDA were found in ovarian cells in the OC/HFD, OD/SD, and OD/HFD groups. Fetal programming was responsible for mitochondrial dysfunction, ovarian reserve loss, and oxidative stress; the association of maternal diabetes with an HFD was responsible for the higher occurrence of diabetes in female adult pups.
Collapse
Affiliation(s)
- Verônyca Gonçalves Paula
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Franciane Quintanilha Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Larissa Lopes Cruz
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Ariana Musa de Aquino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças 78600-000, MG, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
6
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Glucose-Lowering Effects of Imeglimin and Its Possible Beneficial Effects on Diabetic Complications. BIOLOGY 2023; 12:biology12050726. [PMID: 37237539 DOI: 10.3390/biology12050726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Mitochondrial dysfunction is a prominent pathological feature of type 2 diabetes, which contributes to β-cell mass reduction and insulin resistance. Imeglimin is a novel oral hypoglycemic agent with a unique mechanism of action targeting mitochondrial bioenergetics. Imeglimin reduces reactive oxygen species production, improves mitochondrial function and integrity, and also improves the structure and function of endoplasmic reticulum (ER), changes which enhance glucose-stimulated insulin secretion and inhibit the apoptosis of β-cells, leading to β-cell mass preservation. Further, imeglimin inhibits hepatic glucose production and ameliorates insulin sensitivity. Clinical trials into the effects of imeglimin monotherapy and combination therapy exhibited an excellent hypoglycemic efficacy and safety profile in type 2 diabetic patients. Mitochondrial impairment is closely associated with endothelial dysfunction, which is a very early event in atherosclerosis. Imeglimin improved endothelial dysfunction in patients with type 2 diabetes via both glycemic control-dependent and -independent mechanisms. In experimental animals, imeglimin improved cardiac and kidney function via an improvement in mitochondrial and ER function or/and an improvement in endothelial function. Furthermore, imeglimin reduced ischemia-induced brain damage. In addition to glucose-lowering effects, imeglimin can be a useful therapeutic option for diabetic complications in type 2 diabetic patients.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| |
Collapse
|
7
|
Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int J Mol Sci 2023; 24:7898. [PMID: 37175603 PMCID: PMC10178199 DOI: 10.3390/ijms24097898] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolic syndrome is a cluster of conditions associated with the risk of diabetes mellitus type 2 and cardiovascular diseases (CVDs). Metabolic syndrome is closely related to obesity. Increased adiposity promotes inflammation and oxidative stress, which are precursors of various complications involving metabolic syndrome components, namely insulin resistance, hypertension, and hyperlipidemia. An increasing number of studies confirm the importance of oxidative stress and chronic inflammation in the etiology of metabolic syndrome. However, few studies have reviewed the mechanisms underlying the role of oxidative stress in contributing to metabolic syndrome. In this review, we highlight mechanisms by which reactive oxygen species (ROS) increase mitochondrial dysfunction, protein damage, lipid peroxidation, and impair antioxidant function in metabolic syndrome. Biomarkers of oxidative stress can be used in disease diagnosis and evaluation of severity.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| | - Lombe S. Kabwe
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Martin Chakulya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Annet Kirabo
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| |
Collapse
|
8
|
Hayden MR. Overview and New Insights into the Metabolic Syndrome: Risk Factors and Emerging Variables in the Development of Type 2 Diabetes and Cerebrocardiovascular Disease. Medicina (B Aires) 2023; 59:medicina59030561. [PMID: 36984562 PMCID: PMC10059871 DOI: 10.3390/medicina59030561] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Metabolic syndrome (MetS) is considered a metabolic disorder that has been steadily increasing globally and seems to parallel the increasing prevalence of obesity. It consists of a cluster of risk factors which traditionally includes obesity and hyperlipidemia, hyperinsulinemia, hypertension, and hyperglycemia. These four core risk factors are associated with insulin resistance (IR) and, importantly, the MetS is known to increase the risk for developing cerebrocardiovascular disease and type 2 diabetes mellitus. The MetS had its early origins in IR and syndrome X. It has undergone numerous name changes, with additional risk factors and variables being added over the years; however, it has remained as the MetS worldwide for the past three decades. This overview continues to add novel insights to the MetS and suggests that leptin resistance with hyperleptinemia, aberrant mitochondrial stress and reactive oxygen species (ROS), impaired folate-mediated one-carbon metabolism with hyperhomocysteinemia, vascular stiffening, microalbuminuria, and visceral adipose tissues extracellular vesicle exosomes be added to the list of associated variables. Notably, the role of a dysfunctional and activated endothelium and deficient nitric oxide bioavailability along with a dysfunctional and attenuated endothelial glycocalyx, vascular inflammation, systemic metainflammation, and the important role of ROS and reactive species interactome are discussed. With new insights and knowledge regarding the MetS comes the possibility of new findings through further research.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
9
|
García-Aguilar A, Guillén C. Targeting pancreatic beta cell death in type 2 diabetes by polyphenols. Front Endocrinol (Lausanne) 2022; 13:1052317. [PMID: 36465657 PMCID: PMC9712222 DOI: 10.3389/fendo.2022.1052317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is a very complex disease which is characterized by the appearance of insulin resistance that is primarily compensated by an increase in pancreatic beta cell mass, generating hyperinsulinemia. After time, pancreatic beta cells die by apoptosis appearing in the second phase of the disease, and characterized by hypoinsulinemia. There are multiple conditions that can alter pancreatic beta cell homeostasis and viability, being the most relevant ones; ER stress, cytotoxicity by amylin, mTORC1 hyperactivity, oxidative stress, mitochondrial dysfunction, inflammation and alterations in autophagy/mitophagy flux. In addition, the possible effects that different polyphenols could exert in the modulation of these mechanisms and regulating pancreatic beta cell viability are analyzed. It is necessary a profound analysis and understanding of all the possible mechanisms involved in the control and maintenance of pancreatic beta cell viability to develop more accurate and target treatments for controlling beta cell homeostasis and preventing or even reversing type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ana García-Aguilar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre Centro de Investigación Biomédica en Red. Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Guillén
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre Centro de Investigación Biomédica en Red. Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Carlos Guillén,
| |
Collapse
|