1
|
Cao S, Pang Y, Wei Y, Wang D, Xiong A, Yang J, Zeng H. Nanozymes in biomedicine: Unraveling trends, research foci, and future trajectories via bibliometric insights (from 2007 to 2024). Int J Biol Macromol 2025:142798. [PMID: 40185460 DOI: 10.1016/j.ijbiomac.2025.142798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Nanozymes, a new generation of artificial enzymes, have attracted significant attention in biomedical applications due to their multifunctional properties, multi-enzyme mimicking abilities, cost-effectiveness, and high stability. Leveraging these diverse catalytic activities, an increasing number of nanozyme-based therapeutic strategies have been developed for the treatment of various diseases. Despite substantial research efforts, a significant gap remains in comprehensive studies examining the progression, key areas, current trends, and future directions in this field. This study provides a comprehensive overview of nanozyme applications in biomedical research over the past 17 years, utilizing data from the Web of Science Core Collection, covering the period from January 1, 2007, to October 8, 2024. Advanced bibliometric and visualization tools were employed to facilitate a comprehensive analysis. The results highlight China's dominant role in this field, accounting for 76.83 % of total publications, significantly influencing the evolution of research in this area. Key contributions were made by institutions such as the Chinese Academy of Sciences, the University of Chinese Academy of Sciences, and the University of Science and Technology of China, with Qu Xiaogang as the leading author. The journal ACS Applied Materials & Interfaces has become the most prolific publisher in this field. Keyword analysis indicates that since 2022, research hotspots in this field have increasingly focused on areas such as photothermal therapy, chemodynamic therapy, and ferroptosis. Challenges such as obstacles to clinical translation, limitations in recyclability, and insufficient targeting ability were addressed. The potential applications of emerging interdisciplinary technologies, such as artificial intelligence, machine learning, and organoids, in advancing nanozyme development were explored. This study offers a data-driven roadmap for researchers to navigate the evolving landscape of nanozyme innovation, emphasizing interdisciplinary collaboration in impactful biomedical applications.
Collapse
Affiliation(s)
- Siyang Cao
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yingchen Pang
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Pulmonary and Critical Care Medicine, Shenzhen Xinhua Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yihao Wei
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong; Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, People's Republic of China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, People's Republic of China
| | - Deli Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Ao Xiong
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Hassanzadeh-Khanmiri M, Moshari A, Kheradmand R, Haghgouei T, Homaei M, Charsouei S, Mobed A. Nanomedicine: a cost-effective and powerful platform for managing neurodegenerative diseases. Metab Brain Dis 2025; 40:142. [PMID: 40067468 DOI: 10.1007/s11011-025-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/28/2025] [Indexed: 03/26/2025]
Abstract
Neurodegenerative diseases (NDDs) are characterized by the chronic and progressive deterioration of the structure and function of the nervous system, imposing a significant burden on patients, their families, and society. These diseases have a gradual onset and continually worsen, making early diagnosis challenging. Current drugs on the market struggle to effectively cross the blood-brain barrier (BBB), leading to poor outcomes and limited therapeutic success. Consequently, there is an urgent need for new diagnostic tools and treatment strategies. To address these challenges, nanotechnology-based drug delivery systems-such as liposomes, micelles, dendrimers, and solid lipid nanoparticles (SLNs)-have emerged as promising solutions. This study provides a comprehensive review of recent advances in nanomedicine and nanotechnology-based platforms, alongside an exploration of ND mechanisms. The authors conducted a systematic literature search across relevant databases such as PubMed, Scopus, and Web of Science, focusing on peer-reviewed articles, reviews, and clinical studies published within the last 5 to 10 years. Additionally, this paper addresses the challenges faced by nanomedicines and delivery systems, offering insights into future directions in the field and the need for further research to establish their clinical viability as alternatives to current therapies.
Collapse
Affiliation(s)
| | - Amirreza Moshari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Kheradmand
- Division of Pharmacology and Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Tannaz Haghgouei
- Division of Pharmacology and Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Maryam Homaei
- Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Division of Pharmacology and Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Tabriz Neuroscience Research Center (NRSC), Neurology Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Health Management and Safety Promotion, Tabriz, Iran
| | - Saeid Charsouei
- Tabriz Neuroscience Research Center (NRSC), Neurology Department, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mobed
- Social Determinants of Health Research Center, Health Management and Safety Promotion, Tabriz, Iran.
