1
|
Shen J, Ding Y. Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review). Mol Med Rep 2025; 31:75. [PMID: 39886962 PMCID: PMC11795254 DOI: 10.3892/mmr.2025.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/07/2024] [Indexed: 02/01/2025] Open
Abstract
Insulin‑like growth factor 2 mRNA binding protein 2 (IGF2BP2) is an RNA binding protein that functions as an N6‑methyladenosine reader. It regulates various biological processes in human cancers by affecting the stability and expression of target RNA transcripts, including coding RNAs and non‑coding RNAs (ncRNAs). Numerous studies have shown that IGF2BP2 expression is aberrantly increased in various types of cancer and plays multifaceted roles in the development and progression of human cancers. In the present review, the clinical importance of IGF2BP2 is summarized and its involvement in the regulation of biological processes, including proliferation, metastasis, chemoresistance, metabolism, tumor immunity, stemness and cell death, in human cancers is discussed. The chemical compounds that have been developed as IGF2BP2 inhibitors are also detailed. As ncRNAs are now important potential therapeutic agents for cancer treatment, the microRNAs that have been reported to directly target and inhibit IGF2BP2 expression in cancers are also described. In summary, by reviewing the latest literature, the present study aimed to highlight the clinical importance and physiological functions of IGF2BP2 in human cancer, with a focus on the great potential of IGF2BP2 as a target for inhibitor development. The present review may inspire new ideas for future studies on IGF2BP2, which may serve as a specific therapeutic target in cancer.
Collapse
Affiliation(s)
- Jianan Shen
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Youxiang Ding
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
2
|
Tang J, Zhou C, Ye F, Zuo S, Zhou M, Lu L, Chai P, Fan X. RNA methylation homeostasis in ocular diseases: All eyes on Me. Prog Retin Eye Res 2025; 105:101335. [PMID: 39880118 DOI: 10.1016/j.preteyeres.2025.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
RNA methylation is a pivotal epigenetic modification that adjusts various aspects of RNA biology, including nuclear transport, stability, and the efficiency of translation for specific RNA candidates. The methylation of RNA involves the addition of methyl groups to specific bases and can occur at different sites, resulting in distinct forms, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), and 7-methylguanosine (m7G). Maintaining an optimal equilibrium of RNA methylation is crucial for fundamental cellular activities such as cell survival, proliferation, and migration. The balance of RNA methylation is linked to various pathophysiological conditions, including senescence, cancer development, stress responses, and blood vessel formation, all of which are pivotal for comprehending a spectrum of eye diseases. Recent findings have highlighted the significant role of diverse RNA methylation patterns in ophthalmological conditions such as age-related macular degeneration, diabetic retinopathy, cataracts, glaucoma, uveitis, retinoblastoma, uveal melanoma, thyroid eye disease, and myopia, which are critical for vision health. This thorough review endeavors to dissect the influence of RNA methylation on common and vision-impairing ocular disorders. It explores the nuanced roles that RNA methylation plays in key pathophysiological mechanisms, such as oxidative stress and angiogenesis, which are integral to the onset and progression of these diseases. By synthesizing the latest research, this review offers valuable insights into how RNA methylation could be harnessed for therapeutic interventions in the field of ophthalmology.
Collapse
Affiliation(s)
- Jieling Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Fuxiang Ye
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Sipeng Zuo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Min Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Linna Lu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China.
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China.
| |
Collapse
|
3
|
Hara T, Meng S, Arao Y, Saito Y, Inoue K, Rennie S, Ofusa K, Doki Y, Eguchi H, Kitagawa T, Ishii H. Recent advances in noncoding RNA modifications of gastrointestinal cancer. Cancer Sci 2025; 116:8-20. [PMID: 39487589 PMCID: PMC11711047 DOI: 10.1111/cas.16380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 11/04/2024] Open
Abstract
Elucidating the mechanisms underlying cancer development and proliferation is important for the development of therapeutic methods for the complete cure of cancer. In particular, the identification of diagnostic markers for early detection and new therapeutic strategies for refractory gastrointestinal cancers are needed. Various abnormal phenomena occur in cancer cells, such as functional changes of proteins, led by genomic mutations, and changes in gene expression due to dysregulation of epigenetic regulation. This is no exception for noncoding RNA (ncRNA), which do not encode proteins. Recent reports have revealed that microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) are deeply involved in cancer progression. These ncRNAs have attracted attention as gene expression regulatory molecules. Recent advances in technology have made it possible not only to read DNA and RNA sequences but also to study the modification state of each base. In particular, comprehensive analysis of N6-methyladenosine (m6A) has been performed by many research groups, with multiple studies reporting that m6A modifications of specific genes are associated with cancer progression. Based on the above, this review examines how ncRNA modifications are related to cancer progression in gastrointestinal cancers such as colorectal and pancreatic cancer. We also discuss enzyme inhibitors that have been reported to have drug discovery potential targeting m6A modifications. By utilizing the new perspective of ncRNA modification, we may be able to accumulate knowledge on the molecular biology of cancer and contribute to human health through diagnosis and treatment.
Collapse
Affiliation(s)
- Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yoshiko Saito
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Kana Inoue
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Sarah Rennie
- Section for Computational and RNA Biology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ken Ofusa
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
- Prophoenix DivisionFood and Life‐Science Laboratory, IDEA Consultants, Inc.OsakaOsakaJapan
| | - Yuichiro Doki
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Toru Kitagawa
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineOsakaJapan
- Kyowa‐kai Medical CorporationKawanishiHyogoJapan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
- Kyowa‐kai Medical CorporationKawanishiHyogoJapan
| |
Collapse
|
4
|
Lu D, Chen A. lncRNA POU6F2-AS1 Regulated by KIAA1429 Contributes to Colorectal Cancer Progression in an m 6A Modification Manner. Mol Biotechnol 2025; 67:115-122. [PMID: 38103097 DOI: 10.1007/s12033-023-00986-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Long non-coding RNAs (lncRNAs) are participated in tumourigenesis, including colorectal cancer (CRC). However, the effects and mechanisms of lncRNA POU6F2-AS1 in CRC have not been investigated. KIAA1429 act as a member of N6-methyladenosine (m6A) modification, has been knew as an oncogenic factor in various cancer containing CRC. We focus to investigate the regulation effect of lncRNA POU6F2-AS1, and the mechanism among lncRNA POU6F2-AS1 and KIAA1429 in CRC. The lncRNA POU6F2-AS1 and KIAA1429 levels in CRC tissue samples as well as cells were clarified by qRT-PCR, and their relationship was predicted by bioinformatics, MeRIP and Pearson analysis. Cell survival, migration and invasion were analyzed via EdU, wound healing and Transwell assays after lncRNA POU6F2-AS1 was down-regulated and KIAA1429 was up-regulated. LncRNA POU6F2-AS1 and KIAA1429 were enriched in CRC tissue samples. LncRNA POU6F2-AS1 silencing suppressed CRC cell survival, migration, and invasion, and KIAA1429 overexpression facilitated CRC cell malignancy. KIAA1429 promoted lncRNA POU6F2-AS1 expression via m6A modification. Furthermore, KIAA1429 upregulation reversed the inhibitory effect of lncRNA POU6F2-AS1 interference on the malignant behavior of CRC cells. lncRNA POU6F2-AS1 was modulated by KIAA1429 in the form of m6A modification to regulate the malignant phenotype of CRC, which may provide new insights into the potential application of KIAA1429-m6A-lncRNA POU6F2-AS1-based CRC therapy.
