1
|
Charron PN, Tahir I, Foley C, White G, Floreani RA. Whey Protein Isolate Composites as Potential Scaffolds for Cultivated Meat. ACS APPLIED BIO MATERIALS 2024; 7:2153-2163. [PMID: 38502811 DOI: 10.1021/acsabm.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Modern food technology has given rise to numerous alternative protein sources in response to a growing human population and the negative environmental impacts of current food systems. To aid in achieving global food security, one such form of alternative protein being investigated is cultivated meat, which applies the principles of mechanical and tissue engineering to produce animal proteins and meat products from animal cells. Herein, nonmodified and methacrylated whey protein formed hydrogels with methacrylated alginate as potential tissue engineering scaffolds for cultivated meat. Whey protein is a byproduct of dairy processing and was selected because it is an approved food additive and cytocompatible and has shown efficacy in other biomaterial applications. Whey protein and alginate scaffolds were formed via visible light cross-linking in aqueous solutions under ambient conditions. The characteristics of the precursor solution and the physical-mechanical properties of the scaffolds were quantified; while gelation occurred within the homo- and copolymer hydrogels, the integrity of the network was significantly altered with varying components. Qualitatively, the scaffolds exhibited a three-dimensional (3D) interconnected porous network. Whey protein isolate (WPI)-based scaffolds were noncytotoxic and supported in vitro myoblast adhesion and proliferation. The data presented support the hypothesis that the composition of the hydrogel plays a significant role in the scaffold's performance.
Collapse
Affiliation(s)
- Patrick N Charron
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Irfan Tahir
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Christopher Foley
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Gabriella White
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Rachael A Floreani
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
- Materials Science Program, University of Vermont, Burlington, Vermont 05405, United States
- Food Systems Program, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
2
|
Su YC, Chang Y, Lee WC, Wang JH, Narita T, Takeno H, Syu JY, Jou IM, Hsieh WC. Study of chondrogenesis of umbilical cord mesenchymal stem cells in curdlan- poly(vinyl alcohol) composite hydrogels and its mechanical properties of freezing-thawing treatments. Int J Biol Macromol 2024; 265:130792. [PMID: 38479670 DOI: 10.1016/j.ijbiomac.2024.130792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
The curdlan gel is a natural material produced by bacteria. It utilizes chemical cross-linking reactions to form a 3D porous composite hydrogel, increasing its porosity and water content, and improving its mechanical properties. It can be used in tissue repair and regenerative medicine. Curdlan-Poly(vinyl alcohol) (PVA) composite hydrogel can rapidly swell within 1 min due to its porous structure. Compression tests confirmed that it still maintains its original mechanical strength, even after five repeated freeze-thaw (FT) processes, making it suitable for long-term cryopreservation. The purpose of this study is to transplant umbilical cord mesenchymal stem cells (UC-MSCs) on Curdlan-PVA composite hydrogel and observe the chondrocytes on the material. The results of using 4',6-diamidino-2-phenylindole (DAPI), hematoxylin and eosin (H&E), calcein-acetoxymethyl ester (calcein AM), and Collagen type II-Fluorescein isothiocyanate (FITC) staining, confirmed that UC-MSCs can attach and differentiate into chondrocytes on 3D Curdlan-PVA composite hydrogel.
Collapse
Affiliation(s)
- Yu-Chieh Su
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yu Chang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Wei-Chang Lee
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Jhih-Han Wang
- Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung 824005, Taiwan
| | - Takumi Narita
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| | - Hiroyuki Takeno
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan; Gunma University Center for Food Science and Wellness (GUCFW), Gunma 376-8515, Japan
| | - Jie-Yu Syu
- Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung 824005, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Chuan Hsieh
- Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung 824005, Taiwan.
| |
Collapse
|
3
|
Grzelak A, Hnydka A, Higuchi J, Michalak A, Tarczynska M, Gaweda K, Klimek K. Recent Achievements in the Development of Biomaterials Improved with Platelet Concentrates for Soft and Hard Tissue Engineering Applications. Int J Mol Sci 2024; 25:1525. [PMID: 38338805 PMCID: PMC10855389 DOI: 10.3390/ijms25031525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Platelet concentrates such as platelet-rich plasma, platelet-rich fibrin or concentrated growth factors are cost-effective autologous preparations containing various growth factors, including platelet-derived growth factor, transforming growth factor β, insulin-like growth factor 1 and vascular endothelial growth factor. For this reason, they are often used in regenerative medicine to treat wounds, nerve damage as well as cartilage and bone defects. Unfortunately, after administration, these preparations release growth factors very quickly, which lose their activity rapidly. As a consequence, this results in the need to repeat the therapy, which is associated with additional pain and discomfort for the patient. Recent research shows that combining platelet concentrates with biomaterials overcomes this problem because growth factors are released in a more sustainable manner. Moreover, this concept fits into the latest trends in tissue engineering, which include biomaterials, bioactive factors and cells. Therefore, this review presents the latest literature reports on the properties of biomaterials enriched with platelet concentrates for applications in skin, nerve, cartilage and bone tissue engineering.