| |
Collapse
|
3
|
Zheng D, Chen J. MicroRNAs in Parkinson's disease: From pathogenesis to diagnostics and therapeutic strategies. Neuroscience 2025; 568:298-313. [PMID: 39855289 DOI: 10.1016/j.neuroscience.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by pathological changes, including the loss of dopaminergic neurons and abnormal aggregation of α-synuclein (α-syn). Certain cellular and molecular events are involved; however, the origin and significance of these events remain uncertain. The discovery of microRNAs (miRNAs) predicted to play a pivotal role in various regulatory processes has emerged. Studies on the dysregulation of miRNAs in PD pathogenesis, diagnosis, and treatment have recently gained attention. This review aims to encapsulate recent research developments concerning the function of miRNAs in the pathophysiology of PD and their prospective applications as diagnostic and therapeutic biomarkers, targets, and pharmaceuticals. The most effective drug delivery approach for the treatment of PD, transnasal-cerebral drug delivery, has also been briefly described. The advantage of this delivery strategy is its capacity to bypass the blood-brain barrier, enabling direct administration of medication to the brain, which improves therapeutic efficacy and minimizes side effects.
Collapse
Affiliation(s)
- Dongying Zheng
- Graduate School, Guangxi University of Chinese Medicine, Nanning, GX, China
| | - Jibing Chen
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Gx, China.
| |
Collapse
|
4
|
Padilla-Godínez FJ, López-Goerne T, Calvillo-Muñoz EY, Álvarez-Lemus MA, Navarrete-Bolaños J, Collazo-Navarrete O, Lora-Marín OR, Cárdenas-Aguayo MDC, Velasco M, Guerra-Crespo M. Dopamine stabilized in ultra-nanoreservoirs for controlled delivery in parkinson's disease. Nanomedicine (Lond) 2025; 20:543-557. [PMID: 39935342 PMCID: PMC11881884 DOI: 10.1080/17435889.2025.2460228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
AIMS Parkinson's disease (PD) is a neurodegenerative disorder caused by the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to impaired dopamine (DA) signaling and motor control. Intermittent dosing of current DA precursors results in side effects, prompting research into controlled drug release mechanisms for sustained and targeted delivery of DA. MATERIALS & METHODS In this work, we stabilized DA within a nanostructured silicate matrix (nanoreservoir) using the sol-gel method. We examined the physicochemical properties, kinetics of drug release, and biocompatibility in dopaminergic neurons and fibroblasts. RESULTS The optimized synthesis method allowed for the stabilization of DA by preventing its oxidation. The physicochemical and controlled release analysis showed a direct relationship between the mesoporous structure, interaction of the DA with the matrix, and the release kinetics followed, proving the possibility to modify the rate of release by adjusting the synthesis parameters. Furthermore, the nanoreservoirs were biocompatible with dopaminergic neurons and fibroblasts in vitro. CONCLUSIONS The research sets the stage for potential in vivo evaluations and new strategies for managing PD, offering hope for improved treatments based on DA and not derivatives.
Collapse
Affiliation(s)
- Francisco J. Padilla-Godínez
- Regenerative Medicine Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Laboratory of Nanotechnology and Nanomedicine, Department of Health Care, Metropolitan Autonomous University, Mexico City, Mexico
| | - Tessy López-Goerne
- Laboratory of Nanotechnology and Nanomedicine, Department of Health Care, Metropolitan Autonomous University, Mexico City, Mexico
| | - Evelyn Y. Calvillo-Muñoz
- Center for Research and Technological Innovation, National Polytechnic Institute, Mexico City, Mexico
| | | | | | - Omar Collazo-Navarrete
- National Laboratory of Genomic Resources, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico
| | - Obed R. Lora-Marín
- Laboratory of Cellular Reprogramming, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - María-Del-Carmen Cárdenas-Aguayo
- Laboratory of Cellular Reprogramming, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Myrian Velasco
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Magdalena Guerra-Crespo
- Regenerative Medicine Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
5
|
Dhariwal R, Jain M, Mir YR, Singh A, Jain B, Kumar P, Tariq M, Verma D, Deshmukh K, Yadav VK, Malik T. Targeted drug delivery in neurodegenerative diseases: the role of nanotechnology. Front Med (Lausanne) 2025; 12:1522223. [PMID: 39963432 PMCID: PMC11831571 DOI: 10.3389/fmed.2025.1522223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Neurodegenerative diseases, characterized by progressive neuronal loss and cognitive impairments, pose a significant global health challenge. This study explores the potential of nanotherapeutics as a promising approach to enhance drug delivery across physiological barriers, particularly the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (B-CSFB). By employing nanoparticles, this research aims to address critical challenges in the diagnosis and treatment of conditions such as Alzheimer's, Parkinson's, and Huntington's diseases. The multifactorial nature of these disorders necessitates innovative solutions that leverage nanomedicine to improve drug solubility, circulation time, and targeted delivery while minimizing off-target effects. The findings underscore the importance of advancing nanomedicine applications to develop effective therapeutic strategies that can alleviate the burden of neurodegenerative diseases on individuals and healthcare systems.