Collapse
Affiliation(s)
- Dunfeng Lu
- Department of General Surgery (Gastrointestinal and Thoracichoracic Surgery), People's Hospital of Dongxihu District, Wuhan, 430040, Hubei, China
| | - Aihua Chen
- Emergency Department, People's Hospital of Dongxihu District, No.48, Jinbeiyi Road, Jinghe Street, Dongxihu District, Wuhan, 430040, Hubei, China.
| |
Collapse
|
5
|
Qin L, Zeng X, Qiu X, Chen X, Liu S. The role of N6-methyladenosine modification in tumor angiogenesis. Front Oncol 2024; 14:1467850. [PMID: 39691597 PMCID: PMC11649548 DOI: 10.3389/fonc.2024.1467850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Tumor angiogenesis is a characteristics of malignant cancer progression that facilitates cancer cell growth, diffusion and metastasis, and has an indispensable role in cancer development. N6-methyladenosine (m6A) is among the most prevalent internal modifications in eukaryotic RNAs, and has considerable influence on RNA metabolism, including its transcription, splicing, localization, translation, recognition, and degradation. The m6A modification is generated by m6A methyltransferases ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). There is accumulating evidence that abnormal m6A modification is involved in the pathogenesis of multiple diseases, including cancers, and promotes cancer occurrence, development, and progression through its considerable impact on oncoprotein expression. Furthermore, increasing studies have demonstrated that m6A modification can influence angiogenesis in cancers through multiple pathways to regulate malignant processes. In this review, we elaborate the role of m6A modification in tumor angiogenesis-related molecules and pathways in detail, providing insights into the interactions between m6A and tumor angiogenesis. Moreover, we describe how targeting m6A modification in combination with anti-angiogenesis drugs is expected to be a promising anti-tumor treatment strategy, with potential value for addressing the challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Zhang L, Mao Z, Yin K, Wang S. Review of METTL3 in colorectal cancer: From mechanisms to the therapeutic potential. Int J Biol Macromol 2024; 277:134212. [PMID: 39069066 DOI: 10.1016/j.ijbiomac.2024.134212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
N6-methyladenosine (m6A), the most abundant modification in mRNAs, affects the fate of the modified RNAs at the post-transcriptional level and participants in various biological and pathological processes. Increasing evidence shows that m6A modification plays a role in the progression of many malignancies, including colorectal cancer (CRC). As the only catalytic subunit in methyltransferase complex, methyltransferase-like 3 (METTL3) is essential to the performance of m6A modification. It has been found that METTL3 is associated with the prognosis of CRC and significantly influences various aspects of CRC, such as cell proliferation, invasion, migration, metastasis, metabolism, tumor microcirculation, tumor microenvironment, and drug resistance. The relationship between METTL3 and gut-microbiota is also involved into the progression of CRC. Furthermore, METTL3 might be a viable target for CRC treatment to prolong survival. In this review, we comprehensively summarize the function of METTL3 in CRC and the underlying molecular mechanisms. We aim to deepen understanding and offer new ideas for diagnostic biomarkers and therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Lexuan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China.
| |
Collapse
|
7
|
Yu Y, Wang J, Xiong Z, Du A, Wang X, Wang Y, Han S, Wang P, Zhang L. Methyltransferase Like-3-Mediated N6-Methyladenosine Modification of Long Noncoding RNA Hepatocyte Nuclear Factor 1a Antisense RNA 1/Hepatocyte Nuclear Factor 4a Antisense RNA 1 Regulates Cytochrome P450 Enzyme Expression. Drug Metab Dispos 2024; 52:1104-1114. [PMID: 39168523 DOI: 10.1124/dmd.124.001832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Interindividual variations in the expression and activity of cytochrome P450 enzymes (CYPs) led to lower therapeutic efficacy or adverse drug events. We previously demonstrated that CYPs are regulated by the long noncoding RNAs (lncRNAs) hepatocyte nuclear factor 1a antisense RNA 1 (HNF1A-AS1) and HNF4A-AS1 via transcription factors (TFs) including hepatocyte nuclear factor 1a (HNF1A), hepatocyte nuclear factor 4a (HNF4A), and pregnane X receptor (PXR). However, the upstream mechanisms regulating HNF1A-AS1 and HNF4A-AS1 are poorly understood. N6-methyladenosine (m6A) is a prevalent epitranscriptomic modification in mammalian RNA. Therefore, the aim of this study was to investigate whether m6A modification regulates the expression of HNF1A-AS1 and HNF4A-AS1 and affects CYP expression in HepG2 and Huh7 cells. The methyltransferase-like 3 (METTL3) inhibitor, STM2457, significantly suppressed the expression of HNF1A-AS1 and induced HNF4A-AS1 expression. Consistent with this, a loss-of-function assay of METTL3 in the cell lines resulted in the downregulation of HNF1A-AS1 and its downstream HNF1A, PXR, and CYPs at the RNA level, as well as the downregulation of some CYPs proteins, and upregulation of HNF4A-AS1. The results of gain-of-function experiments showed the opposite trend. Mechanistically, subsequent RNA stability experiments confirmed that METTL3 affected the stability of both lncRNAs, but in opposite ways; that is, METTL3 reduced HNF1A-AS1 stability and increased HNF4A-AS1 stability. Rescue experiments confirmed that the regulation of METTL3 on TFs and CYPs may require the involvement of these two lncRNAs. Altogether, our study demonstrates that METTL3 is involved in TFs-mediated CYP expression by affecting HNF1A-AS1/HNF4A-AS1 stability. SIGNIFICANCE STATEMENT: Although the impact of long noncoding RNAs (lncRNAs) including hepatocyte nuclear factor 1a antisense RNA 1 (HNF1A-AS1) and hepatocyte nuclear factor 4a antisense RNA 1 (HNF4A-AS1) on the downstream transcription factor (TF) and cytochrome P450 enzyme (CYP) expression is well studied, the upstream regulation of these two lncRNAs by methyltransferase-like 3 (METTL3) remains unexplored. This study reveals that METTL3 is involved in the regulation of lncRNA-TF-CYP expression by affecting the stability of HNF1A-AS1 and HNF4A-AS1 in HepG2 and Huh7 cells.
