1
|
Li Z, He Y, Zhang Q, Li B, Xiu R, Zhang H. Characterization of microcirculatory endothelial functions in a D-Galactose-induced aging model. Microvasc Res 2024; 157:104757. [PMID: 39490807 DOI: 10.1016/j.mvr.2024.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Microcirculation health is critical to human health, and aging is an important factor affecting microcirculation health. Although D-Galactose has been widely used in aging research models, there is a lack of relevant studies on D-Galactose simulating microcirculatory aging. Here, we explored microcirculatory endothelial function in D-Galactose-induced aging mice. METHODS Intraperitoneal injection of 150 mg/(kg·d) of D-Galactose was given to cause senescence in mice. Aging was evaluated by SA-β-gal (senescence-associated β-galactosidase) staining. The auricular skin and hepatic microcirculation of mice were observed and detected by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC) and microcirculation apparatus. The aging of microcirculation was analyzed from oxidative stress, endothelial impairment, inflammation, microvascular morphology and hemodynamics. RESULTS In aging mice, percentage of SA-β-gal positive area, oxidative stress products reactive oxygen species (ROS) and nitric oxide (NO), endothelial impairment marker syndecan-1 (SDC-1), stromal cell derived factor-1 (SDF-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in the senescence-associated secretory phenotype (SASP) were all up-regulated. The tortuosity of microvessels increased in aging mice, the linear density did not change significantly, but the total length of narrow microvessels (TLNMV) increased and wide microvessels (TLWMV) decreased, speculate that vasomotor dysfunction may be present. Hemodynamically, both perfusion and velocity of blood flow were reduced in senescent mice, presumably due to endothelial dysfunction. CONCLUSION Microcirculatory endothelial dysfunction is induced by D-Galactose, leading to microcirculatory aging. In vivo, this is manifested by elevated levels of oxidative stress, impaired endothelial glycocalyx (eGC), and a greater production of chemokines and adhesive molecules. These changes cause vasomotor dysfunction and remodeling, ultimately leading to hemodynamic impairment.
Collapse
Affiliation(s)
- Zhuo Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yuhong He
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Qiuju Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ruijuan Xiu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
2
|
Sun WT, Du JY, Wang J, Wang YL, Dong ED. Potential preservative mechanisms of cardiac rehabilitation pathways on endothelial function in coronary heart disease. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2656-6. [PMID: 39395086 DOI: 10.1007/s11427-024-2656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 10/14/2024]
Abstract
Cardiac rehabilitation, a comprehensive exercise-based lifestyle and medical management, is effective in decreasing morbidity and improving life quality in patients with coronary heart disease. Endothelial function, an irreplaceable indicator in coronary heart disease progression, is measured by various methods in traditional cardiac rehabilitation pathways, including medicinal treatment, aerobic training, and smoking cessation. Nevertheless, studies on the effect of some emerging cardiac rehabilitation programs on endothelial function are limited. This article briefly reviewed the endothelium-beneficial effects of different cardiac rehabilitation pathways, including exercise training, lifestyle modification and psychological intervention in patients with coronary heart disease, and related experimental models, and summarized both uncovered and potential cellular and molecular mechanisms of the beneficial roles of various cardiac rehabilitation pathways on endothelial function. In exercise training and some lifestyle interventions, the enhanced bioavailability of nitric oxide, increased circulating endothelial progenitor cells (EPCs), and decreased oxidative stress are major contributors to preventing endothelial dysfunction in coronary heart disease. Moreover, the preservation of endothelial-dependent hyperpolarizing factors and inflammatory suppression play roles. On the one hand, to develop more endothelium-protective rehabilitation methods in coronary heart disease, adequately designed and sized randomized multicenter clinical trials should be advanced using standardized cardiac rehabilitation programs and existing assessment methods. On the other hand, additional studies using suitable experimental models are warranted to elucidate the relationship between some new interventions and endothelial protection in both macro- and microvasculature.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Jian-Yong Du
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jia Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Yi-Long Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Er-Dan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China.