Collapse
Affiliation(s)
- Rupal Dhariwal
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mukul Jain
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Abhayveer Singh
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - Bhavik Jain
- Chitkara Centre for Research and Development, Chitkara University, Baddi, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mohd Tariq
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Khemraj Deshmukh
- Department of Biomedical Engineering, Parul Institute of Technology, Parul University, Vadodara, India
| | | | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research & Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Castellani S, Iaconisi GN, Tripaldi F, Porcelli V, Trapani A, Messina E, Guerra L, Di Franco C, Maruccio G, Monteduro AG, Corbo F, Di Gioia S, Trapani G, Conese M. Dopamine and Citicoline-Co-Loaded Solid Lipid Nanoparticles as Multifunctional Nanomedicines for Parkinson's Disease Treatment by Intranasal Administration. Pharmaceutics 2024; 16:1048. [PMID: 39204393 PMCID: PMC11360708 DOI: 10.3390/pharmaceutics16081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
This work aimed to evaluate the potential of the nanosystems constituted by dopamine (DA) and the antioxidant Citicoline (CIT) co-loaded in solid lipid nanoparticles (SLNs) for intranasal administration in the treatment of Parkinson disease (PD). Such nanosystems, denoted as DA-CIT-SLNs, were designed according to the concept of multifunctional nanomedicine where multiple biological roles are combined into a single nanocarrier and prepared by the melt emulsification method employing the self-emulsifying Gelucire® 50/13 as lipid matrix. The resulting DA-CIT-SLNs were characterized regarding particle size, surface charge, encapsulation efficiency, morphology, and physical stability. Differential scanning calorimetry, FT-IR, and X ray diffraction studies were carried out to gain information on solid-state features, and in vitro release tests in simulated nasal fluid (SNF) were performed. Monitoring the particle size at two temperatures (4 °C and 37 °C), the size enlargement observed over the time at 37 °C was lower than that observed at 4 °C, even though at higher temperature, color changes occurred, indicative of possible neurotransmitter decomposition. Solid-state studies indicated a reduction in the crystallinity when DA and CIT are co-encapsulated in DA-CIT-SLNs. Interestingly, in vitro release studies in SNF indicated a sustained release of DA. Furthermore, DA-CIT SLNs displayed high cytocompatibility with both human nasal RPMI 2650 and neuronal SH-SY5Y cells. Furthermore, OxyBlot assay demonstrated considerable potential to assess the protective effect of antioxidant agents against oxidative cellular damage. Thus, such protective effect was shown by DA-CIT-SLNs, which constitute a promising formulation for PD application.
Collapse
Affiliation(s)
- Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Francesca Tripaldi
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Vito Porcelli
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (V.P.); (E.M.); (L.G.)
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Eugenia Messina
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (V.P.); (E.M.); (L.G.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (V.P.); (E.M.); (L.G.)
| | | | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento and INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy (A.G.M.)
- CNR-NANOTEC Institute of Nanotechnology, Via per Monteroni, 73100 Lecce, Italy
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento and INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy (A.G.M.)
- CNR-NANOTEC Institute of Nanotechnology, Via per Monteroni, 73100 Lecce, Italy
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| |
Collapse
|
7
|
Yang Y, Li Z, Fan X, Jiang C, Wang J, Rastegar-Kashkooli Y, Wang TJ, Wang J, Wang M, Cheng N, Yuan X, Chen X, Jiang B, Wang J. Nanozymes: Potential Therapies for Reactive Oxygen Species Overproduction and Inflammation in Ischemic Stroke and Traumatic Brain Injury. ACS NANO 2024; 18:16450-16467. [PMID: 38897929 DOI: 10.1021/acsnano.4c03425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanozymes, which can selectively scavenge reactive oxygen species (ROS), have recently emerged as promising candidates for treating ischemic stroke and traumatic brain injury (TBI) in preclinical models. ROS overproduction during the early phase of these diseases leads to oxidative brain damage, which has been a major cause of mortality worldwide. However, the clinical application of ROS-scavenging enzymes is limited by their short in vivo half-life and inability to cross the blood-brain barrier. Nanozymes, which mimic the catalytic function of natural enzymes, have several advantages, including cost-effectiveness, high stability, and easy storage. These advantages render them superior to natural enzymes for disease diagnosis and therapeutic interventions. This review highlights recent advancements in nanozyme applications for ischemic stroke and TBI, emphasizing their potential to mitigate the detrimental effect of ROS overproduction, oxidative brain damage, inflammation, and blood-brain barrier compromise. Therefore, nanozymes represent a promising treatment modality for ROS overproduction conditions in future medical practices.