Collapse
Affiliation(s)
- Yihang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities (Y.Y., J.W., Z.X., A.D., Y.W., S.H., P.W., L.Z.) and Precision Medicine Center, Academy of Medical Sciences (X.W.), Zhengzhou University, Zhengzhou, China; and Department of Clinical Pharmacology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China (Y.W.)
| | - Jingya Wang
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities (Y.Y., J.W., Z.X., A.D., Y.W., S.H., P.W., L.Z.) and Precision Medicine Center, Academy of Medical Sciences (X.W.), Zhengzhou University, Zhengzhou, China; and Department of Clinical Pharmacology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China (Y.W.)
| | - Zaihuan Xiong
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities (Y.Y., J.W., Z.X., A.D., Y.W., S.H., P.W., L.Z.) and Precision Medicine Center, Academy of Medical Sciences (X.W.), Zhengzhou University, Zhengzhou, China; and Department of Clinical Pharmacology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China (Y.W.)
| | - Anqi Du
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities (Y.Y., J.W., Z.X., A.D., Y.W., S.H., P.W., L.Z.) and Precision Medicine Center, Academy of Medical Sciences (X.W.), Zhengzhou University, Zhengzhou, China; and Department of Clinical Pharmacology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China (Y.W.)
| | - Xiaofei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities (Y.Y., J.W., Z.X., A.D., Y.W., S.H., P.W., L.Z.) and Precision Medicine Center, Academy of Medical Sciences (X.W.), Zhengzhou University, Zhengzhou, China; and Department of Clinical Pharmacology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China (Y.W.)
| | - Yiting Wang
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities (Y.Y., J.W., Z.X., A.D., Y.W., S.H., P.W., L.Z.) and Precision Medicine Center, Academy of Medical Sciences (X.W.), Zhengzhou University, Zhengzhou, China; and Department of Clinical Pharmacology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China (Y.W.)
| | - Shengna Han
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities (Y.Y., J.W., Z.X., A.D., Y.W., S.H., P.W., L.Z.) and Precision Medicine Center, Academy of Medical Sciences (X.W.), Zhengzhou University, Zhengzhou, China; and Department of Clinical Pharmacology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China (Y.W.)
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities (Y.Y., J.W., Z.X., A.D., Y.W., S.H., P.W., L.Z.) and Precision Medicine Center, Academy of Medical Sciences (X.W.), Zhengzhou University, Zhengzhou, China; and Department of Clinical Pharmacology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China (Y.W.)
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Open and Key Laboratory for Pharmacogenomics at Henan Universities (Y.Y., J.W., Z.X., A.D., Y.W., S.H., P.W., L.Z.) and Precision Medicine Center, Academy of Medical Sciences (X.W.), Zhengzhou University, Zhengzhou, China; and Department of Clinical Pharmacology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China (Y.W.)
| |
Collapse
|
8
|
Ma S, Hu Y, Xu W, Xiong W, Xu X, Hou Y, Wang Y, Chen P, Yang W, Lu H, Zhao Y. Insulin-like growth factor-2 mRNA-binding protein 2 facilitates post-ischemic angiogenesis by increasing the stability of fibroblast growth factor 2 mRNA and its protein expression. Heliyon 2024; 10:e37364. [PMID: 39296104 PMCID: PMC11409114 DOI: 10.1016/j.heliyon.2024.e37364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Post-ischemic angiogenesis is crucial for reestablishing blood flow in conditions such as peripheral artery disease (PAD). The role of insulin-like growth factor-2 mRNA-binding protein 2 (IGF2BP2) in post-transcriptional RNA metabolism and its involvement in post-ischemic angiogenesis remains unclear. Methods Using a human GEO database and a hind-limb ischemia (HLI) mouse model, the predominant isoform IGF2BP2 in ischemic gastrocnemius tissue was identified. Adeno-associated virus with the Tie1 promoter induced IGF2BP2 overexpression in the HLI model, evaluating the expression of vascular structural proteins (CD31 and α-SMA) and blood flow recovery after HLI. In vitro experiments with human umbilical vein endothelial cells (HUVECs) demonstrated that lentivirus-mediated IGF2BP2 overexpression upregulates cell proliferation, migration, and tube formation. GeneCards, RNAct databases, and subsequent reverse transcription quantitative polymerase chain reaction (RT-qPCR) predicted IGF2BP2 interactions with fibroblast growth factor 2 (FGF2) mRNA, and actinomycin D treatment, binding site predictions and CLIP-seq data further confirmed this interaction. Furthermore, western blotting, enzyme-linked immunosorbent assay, and RNA immunoprecipitation followed by RT-qPCR were performed to validate IGF2BP2's interaction with FGF2 mRNA and to assess its role in stabilizing FGF2 mRNA, as well as its impact on FGF2 protein expression. Results HLI reduced IGF2BP2 expression in the gastrocnemius tissue, which gradually increased during blood flow recovery. IGF2BP2 overexpression in HLI mice accelerated blood flow recovery and increased capillary and small artery densities. The overexpression of IGF2BP2 in HUVECs stimulated proliferation, migration, and tube formation by interacting with FGF2 mRNA to increase its stability. This interaction resulted in increased levels of FGF2 protein and secretion, ultimately promoting angiogenesis. Conclusions IGF2BP2 contributes to blood flow restoration post-ischemia in vivo and promotes angiogenesis in HUVECs by enhancing FGF2 mRNA stability and FGF2 protein expression and secretion. These findings underscore IGF2BP2's therapeutic potential in ischemic conditions, such as PAD.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032, Shanghai, China
| | - Wangguo Xu
- Department of Cardiology, Yongchuan Hospital of Chongqing Medical University, 402160, Chongqing, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Xinyu Xu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Yajie Hou
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Ying Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Panke Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Wenbi Yang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032, Shanghai, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| |
Collapse
|
9
|
YuYan, Yuan E. Regulatory effect of N6-methyladenosine on tumor angiogenesis. Front Immunol 2024; 15:1453774. [PMID: 39295872 PMCID: PMC11408240 DOI: 10.3389/fimmu.2024.1453774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Previous studies have demonstrated that genetic alterations governing epigenetic processes frequently drive tumor development and that modifications in RNA may contribute to these alterations. In the 1970s, researchers discovered that N6-methyladenosine (m6A) is the most prevalent form of RNA modification in advanced eukaryotic messenger RNA (mRNA) and noncoding RNA (ncRNA). This modification is involved in nearly all stages of the RNA life cycle. M6A modification is regulated by enzymes known as m6A methyltransferases (writers) and demethylases (erasers). Numerous studies have indicated that m6A modification can impact cancer progression by regulating cancer-related biological functions. Tumor angiogenesis, an important and unregulated process, plays a pivotal role in tumor initiation, growth, and metastasis. The interaction between m6A and ncRNAs is widely recognized as a significant factor in proliferation and angiogenesis. Therefore, this article provides a comprehensive review of the regulatory mechanisms underlying m6A RNA modifications and ncRNAs in tumor angiogenesis, as well as the latest advancements in molecular targeted therapy. The aim of this study is to offer novel insights for clinical tumor therapy.