- The Institute of Cardiovascular Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| |
Collapse
|
3
|
Zhang T, Jiang D, Zhang X, Chen L, Jiang J, Zhang C, Li S, Li Q. The role of nonmyocardial cells in the development of diabetic cardiomyopathy and the protective effects of FGF21: a current understanding. Cell Commun Signal 2024; 22:446. [PMID: 39327594 PMCID: PMC11426003 DOI: 10.1186/s12964-024-01842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Kordi N, Sanaei M, Akraminia P, Yavari S, Saydi A, Abadi FK, Heydari N, Jung F, Karami S. PANoptosis and cardiovascular disease: The preventive role of exercise training. Clin Hemorheol Microcirc 2024:CH242396. [PMID: 39269827 DOI: 10.3233/ch-242396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Regulated cell death, including pyroptosis, apoptosis, and necroptosis, is vital for the body's defense system. Recent research suggests that these three types of cell death are interconnected, giving rise to a new concept called PANoptosis. PANoptosis has been linked to various diseases, making it crucial to comprehend its mechanism for effective treatments. PANoptosis is controlled by upstream receptors and molecular signals, which form polymeric complexes known as PANoptosomes. Cell death combines necroptosis, apoptosis, and pyroptosis and cannot be fully explained by any of these processes alone. Understanding pyroptosis, apoptosis, and necroptosis is essential for understanding PANoptosis. Physical exercise has been shown to suppress pyroptotic, apoptotic, and necroptotic signaling pathways by reducing inflammatory factors, proapoptotic factors, and necroptotic factors such as caspases and TNF-alpha. This ultimately leads to a decrease in cardiac structural remodeling. The beneficial effects of exercise on cardiovascular health may be attributed to its ability to inhibit these cell death pathways.
Collapse
Affiliation(s)
- Negin Kordi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | | | - Peyman Akraminia
- Department of Sports Physiology, Faculty of Physical Education and Sports Sciences, Islamic Azad University, South Tehran Branch, Iran
| | - Sajad Yavari
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ali Saydi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Fatemeh Khamis Abadi
- Department of Sport Physiology, Faculty of Human Sciences, Islamic Azad University, Borujerd, Iran
| | - Naser Heydari
- Faculty of Physical Education and Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Friedrich Jung
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Sajad Karami
- Faculty of Physical Education and Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
5
|
Cao W, Zhao B, Gui L, Sun X, Zhang Z, Huang L. The role and mechanism of action of miR‑92a in endothelial cell autophagy. Mol Med Rep 2024; 30:172. [PMID: 39054957 PMCID: PMC11304162 DOI: 10.3892/mmr.2024.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Although microRNAs (miRNAs/miRs) serve a significant role in the autophagy of vascular endothelial cells (ECs), the effect of miR‑92a on the autophagy of ECs is currently unclear. Therefore, the present study aimed to investigate the impact of miR‑92a on autophagy in ECs and the underlying molecular processes that control this biological activity. Firstly, an autophagy model of EA.hy926 cells was generated via treatment with the autophagy inducer rapamycin (rapa‑EA.hy926 cells). The expression levels of miR‑92a were then detected by reverse transcription‑quantitative PCR, and the effect of miR‑92a expression on the autophagic activity of rapa‑EA.hy926 cells was studied by overexpressing or inhibiting miR‑92a. The level of autophagy was evaluated by western blot analysis, immunofluorescence staining and transmission electron microscopy. Dual‑luciferase reporter assays were used to confirm the interaction between miR‑92a and FOXO3. The results demonstrated that the expression levels of miR‑92a were decreased in the rapa‑EA.hy926 cell autophagy model. Furthermore, overexpression and inhibition of miR‑92a revealed that upregulation of miR‑92a in these cells inhibited autophagy, whereas miR‑92a knockdown promoted it. It was also confirmed that miR‑92a directly bound to the 3'‑untranslated region of the autophagy‑related gene FOXO3 and reduced its expression. In conclusion, the present study suggested that miR‑92a inhibits autophagy activity in EA.hy926 cells by targeting FOXO3.
