1
|
Cepparulo P, Cuomo O, Campani V, Vinciguerra A, Sisalli MJ, Nele V, Anzilotti S, Valsecchi V, Casamassa A, Brancaccio P, Scorziello A, De Rosa G, Annunziato L, Pignataro G. Anti-miRNA103/107 encapsulated in transferrin-conjugated lipid nanoparticles crosses blood-brain barrier and reduces brain ischemic damage. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102131. [PMID: 38379726 PMCID: PMC10877170 DOI: 10.1016/j.omtn.2024.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
MicroRNA (miRNA), by post-transcriptionally regulating the expression of genes involved in stroke response, represents important effectors in stroke pathophysiology. Recently, the 103/107 miRNA family emerged as a possible therapeutic target in stroke, as it controls the expression of sodium calcium exchanger 1, a plasma membrane transporter that plays a fundamental role in stroke pathophysiology. Although the neuroprotective properties of this and other miRNAs are promising, several pharmacokinetic drawbacks remain to be faced for the development of a translatable therapy based on small RNAs in CNS diseases. In the present study, to overcome these limitations, the anti-miRNA103/107 was encapsulated in specific preparations of lipid nanoparticles (LNPs), and their effectiveness was evaluated both in an in vitro model of hypoxia represented by primary neuronal cortical cultures exposed to oxygen and glucose deprivation followed by reoxygenation, and in an in vivo model of stroke obtained in rats exposed to transient occlusion of the middle cerebral artery. The results of the present study demonstrated that the encapsulation of anti-miRNA103/107 in transferrin-conjugated PEG-stabilized LNPs allowed the blood-brain barrier crossing and significantly reduced brain ischemic damage. The present achievements pave the way for the exploitation of a systemic intravenous miRNA delivery strategy in stroke therapy.
Collapse
Affiliation(s)
- Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| | - Virginia Campani
- Department of Pharmacy, University Federico II of Naples, Via Domenico Montesano, 49 - 80131 Naples, Italy
| | - Antonio Vinciguerra
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", 60126 Ancona, Italy
| | - Maria Josè Sisalli
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| | - Valeria Nele
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Serenella Anzilotti
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University Federico II of Naples, Via Domenico Montesano, 49 - 80131 Naples, Italy
| | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| |
Collapse
|
2
|
Xiong Z, Wang H, Qu Y, Peng S, He Y, Yang Q, Xu X, Lv D, Liu Y, Xie C, Zhang X. The mitochondria in schizophrenia with 22q11.2 deletion syndrome: From pathogenesis to therapeutic promise of targeted natural drugs. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110831. [PMID: 37451595 DOI: 10.1016/j.pnpbp.2023.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Schizophrenia is a complex multi-factor neurological disorder that caused an array of severe indelible consequences to the individuals and society. Additionally, anti-schizophrenic drugs are unsuitable for treating negative symptoms and have more significant side effects and drug resistance. For better treatment and prevention, we consider exploring the pathogenesis of schizophrenia from other perspectives. A growing body of evidence of 22q11.2 deletion syndrome (22q11DS) suggested that the occurrence and progression of schizophrenia are related to mitochondrial dysfunction. So combing through the literature of 22q11DS published from 2000 to 2023, this paper reviews the mechanism of schizophrenia based on mitochondrial dysfunction, and it focuses on the natural drugs targeting mitochondria to enhance mitochondrial function, which are potential to improve the current treatment of schizophrenia.
Collapse
Affiliation(s)
- Zongxiang Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Heting Wang
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yutian Qu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sihan Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Yuchi He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingyan Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyue Xu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - De Lv
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Ya Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiyu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
3
|
Piccialli I, Greco F, Roviello G, Sisalli MJ, Tedeschi V, di Mola A, Borbone N, Oliviero G, De Feo V, Secondo A, Massa A, Pannaccione A. The 3-(3-oxoisoindolin-1-yl)pentane-2,4-dione (ISOAC1) as a new molecule able to inhibit Amyloid β aggregation and neurotoxicity. Biomed Pharmacother 2023; 168:115745. [PMID: 37871561 DOI: 10.1016/j.biopha.2023.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Amyloid β 1-42 (Aβ1-42) protein aggregation is considered one of the main triggers of Alzheimer's disease (AD). In this study, we examined the in vitro anti-amyloidogenic activity of the isoindolinone derivative 3-(3-oxoisoindolin-1-yl)pentane-2,4-dione (ISOAC1) and its neuroprotective potential against the Aβ1-42 toxicity. By performing the Thioflavin T fluorescence assay, Western blotting analyses, and Circular Dichroism experiments, we found that ISOAC1 was able to reduce the Aβ1-42 aggregation and conformational transition towards β-sheet structures. Interestingly, in silico studies revealed that ISOAC1 was able to bind to both the monomer and a pentameric protofibril of Aβ1-42, establishing a hydrophobic interaction with the PHE19 residue of the Aβ1-42 KLVFF motif. In vitro analyses on primary cortical neurons showed that ISOAC1 counteracted the increase of intracellular Ca2+ levels and decreased the Aβ1-42-induced toxicity, in terms of mitochondrial activity reduction and increase of reactive oxygen species production. In addition, confocal microscopy analyses showed that ISOAC1 was able to reduce the Aβ1-42 intraneuronal accumulation. Collectively, our results clearly show that ISOAC1 exerts a neuroprotective effect by reducing the Aβ1-42 aggregation and toxicity, hence emerging as a promising compound for the development of new Aβ-targeting therapeutic strategies for AD treatment.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Francesca Greco
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Giovanni Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Naples, Italy
| | - Maria Josè Sisalli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonia di Mola
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, SA, Italy
| | - Nicola Borbone
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University of Naples, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonio Massa
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, SA, Italy.