Collapse
Affiliation(s)
- YuYan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enwu Yuan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Wang M, Tang W, Wu C, Chen Y, Li H, Wu P, Qian H, Guo X, Zhang Z. Linc20486 promotes BmCPV replication through inhibiting the transcription of AGO2 and Dicers. J Invertebr Pathol 2024; 206:108170. [PMID: 39173824 DOI: 10.1016/j.jip.2024.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
The silkworm holds pivotal economic importance, serving not only as a primary source of silk but also as a prominent model organism in scientific research. Nonetheless, silkworm farming remains vulnerable to diverse factors, with viral infections posing the gravest threat to the sericulture industry. Among these, the Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), a member of the Reoviridae family and the cytoplasmic polyhedrosis virus genus, emerges as a significant pathogen in silkworm production. BmCPV infection primarily induces midgut sepsis in silkworms, spreads rapidly, and can inflict substantial economic losses on sericulture production. Presently, effective strategies for preventing and treating BmCPV infections are lacking. Long non-coding RNA (lncRNA) constitutes a class of RNA molecules with transcripts exceeding 200 nt, playing a crucial role in mediating the interplay between pathogens and host cells. Investigation through high-throughput technology has unveiled that BmCPV infection markedly upregulates the expression of Linc20486. This observation suggests potential involvement of Linc20486 in regulating virus replication. Indeed, as anticipated, knockdown of Linc20486 in cells profoundly impedes BmCPV replication, whereas overexpression significantly enhances virus propagation. To probe into the mechanism underlying Linc20486's impact on virus replication, its effects on autophagy, innate immunity, and RNAi-related pathways were scrutinized. The findings revealed that Linc20486 exerts significant influence on the expression of RNAi pathway-related genes, such as Dicer1, Dicer2 and AGO2. This discovery holds promise for unveiling novel avenues to comprehend and combat BmCPV infections in silkworms.
Collapse
Affiliation(s)
- Mengdong Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Weiming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Chengyue Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeping Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Hao Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xijie Guo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhendong Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
11
|
Zhao L, Li Q, Zhou T, Liu X, Guo J, Fang Q, Cao X, Geng Q, Yu Y, Zhang S, Deng T, Wang X, Jiao Y, Zhang M, Liu H, Tan H, Xiao C. Role of N6-methyladenosine in tumor neovascularization. Cell Death Dis 2024; 15:563. [PMID: 39098905 PMCID: PMC11298539 DOI: 10.1038/s41419-024-06931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Tumor neovascularization is essential for the growth, invasion, and metastasis of tumors. Recent studies have highlighted the significant role of N6-methyladenosine (m6A) modification in regulating these processes. This review explores the mechanisms by which m6A influences tumor neovascularization, focusing on its impact on angiogenesis and vasculogenic mimicry (VM). We discuss the roles of m6A writers, erasers, and readers in modulating the stability and translation of angiogenic factors like vascular endothelial growth factor (VEGF), and their involvement in key signaling pathways such as PI3K/AKT, MAPK, and Hippo. Additionally, we outline the role of m6A in vascular-immune crosstalk. Finally, we discuss the current development of m6A inhibitors and their potential applications, along with the contribution of m6A to anti-angiogenic therapy resistance. Highlighting the therapeutic potential of targeting m6A regulators, this review provides novel insights into anti-angiogenic strategies and underscores the need for further research to fully exploit m6A modulation in cancer treatment. By understanding the intricate role of m6A in tumor neovascularization, we can develop more effective therapeutic approaches to inhibit tumor growth and overcome treatment resistance. Targeting m6A offers a novel approach to interfere with the tumor's ability to manipulate its microenvironment, enhancing the efficacy of existing treatments and providing new avenues for combating cancer progression.
Collapse
Affiliation(s)
- Lu Zhao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Qinshan Li
- Institute of Precision Medicine of Guizhou Province, Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tongliang Zhou
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xuan Liu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Guo
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qing Fang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qishun Geng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yang Yu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Songjie Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Jiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Honglin Liu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| | - Haidong Tan
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Bian Y, Xu S, Gao Z, Ding J, Li C, Cui Z, Sun H, Li J, Pu J, Wang K. m 6A modification of lncRNA ABHD11-AS1 promotes colorectal cancer progression and inhibits ferroptosis through TRIM21/IGF2BP2/ FOXM1 positive feedback loop. Cancer Lett 2024; 596:217004. [PMID: 38838765 DOI: 10.1016/j.canlet.2024.217004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/07/2024]
Abstract
Long non-coding RNA (lncRNA) is closely related to a variety of human cancers, which may provide huge potential biomarkers for cancer diagnosis and treatment. However, the aberrant expression of most lncRNAs in colorectal cancer (CRC) remains elusive. This study aims to explore the clinical significance and potential mechanism of lncRNA ABHD11 antisense RNA 1 (ABHD11-AS1) in the colorectal cancer. Here, we demonstrated that lncRNA ABHD11-AS1 is high-expressed in colorectal cancer (CRC) patients, and strongly related with poor prognosis. Functionally, ABHD11-AS1 suppresses ferroptosis and promotes proliferation and migration in CRC both in vitro and in vivo. Mechanically, lncRNA ABHD11-AS1 interacted with insulin-like growing factor 2 mRNA-binding protein 2 (IGF2BP2) to enhance FOXM1 stability, forming an ABHD11-AS1/FOXM1 positive feedback loop. E3 ligase tripartite motif containing 21 (TRIM21) promotes the degradation of IGF2BP2 via the K48-ubiquitin-lysosome pathway and ABHD11-AS1 promotes the interaction between IGF2BP2 and TRIM21 as scaffold platform. Furthermore, N6 -adenosine-methyltransferase-like 3 (METTL3) upregulated the stabilization of ABHD11-AS1 through the m6A reader IGF2BP2. Our study highlights ABHD11-AS1 as a significant regulator in CRC and it may become a potential target in future CRC treatment.
Collapse
Affiliation(s)
- Yibo Bian
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of digestive Disease, Fourth Military Medical University, Xi'an, 710032, China
| | - Shufen Xu
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhishuang Gao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chao Li
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, 200032, China
| | - Zhiwei Cui
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haoyu Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Juan Li
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Juan Pu
- Department of Oncology, Lianshui County People's Hospital, Huai'an, 223400, China.