Collapse
Affiliation(s)
- Weili Cao
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Boxin Zhao
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lin Gui
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xueyuan Sun
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhiyong Zhang
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lijuan Huang
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
6
|
Bai G, Yang J, Liao W, Zhou X, He Y, Li N, Zhang L, Wang Y, Dong X, Zhang H, Pan J, Lai L, Yuan X, Wang X. MiR-106a targets ATG7 to inhibit autophagy and angiogenesis after myocardial infarction. Animal Model Exp Med 2024; 7:408-418. [PMID: 38807299 PMCID: PMC11369033 DOI: 10.1002/ame2.12418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is an acute condition in which the heart muscle dies due to the lack of blood supply. Previous research has suggested that autophagy and angiogenesis play vital roles in the prevention of heart failure after MI, and miR-106a is considered to be an important regulatory factor in MI. But the specific mechanism remains unknown. In this study, using cultured venous endothelial cells and a rat model of MI, we aimed to identify the potential target genes of miR-106a and discover the mechanisms of inhibiting autophagy and angiogenesis. METHODS We first explored the biological functions of miR-106a on autophagy and angiogenesis on endothelial cells. Then we identified ATG7, which was the downstream target gene of miR-106a. The expression of miR-106a and ATG7 was investigated in the rat model of MI. RESULTS We found that miR-106a inhibits the proliferation, cell cycle, autophagy and angiogenesis, but promoted the apoptosis of vein endothelial cells. Moreover, ATG7 was identified as the target of miR-106a, and ATG7 rescued the inhibition of autophagy and angiogenesis by miR-106a. The expression of miR-106a in the rat model of MI was decreased but the expression of ATG7 was increased in the infarction areas. CONCLUSION Our results indicate that miR-106a may inhibit autophagy and angiogenesis by targeting ATG7. This mechanism may be a potential therapeutic treatment for MI.
Collapse
Affiliation(s)
- Guofeng Bai
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
- Huidong County Animal Quarantine and Inspection InstituteHuizhouGuangdongChina
| | - Jinghao Yang
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Weili Liao
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Liuhong Zhang
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Yifei Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Xiaoli Dong
- Department of CardiologyHainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Clinical Medicine Research InstitutionHaikouPeople's Republic of China
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Jinchun Pan
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
| | - Liangxue Lai
- Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongChina
| | - Xiaolong Yuan
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
- Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongChina
| | - Xilong Wang
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
| |
Collapse
|
7
|
Tolosa-Ridao C, Cascos E, Rodríguez-Lobato LG, Pedraza A, Suárez-Lledó M, Charry P, Solano MT, Martinez-Sanchez J, Cid J, Lozano M, Rosiñol L, Esteve J, Urbano-Ispizua Á, Fernández-Avilés F, Martínez C, Carreras E, Díaz-Ricart M, Rovira M, Salas MQ. EASIX and cardiac adverse events after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2024; 59:974-982. [PMID: 38521885 DOI: 10.1038/s41409-024-02270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
This study investigates the interaction between endothelial activation, indirectly measured using EASIX, and the probability of presenting cardiac adverse events (CAE) during the first year after allo-HCT. The 437 consecutive adults undergoing PB allo-HCT from 2012 and 2021 were included. EASIX was retrospectively calculated before and during the first 6 months after allo-HCT and transformed to log2-base to conduct the statistical analysis. The median age was 53, 46 (10.5%) patients had previous history of cardiac disease, MAC allo-HCTs were performed in 186 (42.6%) patients, and PTCY was administered in 242 (55.5%). The 1-year incidence of CAE was 12.6% (n = 55). The most prevalent cardiac events were heart failure and arrhythmias, 32.7% and 23.6% respectively, and the day +100 mortality rate of these patients was 40.5%. During the first 6 months after allo-HCT, EASIX trends were significantly higher in patients who developed CAE. Regression analyses confirmed that higher log2-EASIX values were predictors for higher risk for CAE during the first year after allo-HCT. This analysis identifies a significant association between higher endothelial activation, indirectly measured using EASIX, and higher risk for cardiac toxicity diagnosed during the first year after allo-HCT and extends the applicability of EASIX for identifying patients at risk for CAE.