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
4
|
Johnson GA, Krishnamoorthy RR, Stankowska DL. Modulating mitochondrial calcium channels (TRPM2/MCU/NCX) as a therapeutic strategy for neurodegenerative disorders. Front Neurosci 2023; 17:1202167. [PMID: 37928737 PMCID: PMC10622973 DOI: 10.3389/fnins.2023.1202167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Efficient cellular communication is essential for the brain to regulate diverse functions like muscle contractions, memory formation and recall, decision-making, and task execution. This communication is facilitated by rapid signaling through electrical and chemical messengers, including voltage-gated ion channels and neurotransmitters. These messengers elicit broad responses by propagating action potentials and mediating synaptic transmission. Calcium influx and efflux are essential for releasing neurotransmitters and regulating synaptic transmission. Mitochondria, which are involved in oxidative phosphorylation, and the energy generation process, also interact with the endoplasmic reticulum to store and regulate cytoplasmic calcium levels. The number, morphology, and distribution of mitochondria in different cell types vary based on energy demands. Mitochondrial damage can cause excess reactive oxygen species (ROS) generation. Mitophagy is a selective process that targets and degrades damaged mitochondria via autophagosome-lysosome fusion. Defects in mitophagy can lead to a buildup of ROS and cell death. Numerous studies have attempted to characterize the relationship between mitochondrial dysfunction and calcium dysregulation in neurodegenerative diseases such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic lateral sclerosis, spinocerebellar ataxia, and aging. Interventional strategies to reduce mitochondrial damage and accumulation could serve as a therapeutic target, but further research is needed to unravel this potential. This review offers an overview of calcium signaling related to mitochondria in various neuronal cells. It critically examines recent findings, exploring the potential roles that mitochondrial dysfunction might play in multiple neurodegenerative diseases and aging. Furthermore, the review identifies existing gaps in knowledge to guide the direction of future research.
Collapse
Affiliation(s)
- Gretchen A. Johnson
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Raghu R. Krishnamoorthy
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
- Department of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Dorota L. Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
5
|
Desouky MA, George MY, Michel HE, Elsherbiny DA. Roflumilast escalates α-synuclein aggregate degradation in rotenone-induced Parkinson's disease in rats: Modulation of the ubiquitin-proteasome system and endoplasmic reticulum stress. Chem Biol Interact 2023; 379:110491. [PMID: 37105514 DOI: 10.1016/j.cbi.2023.110491] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Perturbation of the protein homeostasis circuit is one of the principal attributes associated with many neurodegenerative disorders, such as Parkinson's disease (PD). This study aimed to explore the neuroprotective effect of roflumilast (ROF), a phosphodiesterase-4 inhibitor, in a rotenone-induced rat model of PD and investigate the potential underlying mechanisms. Interestingly, ROF (1 mg/kg, p.o.) attenuated motor impairment, prevented brain lesions, and rescued the dopaminergic neurons in rotenone-treated rats. Furthermore, it reduced misfolded α-synuclein burden. ROF also promoted the midbrain cyclic adenosine monophosphate level, which subsequently enhanced the 26S proteasome activity and the expression of the 20S proteasome. ROF counteracted rotenone-induced endoplasmic reticulum stress, which was demonstrated by its impact on activating transcription factor 6, glucose-regulated protein 78, and C/EBP homologous protein levels. Moreover, ROF averted rotenone-induced oxidative stress, as evidenced by its effects on the levels of nuclear factor erythroid 2-related factor 2, heme oxygenase-1, reduced glutathione, and lipid peroxides with a significant anti-apoptotic activity. Collectively, this study implies repurposing of ROF as a novel neuroprotective drug owning to its ability to restore normal protein homeostasis.
Collapse
Affiliation(s)
- Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| |
Collapse
|