Collapse
Affiliation(s)
- Agnieszka Grzelak
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Aleksandra Hnydka
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Prymasa Tysiaclecia Avenue 98, 01-142 Warsaw, Poland;
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4 a Street, 20-093 Lublin, Poland;
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| |
Collapse
|
4
|
Ivory-Cousins T, Nurzynska A, Klimek K, Baines DK, Truszkiewicz W, Pałka K, Douglas TEL. Whey Protein Isolate/Calcium Silicate Hydrogels for Bone Tissue Engineering Applications-Preliminary In Vitro Evaluation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6484. [PMID: 37834620 PMCID: PMC10573410 DOI: 10.3390/ma16196484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Whey protein isolate (WPI) hydrogels are attractive biomaterials for application in bone repair and regeneration. However, their main limitation is low mechanical strength. Therefore, to improve these properties, the incorporation of ceramic phases into hydrogel matrices is currently being performed. In this study, novel whey protein isolate/calcium silicate (WPI/CaSiO3) hydrogel biomaterials were prepared with varying concentrations of a ceramic phase (CaSiO3). The aim of this study was to investigate the effect of the introduction of CaSiO3 to a WPI hydrogel matrix on its physicochemical, mechanical, and biological properties. Our Fourier Transform Infrared Spectroscopy results showed that CaSiO3 was successfully incorporated into the WPI hydrogel matrix to create composite biomaterials. Swelling tests indicated that the addition of 5% (w/v) CaSiO3 caused greater swelling compared to biomaterials without CaSiO3 and ultimate compressive strength and strain at break. Cell culture experiments demonstrated that WPI hydrogel biomaterials enriched with CaSiO3 demonstrated superior cytocompatibility in vitro compared to the control hydrogel biomaterials without CaSiO3. Thus, this study revealed that the addition of CaSiO3 to WPI-based hydrogel biomaterials renders them more promising for bone tissue engineering applications.
Collapse
Affiliation(s)
- Tayla Ivory-Cousins
- School of Engineering, Faculty of Mechanical Engineering, Lancaster University, Nadbystrzycka 36 Street, Gillow Avenue, Lancaster LA1 4YW, UK; (T.I.-C.); (D.K.B.)
| | - Aleksandra Nurzynska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (A.N.); (K.K.); (W.T.)
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (A.N.); (K.K.); (W.T.)
| | - Daniel K. Baines
- School of Engineering, Faculty of Mechanical Engineering, Lancaster University, Nadbystrzycka 36 Street, Gillow Avenue, Lancaster LA1 4YW, UK; (T.I.-C.); (D.K.B.)
| | - Wieslaw Truszkiewicz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (A.N.); (K.K.); (W.T.)
| | - Krzysztof Pałka
- Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36 Street, 20-618 Lublin, Poland;
| | - Timothy E. L. Douglas
- School of Engineering, Faculty of Mechanical Engineering, Lancaster University, Nadbystrzycka 36 Street, Gillow Avenue, Lancaster LA1 4YW, UK; (T.I.-C.); (D.K.B.)
| |
Collapse
|
5
|
Szwed-Georgiou A, Płociński P, Kupikowska-Stobba B, Urbaniak MM, Rusek-Wala P, Szustakiewicz K, Piszko P, Krupa A, Biernat M, Gazińska M, Kasprzak M, Nawrotek K, Mira NP, Rudnicka K. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater Sci Eng 2023; 9:5222-5254. [PMID: 37585562 PMCID: PMC10498424 DOI: 10.1021/acsbiomaterials.3c00609] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Novel tissue regeneration strategies are constantly being developed worldwide. Research on bone regeneration is noteworthy, as many promising new approaches have been documented with novel strategies currently under investigation. Innovative biomaterials that allow the coordinated and well-controlled repair of bone fractures and bone loss are being designed to reduce the need for autologous or allogeneic bone grafts eventually. The current engineering technologies permit the construction of synthetic, complex, biomimetic biomaterials with properties nearly as good as those of natural bone with good biocompatibility. To ensure that all these requirements meet, bioactive molecules are coupled to structural scaffolding constituents to form a final product with the desired physical, chemical, and biological properties. Bioactive molecules that have been used to promote bone regeneration include protein growth factors, peptides, amino acids, hormones, lipids, and flavonoids. Various strategies have been adapted to investigate the coupling of bioactive molecules with scaffolding materials to sustain activity and allow controlled release. The current manuscript is a thorough survey of the strategies that have been exploited for the delivery of biomolecules for bone regeneration purposes, from choosing the bioactive molecule to selecting the optimal strategy to synthesize the scaffold and assessing the advantages and disadvantages of various delivery strategies.
Collapse
Affiliation(s)
- Aleksandra Szwed-Georgiou
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Przemysław Płociński
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Barbara Kupikowska-Stobba
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Mateusz M. Urbaniak
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Paulina Rusek-Wala
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Konrad Szustakiewicz
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Paweł Piszko
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Agnieszka Krupa
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Monika Biernat
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Małgorzata Gazińska
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Mirosław Kasprzak
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Katarzyna Nawrotek
- Faculty
of Process and Environmental Engineering, Lodz University of Technology, Lodz 90-924, Poland
| | - Nuno Pereira Mira
- iBB-Institute
for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de
Lisboa, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior
Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Instituto
Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Karolina Rudnicka
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| |
Collapse
|