Collapse
Affiliation(s)
- Carles Tolosa-Ridao
- Hematology Department, Hospital Universitari Mútua Terrassa, Barcelona, Spain
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Enric Cascos
- Cardiology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Luis Gerardo Rodríguez-Lobato
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alexandra Pedraza
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María Suárez-Lledó
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paola Charry
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Apheresis and Cellular Therapy Unit, Hemotherapy and Hemostasis Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain
| | - María Teresa Solano
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Julia Martinez-Sanchez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hemostasis and Erythropathology Laboratory, Hematopathology, Department of Pathology, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Joan Cid
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Apheresis and Cellular Therapy Unit, Hemotherapy and Hemostasis Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Miquel Lozano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Apheresis and Cellular Therapy Unit, Hemotherapy and Hemostasis Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Laura Rosiñol
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Esteve
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Álvaro Urbano-Ispizua
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Francesc Fernández-Avilés
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carmen Martínez
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Enric Carreras
- Fundació i Institut de Reserca Josep Carreras Contra la Leucèmia, Barcelona, Spain
| | - Maribel Díaz-Ricart
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hemostasis and Erythropathology Laboratory, Hematopathology, Department of Pathology, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Montserrat Rovira
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María Queralt Salas
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
8
|
Chang X, Wang B, Zhao Y, Deng B, Liu P, Wang Y. The role of IFI16 in regulating PANoptosis and implication in heart diseases. Cell Death Discov 2024; 10:204. [PMID: 38693141 PMCID: PMC11063201 DOI: 10.1038/s41420-024-01978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
Interferon Gamma Inducible Protein 16 (IFI16) belongs to the HIN-200 protein family and is pivotal in immunological responses. Serving as a DNA sensor, IFI16 identifies viral and aberrant DNA, triggering immune and inflammatory responses. It is implicated in diverse cellular death mechanisms, such as pyroptosis, apoptosis, and necroptosis. Notably, these processes are integral to the emergent concept of PANoptosis, which encompasses cellular demise and inflammatory pathways. Current research implies a significant regulatory role for IFI16 in PANoptosis, particularly regarding cardiac pathologies. This review delves into the complex interplay between IFI16 and PANoptosis in heart diseases, including atherosclerosis, myocardial infarction, heart failure, and diabetic cardiomyopathy. It synthesizes evidence of IFI16's impact on PANoptosis, with the intention of providing novel insights for therapeutic strategies targeting heart diseases.
Collapse
Affiliation(s)
- Xindi Chang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Bei Wang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Yingli Zhao
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Bing Deng
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Ping Liu
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| | - Yiru Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| |
Collapse
|
9
|
Kim R, Kim M, Jeong S, Kim S, Moon H, Kim H, Lee MY, Kim J, Kim HS, Choi M, Shin K, Song BW, Chang W. Melatonin alleviates myocardial dysfunction through inhibition of endothelial-to-mesenchymal transition via the NF-κB pathway. J Pineal Res 2024; 76:e12958. [PMID: 38747060 DOI: 10.1111/jpi.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a complex biological process of cellular transdifferentiation by which endothelial cells (ECs) lose their characteristics and acquire mesenchymal properties, leading to cardiovascular remodeling and complications in the adult cardiovascular diseases environment. Melatonin is involved in numerous physiological and pathological processes, including aging, and has anti-inflammatory and antioxidant activities. This molecule is an effective therapeutic candidate for preventing oxidative stress, regulating endothelial function, and maintaining the EndMT balance to provide cardiovascular protection. Although recent studies have documented improved cardiac function by melatonin, the mechanism of action of melatonin on EndMT remains unclear. The present study investigated the effects of melatonin on induced EndMT by transforming growth factor-β2/interleukin-1β in both in vivo and in vitro models. The results revealed that melatonin reduced the migratory ability and reactive oxygen species levels of the cells and ameliorated mitochondrial dysfunction in vitro. Our findings indicate that melatonin prevents endothelial dysfunction and inhibits EndMT by activating related pathways, including nuclear factor kappa B and Smad. We also demonstrated that this molecule plays a crucial role in restoring cardiac function by regulating the EndMT process in the ischemic myocardial condition, both in vessel organoids and myocardial infarction (MI) animal models. In conclusion, melatonin is a promising agent that attenuates EC dysfunction and ameliorates cardiac damage compromising the EndMT process after MI.
