1
|
Huang Y, Huang Y, Xiao J, Ma Y, Liu Y, Sun H, Dai Y, Ren Q, Wang S. Mechanisms of Nrf2 suppression and Camkk1 upregulation in Echinococcus granulosus-induced bone loss. Int J Biol Macromol 2024; 288:138521. [PMID: 39674449 DOI: 10.1016/j.ijbiomac.2024.138521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Osteoclast differentiation is essential for maintaining bone metabolism, and its dysregulation, particularly in the context of Echinococcus granulosus (CE) infection, can lead to severe bone loss. This study explores a novel mechanism by which CE protoscolices (PSC) drive osteoclast differentiation through the inhibition of Nrf2, followed by the upregulation of Camkk1. Transcriptome sequencing revealed a significant down-regulation of Nrf2 in cells treated with PSC. This was confirmed by Western blot and Q-PCR assays showing reduced Nrf2 protein and gene levels. In vivo studies with Nrf2 knockout mice demonstrated that the absence of Nrf2 exacerbates bone loss induced by PSC in both the spine and lower limbs, as observed through Micro-CT imaging and TRAP staining.Further investigations identified Camkk1 as a key downstream target of Nrf2. Using high-throughput sequencing and CO-IP experiments, we established that Nrf2 directly interacts with and regulates Camkk1. Functional assays indicated that PSC-induced upregulation of Camkk1 is significantly enhanced by Nrf2 knockdown, while silencing Camkk1 alone inhibits osteoclast differentiation.The therapeutic potential of this pathway was evaluated by screening small molecule inhibitors of Camkk1, with Crenolani emerging as a potent compound. In vivo administration of Crenolani in PSC-treated mice significantly alleviated bone loss in a dose-dependent manner.These findings elucidate a crucial molecular mechanism in osteoclast differentiation driven by CE infection and propose a promising therapeutic strategy for combating CE-induced bone destruction. This study advances our understanding of bone.
Collapse
Affiliation(s)
- Yansheng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shanxi Province 710000, China
| | - Yiping Huang
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832000, China
| | - Jun Xiao
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832000, China
| | - Yibo Ma
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832000, China
| | - Yaqing Liu
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832000, China
| | - Haohao Sun
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832000, China
| | - Yi Dai
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region 832000, China
| | - Qian Ren
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shanxi Province 710000, China.
| | - Sibo Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shanxi Province 710000, China.
| |
Collapse
|
2
|
Lu Q, Wang H, Zhang X, Yuan T, Wang Y, Feng C, Li Z, Sun S. Corydaline attenuates osteolysis in rheumatoid arthritis via mitigating reactive oxygen species production and suppressing calcineurin-Nfatc1 signaling. Int Immunopharmacol 2024; 142:113158. [PMID: 39293314 DOI: 10.1016/j.intimp.2024.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
AIM OF THE STUDY Osteolysis in Rheumatoid arthritis (RA) is principally provoked by osteoclast hyperactivity. This study aims to employ Corydaline (Cory), a plant extract, as an osteoclast inhibitor in treating RA-inflicted osteolysis while unveiling the corresponding mechanism. MATERIALS AND METHODS Osteoclasts were derived from mouse bone marrow-derived monocytes (BMMs) stimulated with M-CSF and RANKL. Subsequently, utilizing network pharmacology, we performed a thorough analysis of Cory's molecular structure and discerned its preliminary therapeutic potential. Subsequently, LPS was used to simulate and establish an in vitro model of RA, and the biological effect of Cory on osteoclast behaviors was evaluated through various staining methods, RT-qPCR, and Western blot. In addition, a collagen-induced arthritis (CIA) mouse model was developed to evaluate the therapeutic effects of Cory in vivo. RESULTS The results from network pharmacology indicated a significant correlation between Cory, oxidative stress, and calcium signaling. Subsequent in vitro experiments demonstrated Cory's capacity to inhibit the formation and function of osteoclast under inflammatory stimuli, thereby protecting against abnormal bone resorption. This