Collapse
Affiliation(s)
- Yunfan Yang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zixiang Li
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
- School of International Education, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Tom J Wang
- Program in Behavioral Biology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Nannan Cheng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xiqian Yuan
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
8
|
Dafhalla AKY, Dhahi T, Al-Mufti AW, Saad SA, Alqahtani AS, Al-nuaimi MAH, Elobaid ME, Adam T, Gopinath SC. Nanogap nanowires and its applications in biosensing. SENSING AND BIO-SENSING RESEARCH 2024; 44:100638. [DOI: 10.1016/j.sbsr.2024.100638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
9
|
Pandey M, Karmakar V, Majie A, Dwivedi M, Md S, Gorain B. The SH-SY5Y cell line: a valuable tool for Parkinson's disease drug discovery. Expert Opin Drug Discov 2024; 19:303-316. [PMID: 38112196 DOI: 10.1080/17460441.2023.2293158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Owing to limited efficient treatment strategies for highly prevalent and distressing Parkinson's disease (PD), an impending need emerged for deciphering new modes and mechanisms for effective management. SH-SY5Y-based in vitro neuronal models have emerged as a new possibility for the elucidation of cellular and molecular processes in the pathogenesis of PD. SH-SY5Y cells are of human origin, adhered to catecholaminergic neuronal attributes, which consequences in imparting wide acceptance and significance to this model over conventional in vitro PD models for high-throughput screening of therapeutics. AREAS COVERED Herein, the authors review the SH-SY5Y cell line and its value to PD research. The authors also provide the reader with their expert perspectives on how these developments can lead to the development of new impactful therapeutics. EXPERT OPINION Encouraged by recent research on SH-SY5Y cell lines, it was envisaged that this in vitro model can serve as a primary model for assessing efficacy and toxicity of new therapeutics as well as for nanocarriers' capacity in delivering therapeutic agents across BBB. Considering the proximity with human neuronal environment as in pathogenic PD conditions, SH-SY5Y cell lines vindicated consistency and reproducibility in experimental results. Accordingly, exploitation of this standardized SH-SY5Y cell line can fast-track the drug discovery and development path for novel therapeutics.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Monika Dwivedi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
10
|
Panghal A, Flora SJS. Nanotechnology in the diagnostic and therapy for Alzheimer's disease. Biochim Biophys Acta Gen Subj 2024; 1868:130559. [PMID: 38191034 DOI: 10.1016/j.bbagen.2024.130559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by β-amyloid plaque, intraneuronal tangles, significant neuronal loss and cognitive deficit. Treatment in the early stages of the disease is crucial for preventing or perhaps reversing the neurodegeneration in the AD cases. However, none of the current diagnostic procedures are capable of early diagnosis of AD. Further, the available treatments merely provide symptomatic alleviation in AD and do not address the underlying illness. Therefore, there is no permanent cure for AD currently. Better therapeutic outcomes need the optimum drug concentration in the central nervous system (CNS) by traversing blood-brain-barrier (BBB). Nanotechnology offers enormous promise to transform the treatment and diagnostics of neurodegenerative diseases. Nanotechnology based diagnostic tools, drug delivery systems and theragnostic are capable of highly sensitive molecular detection, effective drug targeting and their combination. Significant work has been done in this area over the last decade and prospective results have been obtained in AD therapy. This review explores the various applications of nanotechnology in addressing the varied facets of AD, ranging from early detection to therapeutic interventions. This review also looks at how nanotechnology can help with the development of disease-modifying medicines, such as the delivery of anti-amyloid, anti-tau, cholinesterase inhibitors, antioxidants and hormonal drugs. In conclusion, this paper discusses the role of nanotechnology in the early detection of AD, effective drug targeting to the CNS and theragnostic applications in the management of AD.