Collapse
Affiliation(s)
- Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Busan, South Korea
| | - Minsuk Kim
- Department of Biology Education, College of Education, Pusan National University, Busan, South Korea
| | - Seongtae Jeong
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Sejin Kim
- Department of Biology Education, College of Education, Pusan National University, Busan, South Korea
| | - Hanbyeol Moon
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Hojin Kim
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Kunyoo Shin
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, South Korea
| |
Collapse
|
10
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
11
|
Ge JY, Yan XJ, Yang J, Jin H, Sun ZK, Guo JL, Zhu Y, Wang FF. LINC00346 regulates NLRP1-mediated pyroptosis and autophagy via binding to microRNA-637 in vascular endothelium injury. Cell Signal 2023:110740. [PMID: 37268163 DOI: 10.1016/j.cellsig.2023.110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Endothelial injury and dysfunction contributes to atherosclerosis. LINC00346 plays a key role in vascular endothelial cell injury, however, the specific mechanism remains unclear. This study intends to further explore the relationship between LINC00346 and vascular endothelial injury. Circulating LINC00346 was significantly elevated in patients with coronary artery disease and had high diagnostic value for coronary artery disease. In cell experiments, we found that LINC00346 expression was significantly increased in the oxidized low-density lipoprotein (ox-LDL) intervention group, and LINC00346 knockdown delayed ox-LDL induced human umbilical vein endothelial cell (HUVEC) endothelial-to-mesenchymal transition. In addition, knockdown of LINC00346 mitigated ox-LDL-induced NOD-like receptor protein 1 (NLRP1)-mediated inflammasome formation and pyroptosis, but had no significant effect on NLRP3. By observing the number of autophagosome and detecting intracellular autophagic flux, we found that LINC00346 knockdown inhibited the ox-LDL-induced increase in intracellular autophagy level. Dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA-pull down assay were performed to confirm the inter-molecular interaction. LINC00346 acted as microRNA-637 sponge to up-regulate the expression of NLRP1. Up-regulation of microRNA-637 alleviated NLRP1-mediated pyroptosis in HUVEC and reduced intracellular autophagosome and autolysosome formation. Finally, we explored whether pyropotosis and autophagy interact with each other. We found that inhibition of intracellular autophagy could alleviate NLRP1-mediated pyroptosis. In conclusion, LINC00346 inhibited the activation of NLRP1-mediated pyroptosis and autophagy via binding to microRNA-637, therefore mitigating vascular endothelial injury.
Collapse
Affiliation(s)
- Ji-Yong Ge
- Department of Cardiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Xue-Jiao Yan
- Department of Cardiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Jin Yang
- Rare Disease Research Unit, Pfizer, Inc., Cambridge, MA 02140, USA
| | - Hong Jin
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Zi-Kai Sun
- Department of Cardiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Jian-Lu Guo
- Department of Cardiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Yi Zhu
- Department of Cardiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Fang-Fang Wang
- Department of Cardiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China.
| |
Collapse
|
12
|
Iwańczyk S, Lehmann T, Cieślewicz A, Malesza K, Woźniak P, Hertel A, Krupka G, Jagodziński PP, Grygier M, Lesiak M, Araszkiewicz A. Circulating miRNA-451a and miRNA-328-3p as Potential Markers of Coronary Artery Aneurysmal Disease. Int J Mol Sci 2023; 24:ijms24065817. [PMID: 36982889 PMCID: PMC10058788 DOI: 10.3390/ijms24065817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
MicroRNAs (miRNAs) are currently investigated as crucial regulatory factors which may serve as a potential therapeutic target. Reports on the role of miRNA in patients with coronary artery aneurysmal disease (CAAD) are limited. The present analysis aims to confirm the differences in the expression of previously preselected miRNAs in larger study groups and evaluate their usefulness as potential markers of CAAD. The study cohort included 35 consecutive patients with CAAD (Group 1), and two groups of 35 patients matched Group 1 regarding sex and age from the overall cohort of 250 patients (Group 2 and Group 3). Group 2 included patients with angiographically documented coronary artery disease (CAD), while Group 3 enrolled patients with normal coronary arteries (NCA) assessed during coronary angiography. We applied the RT-qPCR method using the custom plates for the RT-qPCR array. We confirmed that the level of five preselected circulating miRNAs was different in patients with CAAD compared to Group 2 and Group 3. We found that miR-451a and miR-328 significantly improved the CAAD prediction. In conclusion, miR-451a is a significant marker of CAAD compared to patients with CAD. In turn, miR-328-3p is a significant marker of CAAD compared to patients with NCA.