effect is achieved by activating the Nrf2 signaling pathway, mitigating the generation of reactive oxygen species (ROS), and modulating the calcineurin-Nfatc1 signaling. Furthermore, this therapeutic effect of Cory on RA-associated osteolysis was proved in CIA mice models. CONCLUSIONS Cory demonstrates the potential to activate the Nrf2 signaling pathway, effectively countering oxidative stress, and simultaneously inhibit the calcineurin-Nfatc1 signaling pathway to regulate the terminals of calcium signaling. These dual effects collectively reduce osteoclast activity, ultimately contributing to a therapeutic role in RA osteolysis. Therefore, our study presents Cory as a novel pharmaceutical candidate for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Qizhen Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haojue Wang
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tao Yuan
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Changgong Feng
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Dong G, Pang X, Wang X, Peng L, Xiao Q, Guo S, Dai W. Protective effect of Huanglian Pingwei San on DSS-induced ulcerative colitis in mice through amelioration of the inflammatory response and oxidative stress. Front Pharmacol 2024; 15:1484532. [PMID: 39697546 PMCID: PMC11652202 DOI: 10.3389/fphar.2024.1484532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Ulcerative colitis (UC) results in the breakdown of the mucosal barrier caused by persistent inflammation and oxidative stress. Huanglian Pingwei San (HLPWS) is a commonly prescribed traditional Chinese medicine for treating colitis, but the precise mechanism remains unclear. The aim of this study was to systematically investigate the protective effect of HLPWS on UC mice and to elucidate the underlying mechanisms involved. Materials UC mouse model was established in C57BL/6 mice via 2.25% dextran sulfate sodium (DSS). The chemical composition of HLPWS was examined through UPLC/MS Q-TOF analysis. The efficacy of HLPWS in treating UC was assessed. A TUNEL assay was used to detect apoptotic cells. An ELISA was used to evaluate the levels of inflammatory cytokines in colon tissues and serum. The percentages of Treg and Th17 cells were measured via flow cytometry. The protein expression in the colonic tissue was validated via immunohistochemistry (IHC) and Western blotting. Results HLPWS significantly improved UC symptoms and colon tissue histology in mice. The structure and function of the intestinal barrier were restored by HLPWS treatment, as shown by increased DAO content, reduced levels of FITC-dextran, and increased protein expression of ZO-1, occludin, claudin, and MUC2. HLPWS dose-dependently decreased the number of apoptotic cells by inhibiting P53, P21, P27, cleaved caspase 3, and p-H2AX expression. HLPWS also reduced abnormal oxidative stress by reducing Keap1 expression and increasing Nrf2 and HO-1 levels. Furthermore, HLPWS rebalanced the Treg/Th17 ratio to alleviated inflammatory reactions in UC mice. Conclusion These findings suggest that HLPWS alleviated colonic intestinal barrier dysfunction in UC mice by reducing oxidative stress and restoring immune balance. This study underscores the potential therapeutic benefits of HLPWS and highlights its potential as a future pharmaceutical candidate for UC treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weibo Dai
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| |
Collapse
|
4
|
Samandari‐Bahraseman MR, Esmaeilzadeh‐Salestani K, Dogani M, Khaleghdoust B, Hatami N, Esmaeili‐Mahani S, Elyasi L, Loit E, Harro J. Antidepressant- and Anxiolytic-Like Effect of the Froriepia subpinnata Extract in the Rat: Neurochemical Correlates. Brain Behav 2024; 14:e70171. [PMID: 39607287 PMCID: PMC11603432 DOI: 10.1002/brb3.