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
13
|
Gu Y, Xu M, Wu W, Ma Z, Liu W. Identification of N6-Methyladenosine-Associated lncRNAs and Analysis of Prognostic Signature in Breast Cancer. Biochem Genet 2024:10.1007/s10528-024-10889-0. [PMID: 39042347 DOI: 10.1007/s10528-024-10889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Breast cancer represents the predominant malignant neoplasm in women, posing significant threats to both life and health. N6-methyladenosine (m6A) methylation, the most prevalent RNA modification, plays a crucial role in cancer development. This study aims to delineate the prognostic implications of m6A-associated long non-coding RNAs (m6AlncRNAs) and identify potential m6AlncRNA candidates as novel therapeutic targets for breast cancer. Through univariate Cox, Least Absolute Shrinkage and Selection Operator and multiple Cox regression analysis, m6AlncRNA was analyzed and a risk-prognosis model was constructed. Kaplan-Meier analysis, principal component analysis and nomogram were used to evaluate the risk model. Finally, we screened candidate lncRNAs and validated them in breast cancer cell lines. m6AlncRNAs were stratified into three subtypes, and their associations with survival outcomes and immune infiltrating capacities were systematically analyzed. Subsequently, breast cancer patients were stratified into high and low-risk groups based on median risk scores, revealing distinct clinical characteristics, tumor immunoinvasive profiles, tumor mutation burden, and survival probabilities. Additionally, a prognostic model was established, highlighting three promising candidate lncRNAs: ECE1-AS1, NDUFA6-DT, and COL4A2-AS1. This study investigated the prognostic implications of m6A-associated long non-coding RNAs (m6AlncRNAs) and developed a prognostic risk model to identify three potential m6AlncRNA candidates. These findings provide valuable insights into the potential application of these m6AlncRNAs in guiding immunotherapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Yun Gu
- Department of Pathology, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Tianfei Road 123th, Nanjing, 210004, Jiangsu, China
| | - Min Xu
- Department of Pathology, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Tianfei Road 123th, Nanjing, 210004, Jiangsu, China
| | - Wangfei Wu
- Department of Pathology, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Tianfei Road 123th, Nanjing, 210004, Jiangsu, China
| | - Zhifang Ma
- Department of Pathology, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Tianfei Road 123th, Nanjing, 210004, Jiangsu, China.
| | - Weiguang Liu
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Han X, Zhu Y, Ke J, Zhai Y, Huang M, Zhang X, He H, Zhang X, Zhao X, Guo K, Li X, Han Z, Zhang Y. Progression of m 6A in the tumor microenvironment: hypoxia, immune and metabolic reprogramming. Cell Death Discov 2024; 10:331. [PMID: 39033180 PMCID: PMC11271487 DOI: 10.1038/s41420-024-02092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Recently, N6-methyladenosine (m6A) has aroused widespread discussion in the scientific community as a mode of RNA modification. m6A comprises writers, erasers, and readers, which regulates RNA production, nuclear export, and translation and is very important for human health. A large number of studies have found that the regulation of m6A is closely related to the occurrence and invasion of tumors, while the homeostasis and function of the tumor microenvironment (TME) determine the occurrence and development of tumors to some extent. TME is composed of a variety of immune cells (T cells, B cells, etc.) and nonimmune cells (tumor-associated mesenchymal stem cells (TA-MSCs), cancer-associated fibroblasts (CAFs), etc.). Current studies suggest that m6A is involved in regulating the function of various cells in the TME, thereby affecting tumor progression. In this manuscript, we present the composition of m6A and TME, the relationship between m6A methylation and characteristic changes in TME, the role of m6A methylation in TME, and potential therapeutic strategies to provide new perspectives for better treatment of tumors in clinical work.
Collapse
Affiliation(s)
- Xuan Han
- First Clinical College of Changzhi Medical College, Changzhi, China
| | - Yu Zhu
- Linfen Central Hospital, Linfen, China
| | - Juan Ke
- Linfen Central Hospital, Linfen, China
| | | | - Min Huang
- Linfen Central Hospital, Linfen, China
| | - Xin Zhang
- Linfen Central Hospital, Linfen, China
| | | | | | | | | | | | - Zhongyu Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | |
Collapse
|
15
|
Chang L, Ding J, Pu J, Zhu J, Zhou X, Luo Q, Li J, Qian M, Lin S, Li J, Wang K. A novel lncRNA LOC101928222 promotes colorectal cancer angiogenesis by stabilizing HMGCS2 mRNA and increasing cholesterol synthesis. J Exp Clin Cancer Res 2024; 43:185. [PMID: 38965575 PMCID: PMC11223299 DOI: 10.1186/s13046-024-03095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Metastasis is the leading cause of mortality in patients with colorectal cancer (CRC) and angiogenesis is a crucial factor in tumor invasion and metastasis. Long noncoding RNAs (lncRNAs) play regulatory functions in various biological processes in tumor cells, however, the roles of lncRNAs in CRC-associated angiogenesis remain to be elucidated in CRC, as do the underlying mechanisms. METHODS We used bioinformatics to screen differentially expressed lncRNAs from TCGA database. LOC101928222 expression was assessed by qRT-PCR. The impact of LOC101928222 in CRC tumor development was assessed both in vitro and in vivo. The regulatory mechanisms of LOC101928222 in CRC were investigated by cellular fractionation, RNA-sequencing, mass spectrometric, RNA pull-down, RNA immunoprecipitation, RNA stability, and gene-specific m6A assays. RESULTS LOC101928222 expression was upregulated in CRC and was correlated with a worse outcome. Moreover, LOC101928222 was shown to promote migration, invasion, and angiogenesis in CRC. Mechanistically, LOC101928222 synergized with IGF2BP1 to stabilize HMGCS2 mRNA through an m6A-dependent pathway, leading to increased cholesterol synthesis and, ultimately, the promotion of CRC development. CONCLUSIONS In summary, these findings demonstrate a novel, LOC101928222-based mechanism involved in the regulation of cholesterol synthesis and the metastatic potential of CRC. The LOC101928222-HMGCS2-cholesterol synthesis pathway may be an effective target for diagnosing and managing CRC metastasis.
Collapse
Affiliation(s)
- Lisha Chang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Ding
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Pu
- Department of Oncology, Lianshui County People's Hospital, Affiliated Hospital of Kangda college, Nanjing Medical University, Huaian, Jiangsu, China
| | - Jing Zhu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Zhou
- Head and neck surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qian Luo
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengsen Qian
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuhui Lin
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Keming Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Naseer QA, Malik A, Zhang F, Chen S. Exploring the enigma: history, present, and future of long non-coding RNAs in cancer. Discov Oncol 2024; 15:214. [PMID: 38847897 PMCID: PMC11161455 DOI: 10.1007/s12672-024-01077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length and do not encode proteins, play crucial roles in governing gene expression at both the transcriptional and posttranscriptional levels. These molecules demonstrate specific expression patterns in various tissues and developmental stages, suggesting their involvement in numerous developmental processes and diseases, notably cancer. Despite their widespread acknowledgment and the growing enthusiasm surrounding their potential as diagnostic and prognostic biomarkers, the precise mechanisms through which lncRNAs function remain inadequately understood. A few lncRNAs have been studied in depth, providing valuable insights into their biological activities and suggesting emerging functional themes and mechanistic models. However, the extent to which the mammalian genome is transcribed into functional noncoding transcripts is still a matter of debate. This review synthesizes our current understanding of lncRNA biogenesis, their genomic contexts, and their multifaceted roles in tumorigenesis, highlighting their potential in cancer-targeted therapy. By exploring historical perspectives alongside recent breakthroughs, we aim to illuminate the diverse roles of lncRNA and reflect on the broader implications of their study for understanding genome evolution and function, as well as for advancing clinical applications.