Collapse
Affiliation(s)
- Archna Panghal
- National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Panjab 160012, India
| | - S J S Flora
- National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Panjab 160012, India; Institute of Pharmaceutical Sciences, Era Medical University, Safarajganj, Lucknow 226003, U.P., India.
| |
Collapse
|
11
|
Grancharova T, Simeonova S, Pilicheva B, Zagorchev P. Gold Nanoparticles in Parkinson's Disease Therapy: A Focus on Plant-Based Green Synthesis. Cureus 2024; 16:e54671. [PMID: 38524031 PMCID: PMC10960252 DOI: 10.7759/cureus.54671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease that affects approximately 1% of people over the age of 60 and 5% of those over the age of 85. Current drugs for Parkinson's disease mainly affect the symptoms and cannot stop its progression. Nanotechnology provides a solution to address some challenges in therapy, such as overcoming the blood-brain barrier (BBB), adverse pharmacokinetics, and the limited bioavailability of therapeutics. The reformulation of drugs into nanoparticles (NPs) can improve their biodistribution, protect them from degradation, reduce the required dose, and ensure target accumulation. Furthermore, appropriately designed nanoparticles enable the combination of diagnosis and therapy with a single nanoagent. In recent years, gold nanoparticles (AuNPs) have been studied with increasing interest due to their intrinsic nanozyme activity. They can mimic the action of superoxide dismutase, catalase, and peroxidase. The use of 13-nm gold nanoparticles (CNM-Au8®) in bicarbonate solution is being studied as a potential treatment for Parkinson's disease and other neurological illnesses. CNM-Au8® improves remyelination and motor functions in experimental animals. Among the many techniques for nanoparticle synthesis, green synthesis is increasingly used due to its simplicity and therapeutic potential. Green synthesis relies on natural and environmentally friendly materials, such as plant extracts, to reduce metal ions and form nanoparticles. Moreover, the presence of bioactive plant compounds on their surface increases the therapeutic potential of these nanoparticles. The present article reviews the possibilities of nanoparticles obtained by green synthesis to combine the therapeutic effects of plant components with gold.
Collapse
Affiliation(s)
- Tsenka Grancharova
- Department of Medical Physics and Biophysics, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Stanislava Simeonova
- Department of Pharmaceutical Sciences, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Plamen Zagorchev
- Department of Medical Physics and Biophysics, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| |
Collapse
|
12
|
Adam H, Gopinath SCB, Md Arshad MK, Adam T, Parmin NA, Husein I, Hashim U. An update on pathogenesis and clinical scenario for Parkinson's disease: diagnosis and treatment. 3 Biotech 2023; 13:142. [PMID: 37124989 PMCID: PMC10134733 DOI: 10.1007/s13205-023-03553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
In severe cases, Parkinson's disease causes uncontrolled movements known as motor symptoms such as dystonia, rigidity, bradykinesia, and tremors. Parkinson's disease also causes non-motor symptoms such as insomnia, constipation, depression and hysteria. Disruption of dopaminergic and non-dopaminergic neural networks in the substantia nigra pars compacta is a major cause of motor symptoms in Parkinson's disease. Furthermore, due to the difficulty of clinical diagnosis of Parkinson's disease, it is often misdiagnosed, highlighting the need for better methods of detection. Treatment of Parkinson's disease is also complicated due to the difficulties of medications passing across the blood-brain barrier. Moreover, the conventional methods fail to solve the aforementioned issues. As a result, new methods are needed to detect and treat Parkinson's disease. Improved diagnosis and treatment of Parkinson's disease can help avoid some of its devastating symptoms. This review explores how nanotechnology platforms, such as nanobiosensors and nanomedicine, have improved Parkinson's disease detection and treatment. Nanobiosensors integrate science and engineering principles to detect Parkinson's disease. The main advantages are their low cost, portability, and quick and precise analysis. Moreover, nanotechnology can transport medications in the form of nanoparticles across the blood-brain barrier. However, because nanobiosensors are a novel technology, their use in biological systems is limited. Nanobiosensors have the potential to disrupt cell metabolism and homeostasis, changing cellular molecular profiles and making it difficult to distinguish sensor-induced artifacts from fundamental biological phenomena. In the treatment of Parkinson's disease, nanoparticles, on the other hand, produce neurotoxicity, which is a challenge in the treatment of Parkinson's disease. Techniques must be developed to distinguish sensor-induced artifacts from fundamental biological phenomena and to reduce the neurotoxicity caused by nanoparticles.
Collapse
Affiliation(s)
- Hussaini Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - M. K. Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - Tijjani Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - N. A. Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| | - Irzaman Husein
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor-Indonesia, Indonesia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| |
Collapse
|