Collapse
Affiliation(s)
- Sylwia Iwańczyk
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznań, Poland
- Correspondence: ; Tel.: +48-662-712-627
| | - Tomasz Lehmann
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Artur Cieślewicz
- Clinical Pharmacology, Poznan University of Medical Sciences, 61-848 Poznań, Poland
| | - Katarzyna Malesza
- Clinical Pharmacology, Poznan University of Medical Sciences, 61-848 Poznań, Poland
| | - Patrycja Woźniak
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznań, Poland
| | - Agnieszka Hertel
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Grzegorz Krupka
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznań, Poland
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Marek Grygier
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznań, Poland
| | - Maciej Lesiak
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznań, Poland
| | | |
Collapse
|
13
|
Hu Y, Jiang H, Xu Y, Chen G, Fan R, Zhou Y, Liu Y, Yao Y, Liu R, Chen W, Zhang K, Chen X, Wang R, Qiu Z. Stomatin-like protein 2 deficiency exacerbates adverse cardiac remodeling. Cell Death Discov 2023; 9:63. [PMID: 36788223 PMCID: PMC9929064 DOI: 10.1038/s41420-023-01350-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Myocardial fibrosis, oxidative stress, and autophagy both play key roles in the progression of adverse cardiac remodeling. Stomatin-like protein 2 (SLP-2) is closely related to mitochondrial function, but little is known about its role and mechanism in cardiac remodeling. We developed doxorubicin (Dox), angiotensin (Ang) II, and myocardial ischemia-reperfusion (I/R) injury induced cardiac remodeling model and Dox treated H9C2 cell injury model using SLP-2 knockout (SLP-2-/-) mice and H9C2 cells with low SLP-2 expression. We first examined cardiac functional and structural changes as well as levels of oxidative stress, apoptosis and autophagy. We found that SLP-2 deficiency leads to decreased cardiac function and promotes myocardial fibrosis. After Dox and Ang II treatment, SLP-2 deficiency further aggravated myocardial fibrosis, increased myocardial oxidative stress and apoptosis, and activated autophagy by inhibiting PI3K-Akt-mTOR signaling pathway, ultimately exacerbating adverse cardiac remodeling. Similarly, SLP-2 deficiency further exacerbates adverse cardiac remodeling after myocardial I/R injury. Moreover, we extracted cardiomyocyte mitochondria for proteomic analysis, suggesting that SLP-2 deficiency may be involved in myocardial I/R injury induced adverse cardiac remodeling by influencing ubiquitination of intramitochondrial proteins. In addition, the oxidative stress, apoptosis and autophagy levels of H9C2 cells with low SLP-2 expression were further enhanced, and the PI3K-Akt-mTOR signaling pathway was further inhibited under Dox stimulation. Our results suggest that SLP-2 deficiency promotes myocardial fibrosis, disrupts normal mitochondrial function, overactivates autophagy via PI3K-Akt-mTOR signaling pathway, affects the level of ubiquitination, leads to irreversible myocardial damage, and ultimately exacerbates adverse cardiac remodeling.
Collapse
Affiliation(s)
- Yuntao Hu
- grid.89957.3a0000 0000 9255 8984Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Hongwei Jiang
- grid.89957.3a0000 0000 9255 8984Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Yueyue Xu
- grid.89957.3a0000 0000 9255 8984Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Ganyi Chen
- grid.89957.3a0000 0000 9255 8984Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Rui Fan
- grid.263826.b0000 0004 1761 0489School of Medicine, Southeast University, Jiangsu, China
| | - Yifei Zhou
- grid.89957.3a0000 0000 9255 8984Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Yafeng Liu
- grid.89957.3a0000 0000 9255 8984Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Yiwei Yao
- grid.89957.3a0000 0000 9255 8984Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Renjie Liu
- grid.263826.b0000 0004 1761 0489School of Medicine, Southeast University, Jiangsu, China
| | - Wen Chen
- grid.89957.3a0000 0000 9255 8984Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Ke Zhang
- grid.89957.3a0000 0000 9255 8984Department of Thoracic and Cardiovascular Surgery, Changzhou Second People’s Hospital, Nanjing Medical University, Jiangsu, China
| | - Xin Chen
- grid.89957.3a0000 0000 9255 8984Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Rui Wang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China.
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China.
| |
Collapse
|
14
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Akiash N, Assareh AR, Anbiyaee O, Antosik P, Dzięgiel P, Farzaneh M, Kempisty B. Potential roles of endothelial cells-related non-coding RNAs in cardiovascular diseases. Pathol Res Pract 2023; 242:154330. [PMID: 36696805 DOI: 10.1016/j.prp.2023.154330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endothelial dysfunction is identified by a conversion of the endothelium toward decreased vasodilation and prothrombic features and is known as a primary pathogenic incident in cardiovascular diseases. An insight based on particular and promising biomarkers of endothelial dysfunction may possess vital clinical significances. Currently, non-coding RNAs due to their participation in critical cardiovascular processes like initiation and progression have gained much attention as possible diagnostic as well as prognostic biomarkers in cardiovascular diseases. Emerging line of proof has demonstrated that abnormal expression of non-coding RNAs is nearly correlated with the pathogenesis of cardiovascular diseases. In the present review, we focus on the expression and functional effects of various kinds of non-coding RNAs in cardiovascular diseases and negotiate their possible clinical implications as diagnostic or prognostic biomarkers and curative targets.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Nehzat Akiash
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paweł Antosik
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland; North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|