Collapse
Affiliation(s)
- Qais Ahmad Naseer
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Abdul Malik
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengyuan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Shengxia Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
17
|
Chen H, Deng J, Hou TW, Shan YQ. Villosol reverses 5-FU resistance in colorectal cancer by inhibiting the CDKN2A gene regulated TP53-PI3K/Akt signaling axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117907. [PMID: 38342156 DOI: 10.1016/j.jep.2024.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Patrinia villosa (Juss.) (PV) is the drug of choice in traditional Chinese medicine for the treatment of colorectal cancer (CRC) and has achieved reliable efficacy in clinic. Villosol is the active ingredient in PV. However, the molecular mechanism by which Villosol reverses chemoresistance in CRC remains unclear. AIM OF THE STUDY Analysis of the molecular mechanism by which Villosol, the active ingredient of PV, reverses CRC/5-FU resistance through modulation of the CDKN2A gene was validated by network pharmacology techniques and experiments. MATERIALS AND METHODS We identified CDKN2A as a gene associated with 5-FU resistance through gene chip analysis. Next, we conducted a series of functional analyses in cell lines, animal samples, and xenograft models to investigate the role, clinical significance, and abnormal regulatory mechanisms of CDKN2A in 5-FU resistance in CRC. In addition, we screened and obtained a raw ingredient called Villosol, which targets CDKN2A, and investigated its pharmacological effects. RESULTS Analysis of CRC cells and animal samples showed that the upregulation of CDKN2A expression was strongly associated with 5-FU resistance. CRC cells overexpressing CDKN2A showed reduced sensitivity to 5-FU and enhanced tumor biology in vitro. Inhibition of aberrant activation of CDKN2A enhances the expression of TP53. Mechanistically, overexpression of CDKN2A activates the PI3K/Akt pathway and induces resistance to 5-FU. Villosol inhibited CDKN2A, and CRC/5-FU cells regained sensitivity to 5-FU. Villosol effectively reverses 5-FU resistance through the CDKN2A-TP53-PI3K/Akt axis. CONCLUSION Changes in CDKN2A gene expression can be used to predict the response of CRC patients to 5-FU therapy. Additionally, inhibiting CDKN2A activation with Villosol may present a new approach to overcoming 5-FU resistance in clinical settings.
Collapse
Affiliation(s)
- Han Chen
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City, 110016, Liaoning Province, China.
| | - Jiao Deng
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City, 110016, Liaoning Province, China.
| | - Tie-Wei Hou
- Department of General Surgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City, 110016, Liaoning Province, China.
| | - Yong-Qi Shan
- Department of General Surgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City, 110016, Liaoning Province, China.
| |
Collapse
|
18
|
Hashemi M, Daneii P, Zandieh MA, Raesi R, Zahmatkesh N, Bayat M, Abuelrub A, Khazaei Koohpar Z, Aref AR, Zarrabi A, Rashidi M, Salimimoghadam S, Entezari M, Taheriazam A, Khorrami R. Non-coding RNA-Mediated N6-Methyladenosine (m 6A) deposition: A pivotal regulator of cancer, impacting key signaling pathways in carcinogenesis and therapy response. Noncoding RNA Res 2024; 9:84-104. [PMID: 38075202 PMCID: PMC10700483 DOI: 10.1016/j.ncrna.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 06/20/2024] Open
Abstract
The emergence of RNA modifications has recently been considered as critical post-transcriptional regulations which governed gene expression. N6-methyladenosine (m6A) modification is the most abundant type of RNA modification which is mediated by three distinct classes of proteins called m6A writers, readers, and erasers. Accumulating evidence has been made in understanding the role of m6A modification of non-coding RNAs (ncRNAs) in cancer. Importantly, aberrant expression of ncRNAs and m6A regulators has been elucidated in various cancers. As the key role of ncRNAs in regulation of cancer hallmarks is well accepted now, it could be accepted that m6A modification of ncRNAs could affect cancer progression. The present review intended to discuss the latest knowledge and importance of m6A epigenetic regulation of ncRNAs including mircoRNAs, long non-coding RNAs, and circular RNAs, and their interaction in the context of cancer. Moreover, the current insight into the underlying mechanisms of therapy resistance and also immune response and escape mediated by m6A regulators and ncRNAs are discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Zahmatkesh
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrsa Bayat
- Department of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Anwar Abuelrub
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
19
|
Li B, Xuan H, Yin Y, Wu S, Du L. The N 6-methyladenosine modification in pathologic angiogenesis. Life Sci 2024; 339:122417. [PMID: 38244915 DOI: 10.1016/j.lfs.2024.122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
The vascular system is a vital circulatory network in the human body that plays a critical role in almost all physiological processes. The production of blood vessels in the body is a significant area of interest for researchers seeking to improve their understanding of vascular function and maintain normal vascular operation. However, an excessive or insufficient vascular regeneration process may lead to the development of various ailments such as cancer, eye diseases, and ischemic diseases. Recent preclinical and clinical studies have revealed new molecular targets and principles that may enhance the therapeutic effect of anti-angiogenic strategies. A thorough comprehension of the mechanism responsible for the abnormal vascular growth in disease processes can enable researchers to better target and effectively suppress or treat the disease. N6-methyladenosine (m6A), a common RNA methylation modification method, has emerged as a crucial regulator of various diseases by modulating vascular development. In this review, we will cover how m6A regulates various vascular-related diseases, such as cancer, ocular diseases, neurological diseases, ischemic diseases, emphasizing the mechanism of m6A methylation regulators on angiogenesis during pathological process.
Collapse
Affiliation(s)
- Bin Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hanqin Xuan
- Department of Pathology, the First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
20
|
Wang Y, Wang P, Wang Q, Chen S, Wang X, Zhong X, Hu W, Thorne RF, Han S, Wu M, Zhang L. The long noncoding RNA HNF1A-AS1 with dual functions in the regulation of cytochrome P450 3A4. Biochem Pharmacol 2024; 220:116016. [PMID: 38176619 DOI: 10.1016/j.bcp.2023.116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most important and abundant drug-metabolizing enzyme in the human liver. Inter-individual differences in the expression and activity of CYP3A4 affect clinical and precision medicine. Increasing evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in the regulation of CYP3A4 expression. Here, we showed that lncRNA hepatocyte nuclear factor 1 alpha-antisense 1 (HNF1A-AS1) exerted dual functions in regulating CYP3A4 expression in Huh7 and HepG2 cells. Mechanistically, HNF1A-AS1 served as an RNA scaffold to interact with both protein arginine methyltransferase 1 and pregnane X receptor (PXR), thereby facilitating their protein interactions and resulting in the transactivation of PXR and transcriptional alteration of CYP3A4 via histone modifications. Furthermore, HNF1A-AS1 bound to the HNF1A protein, a liver-specific transcription factor, thereby blocking its interaction with the E3 ubiquitin ligase tripartite motif containing 25, ultimately preventing HNF1A ubiquitination and protein degradation, further regulating the expression of CYP3A4. In summary, these results reveal the novel functions of HNF1A-AS1 as the transcriptional and post-translational regulator of CYP3A4; thus, HNF1A-AS1 may serve as a new indicator for establishing or predicting individual differences in CYP3A4 expression.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China; Department of Clinical Pharmacology, School of Medicine, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Qi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Shitong Chen
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Xiaofei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Xiaobo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 06269 Storrs, CT, USA
| | - Wanglai Hu
- Translational Research Institute, Zhengzhou University People's Hospital, Academy of Medical Science, Zhengzhou University, 450003 Zhengzhou, China
| | - Rick F Thorne
- Translational Research Institute, Zhengzhou University People's Hospital, Academy of Medical Science, Zhengzhou University, 450003 Zhengzhou, China
| | - Shengna Han
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China.
| | - Mian Wu
- Translational Research Institute, Zhengzhou University People's Hospital, Academy of Medical Science, Zhengzhou University, 450003 Zhengzhou, China.
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China.
| |
Collapse
|
21
|
Xu S, Liu Z, Luo Q, Chang L, Ding J, Xiao Y, Zhang Y, Zhou G, Wang K. Long non-coding RNA linc00659 promotes tumour progression by regulating FZD6/Wnt/β-catenin signalling pathway in colorectal cancer via m6A reader IGF2BP1. J Gene Med 2024; 26:e3636. [PMID: 38009760 DOI: 10.1002/jgm.3636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Abnormal N6-methyladenosine (m6A) modification has become a driving factor in tumour development and progression. The linc00659 is abnormally highly expressed in digestive tract tumours and promotes cancer progression, but there is little research on the mechanism of linc00659 and m6A. METHODS The expression of linc00659 in colorectal cancer (CRC) tissues and cells was assessed by a quantitative real-time PCR. The proliferative capacity of CRC cells was determined by colony formation, Cell Counting Kit-8 and 5-ethynyl-2 deoxyuridine assays, and the migratory capacity of CRC was determined by wound healing and transwell assays and tube formation. In vivo, a xenograft tumour model was used to detect the effect of linc00659 on tumour growth. The Wnt/β-catenin signalling pathway and related protein expression levels were measured by western blotting. The binding of linc00659 to insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was assessed by RNA pull-down and an immunoprecipitation assay. The effect of IGF2BP1 on FZD6 was detected by an RNA stability assay. RESULTS The expression of linc00659 was abnormally elevated in CRC tissues and cells compared to normal colonic tissues and cells. We confirm that linc00659 promotes the growth of CRC cells both in vivo and in vitro. Mechanistically, linc00659 binds to IGF2BP1 and specifically enhances its activity to stabilize the target gene FZD6. Therefore, linc00659 and IGF2BP1 activate the Wnt/β-catenin signalling pathway, promoting cell proliferation in CRC. CONCLUSIONS Our results show that linc00659 and IGF2BP1 cooperate to promote the stability of the target FZD6 mRNA, thereby facilitating CRC progression, which may represent a potential diagnostic, prognostic and therapeutic target for CRC.
Collapse
Affiliation(s)
- Shufen Xu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zichun Liu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Luo
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lisha Chang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Ding
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanan Xiao
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyang Zhang
- Department of General Medical, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoren Zhou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Keming Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Jin Q, Qu H, Quan C. New insights into the regulation of METTL3 and its role in tumors. Cell Commun Signal 2023; 21:334. [PMID: 37996892 PMCID: PMC10732098 DOI: 10.1186/s12964-023-01360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
As one of the most abundant epigenetic modifications in RNA, N6-methyladenosine (m6A) affects RNA transcription, splicing, stability, and posttranscriptional translation. Methyltransferase-like 3 (METTL3), a key component of the m6A methyltransferase complex, dynamically regulates target genes expression through m6A modification. METTL3 has been found to play a critical role in tumorigenesis, tumor growth, metastasis, metabolic reprogramming, immune cell infiltration, and tumor drug resistance. As a result, the development of targeted drugs against METTL3 is becoming increasingly popular. This review systematically summarizes the factors that regulate METTL3 expression and explores the specific mechanisms by which METTL3 affects multiple tumor biological behaviors. We aim to provide fundamental support for tumor diagnosis and treatment, at the same time, to offer new ideas for the development of tumor-targeting drugs.
Collapse
Affiliation(s)
- Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Huinan Qu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China.
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
23
|
Wu T, Liao L, Wu T, Chen S, Yi Q, Xu M. IGF2BP2 promotes glycolysis and hepatocellular carcinoma stemness by stabilizing CDC45 mRNA via m6A modification. Cell Cycle 2023; 22:2245-2263. [PMID: 37985379 PMCID: PMC10730143 DOI: 10.1080/15384101.2023.2283328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023] Open
Abstract
A growing number of studies have shown the prognostic importance of Cell division cycle protein 45 (CDC45) in hepatocellular carcinoma (HCC). This study aims to investigate the biological function and mechanism of CDC45 in HCC. The differential expression and prognostic significance of CDC45 in HCC and normal tissues were analyzed by bioinformatics. CDC45 was knocked down and the biological effects of CDC45 in HCC in vitro and in vivo were measured. Subsequently, using RNA m6A colorimetry and Methylated RNA Immunoprecipitation (MeRIP), the levels of m6A modification of total RNA and CDC45 were evaluated in cells. RIP was applied to establish that CDC45 and insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) interact. A test using actinomycin D was performed to gauge the stability of the CDC45 mRNA. Furthermore, the regulatory role of IGF2BP2 on CDC45 expression in HCC progression was explored by overexpressing IGF2BP2. High expression of CDC45 was correlated with poor prognosis in HCC patients. Knocking down CDC45 inhibited HCC cell proliferation, migration, invasion, EMT, stemness, and glycolysis, and promoted apoptosis, which was verified through in vitro experiments. Additionally, IGF2BP2 was highly expressed in HCC cells, and it was found to interact with CDC45. Knocking down IGF2BP2 resulted in reduced stability of CDC45 mRNA. Moreover, overexpression of IGF2BP2 promoted HCC cell proliferation, migration, invasion, EMT, stemness, and glycolysis, while inhibiting apoptosis, which was reversed by knocking down CDC45. In general, IGF2BP2 promoted HCC glycolysis and stemness by stabilizing CDC45 mRNA via m6A modification. [Figure: see text].
Collapse
Affiliation(s)
- Tao Wu
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, China
- Department of Urology Surgery, Yueyang Central Hospital, Yueyang, China
| | - Li Liao
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, China
| | - Tao Wu
- Department of Urology Surgery, Yueyang Central Hospital, Yueyang, China
| | - Shuai Chen
- Department of Urology Surgery, Yueyang Central Hospital, Yueyang, China
| | - Qilin Yi
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, China
| | - Min Xu
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, China
| |
Collapse
|
24
|
Liang XR, Liu YF, Chen F, Zhou ZX, Zhang LJ, Lin ZJ. Cell Cycle-Related lncRNAs as Innovative Targets to Advance Cancer Management. Cancer Manag Res 2023; 15:547-561. [PMID: 37426392 PMCID: PMC10327678 DOI: 10.2147/cmar.s407371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs (ncRNAs) longer than 200nt. They have complex biological functions and take part in multiple fundamental biological processes, such as cell proliferation, differentiation, survival and apoptosis. Recent studies suggest that lncRNAs modulate critical regulatory proteins involved in cancer cell cycle, such as cyclin, cell cycle protein-dependent kinases (CDK) and cell cycle protein-dependent kinase inhibitors (CKI) through different mechanisms. To clarify the role of lncRNAs in the regulation of cell cycle will provide new ideas for design of antitumor therapies which intervene with the cell cycle progression. In this paper, we review the recent studies about the controlling of lncRNAs on cell cycle related proteins such as cyclin, CDK and CKI in different cancers. We further outline the different mechanisms involved in this regulation and describe the emerging role of cell cycle-related lncRNAs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Xiao-Ru Liang
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Yan-Fei Liu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Feng Chen
- Department of General Surgery, Weifang Traditional Chinese Hospital, Weifang, Shandong, People’s Republic of China
| | - Zhi-Xia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Li-Jie Zhang
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Zhi-Juan Lin
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| |
Collapse
|
25
|
Phillips CM, Stamatovic SM, Keep RF, Andjelkovic AV. Epigenetics and stroke: role of DNA methylation and effect of aging on blood-brain barrier recovery. Fluids Barriers CNS 2023; 20:14. [PMID: 36855111 PMCID: PMC9972738 DOI: 10.1186/s12987-023-00414-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Incomplete recovery of blood-brain barrier (BBB) function contributes to stroke outcomes. How the BBB recovers after stroke remains largely unknown. Emerging evidence suggests that epigenetic factors play a significant role in regulating post-stroke BBB recovery. This study aimed to evaluate the epigenetic and transcriptional profile of cerebral microvessels after thromboembolic (TE) stroke to define potential causes of limited BBB recovery. RNA-sequencing and reduced representation bisulfite sequencing (RRBS) analyses were performed using microvessels isolated from young (6 months) and old (18 months) mice seven days poststroke compared to age-matched sham controls. DNA methylation profiling of poststroke brain microvessels revealed 11,287 differentially methylated regions (DMR) in old and 9818 DMR in young mice, corresponding to annotated genes. These DMR were enriched in genes encoding cell structural proteins (e.g., cell junction, and cell polarity, actin cytoskeleton, extracellular matrix), transporters and channels (e.g., potassium transmembrane transporter, organic anion and inorganic cation transporters, calcium ion transport), and proteins involved in endothelial cell processes (e.g., angiogenesis/vasculogenesis, cell signaling and transcription regulation). Integrated analysis of methylation and RNA sequencing identified changes in cell junctions (occludin), actin remodeling (ezrin) as well as signaling pathways like Rho GTPase (RhoA and Cdc42ep4). Aging as a hub of aberrant methylation affected BBB recovery processes by profound alterations (hypermethylation and repression) in structural protein expression (e.g., claudin-5) as well as activation of a set of genes involved in endothelial to mesenchymal transformation (e.g., Sox9, Snai1), repression of angiogenesis and epigenetic regulation. These findings revealed that DNA methylation plays an important role in regulating BBB repair after stroke, through regulating processes associated with BBB restoration and prevalently with processes enhancing BBB injury.
Collapse
Affiliation(s)
- Chelsea M Phillips
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Svetlana M Stamatovic
- Department of Pathology, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Richard F Keep
- Department of Neurosurgery, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Pathology, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA. .,Department of Neurosurgery, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.
| |
Collapse
|
26
|
Phillips C, Stamatovic S, Keep R, Andjelkovic A. Epigenetics and stroke: role of DNA methylation and effect of aging on blood-brain barrier recovery. RESEARCH SQUARE 2023:rs.3.rs-2444060. [PMID: 36711725 PMCID: PMC9882686 DOI: 10.21203/rs.3.rs-2444060/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Incomplete recovery of blood-brain barrier (BBB) function contributes to stroke outcomes. How the BBB recovers after stroke remains largely unknown. Emerging evidence suggests that epigenetic factors play a significant role in regulating post-stroke BBB recovery. This study aimed to evaluate the epigenetic and transcriptional profile of cerebral microvessels after thromboembolic (TE) stroke to define potential causes of limited BBB recovery. RNA-sequencing and reduced representation bisulfite sequencing (RRBS) analyses were performed using microvessels isolated from young (6 months) and old (18 months) mice seven days poststroke compared to age-matched sham controls. DNA methylation profiling of poststroke brain microvessels revealed 11287 differentially methylated regions (DMR) in old and 9818 DMR in young mice, corresponding to annotated genes. These DMR were enriched in genes encoding cell structural proteins (e.g., cell junction, and cell polarity, actin cytoskeleton, extracellular matrix), transporters and channels (e.g., potassium transmembrane transporter, organic anion and inorganic cation transporters, calcium ion transport), and proteins involved in endothelial cell processes (e.g., angiogenesis/vasculogenesis, cell signaling and transcription regulation). Integrated analysis of methylation and RNA sequencing identified changes in cell junctions (occludin), actin remodeling (ezrin) as well as signaling pathways like Rho GTPase (RhoA and Cdc42ep4). Aging as a hub of aberrant methylation affected BBB recovery processes by profound alterations (hypermethylation and repression) in structural protein expression (e.g., claudin-5) as well as activation of a set of genes involved in endothelial to mesenchymal transformation (e.g., Sox17 , Snail1 ), repression of angiogenesis and epigenetic regulation. These findings revealed that DNA methylation plays an important role in regulating BBB repair after stroke, through regulating processes associated with BBB restoration and prevalently with processes enhancing BBB injury.
Collapse
|
27
|
Jiang X, Jin Z, Yang Y, Zheng X, Chen S, Wang S, Zhang X, Qu N. m6A modification on the fate of colorectal cancer: functions and mechanisms of cell proliferation and tumorigenesis. Front Oncol 2023; 13:1162300. [PMID: 37152066 PMCID: PMC10162644 DOI: 10.3389/fonc.2023.1162300] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
N6-methyladenosine (m6A) is the most pervasive RNA modification in eukaryotic cells. The dynamic and reversible m6A modification of RNA plays a critical role in the occurrence and progression of tumors by regulating RNA metabolism, including translocation, mRNA stability or decay, pre-mRNA splicing, and lncRNA processing. Numerous studies have shown that m6A modification is involved in the development of various cancers. This review aims to summarize the significant role of m6A modification in the proliferation and tumorigenesis of CRC, as well as the potential of modulating m6A modification for tumor treatment. These findings may offer new therapeutic strategies for clinical implementation of m6A modification in CRC in the near future.
Collapse
Affiliation(s)
- Xiaohan Jiang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ziyao Jin
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shaohua Chen
- Department of Breast and Thyroid Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Shuaijie Wang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
- *Correspondence: Xuemei Zhang, ; Nanfang Qu,
| | - Nanfang Qu
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
- *Correspondence: Xuemei Zhang, ; Nanfang Qu,
| |
Collapse
|