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/16/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The study aims to explore the potential antianxiety effect of Froriepia subpinnata, a native plant in northern Iran, and it is considered an antiflatulent, appetizing, antiseptic, antispasmodic, and diuretic. Despite its widespread use in diets and its reputation for calming effects, no prior research has specifically investigated its antianxiety properties. METHODS Rats were subjected to a variety of stressors for 24 days. Rats were treated with the F. subpinnata extract (100, 200, and 400 mg/kg, orally) for 14 days starting from the 10th day of stress. Then behavioral tests (elevated plus-maze, open field, sucrose preference, Morris water maze, passive avoidance) were examined. Real-time PCR was used to investigate changes in the expression of candidate genes of stress response and memory. Oxidative stress markers and corticosterone levels in serum were also measured. RESULTS Chronic stress reduced performance in a variety of tests of anxiety and memory, and treatment with the F. subpinnata extract dose-dependently improved the behavioral deficits caused by chronic stress. At the dose of 200 mg/kg, the F. subpinnata extract mitigated the effect of stress on the expression of several genes, such as those encoding dopamine D1 and D2 receptors, glutamate NMDA, and AMPA receptor subunits (Grin1 and Gria1, respectively), glucocorticoid and mineralocorticoid receptors, cholecystokinin (CCK) and CCKB receptor, neuropeptide Y, and the GABAA receptor alpha2 subunit. Also, the expression of two genes, TrkB and BDNF, was significantly affected by the extract, demonstrating meaningful decreasing changes. Furthermore, treatment with the extract led to a decrease in oxidative stress and an elevation in cortisol levels in stressed animals. CONCLUSION In this study, we provide the first evidence of the antistress and antianxiety effects of F. subpinnata extract, along with its potential procognitive impact on memory.
Collapse
Affiliation(s)
- Mohammad R. Samandari‐Bahraseman
- Department of Biology, Faculty of SciencesShahid Bahonar University of KermanKermanIran
- Varjavand Kesht Kariman, Limited Liability CompanyKermanIran
| | - Keyvan Esmaeilzadeh‐Salestani
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - Manijeh Dogani
- Department of Biology, Faculty of SciencesShahid Bahonar University of KermanKermanIran
| | - Banafsheh Khaleghdoust
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Nima Hatami
- Department of Endodontic DentistryKerman University of Medical SciencesKermanIran
| | - Saeed Esmaeili‐Mahani
- Department of Biology, Faculty of SciencesShahid Bahonar University of KermanKermanIran
| | - Leila Elyasi
- Neuroscience Research Center, Department of Anatomy, Faculty of MedicineGolestan University of Medical ScienceGorganIran
| | - Evelin Loit
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Institute of ChemistryUniversity of TartuTartuEstonia
| |
Collapse
|
5
|
Rosa GP, Seca AML, Pinto DCGA, Barreto MC. New Phytol Derivatives with Increased Cosmeceutical Potential. Molecules 2024; 29:4917. [PMID: 39459284 PMCID: PMC11510177 DOI: 10.3390/molecules29204917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Natural compounds are widely incorporated into cosmetic products for many purposes. Diterpenes often function as fragrances, enhancing the sensory experience of these formulations. However, current trends in cosmetic science aim to develop multifunctional products, where compounds traditionally used for texture or fragrance also possess biological activities that contribute to the product's efficacy. In this context, this study focuses on synthesizing derivatives of phytol-a compound already presents in cosmetic formulations-to enhance its anti-aging properties. The derivatives were synthesized through esterification with substituted benzoic and cinnamic acids, known for their antioxidant and enzyme inhibition properties. Reaction yields ranged from 91.0% to 5.2%, depending on the substituents in acid derivatives. The structures of the synthesized compounds were confirmed through NMR and MS techniques. Both the natural and newly synthesized derivatives were evaluated for their cosmeceutical potential using antioxidant assays and inhibition assays for tyrosinase, elastase, collagenase, and hyaluronidase. This work presents the first report of the synthesis and cosmetic evaluation of several of these derivatives. Comparing with phytol (1), which presented an IC50 of 77.47 µM, four of the derivatives presented improved tyrosinase inhibitory activity, with phytyl 4-methoxybenzoate being the most active (IC50 = 27.9 µM), followed by phytyl benzoate with an IC50 of 34.73 µM. Substitutions at other positions on the aromatic ring were less effective. Molecular docking studies confirmed that the modifications potentiated a stronger interaction between the synthesized compounds and tyrosinase.
Collapse
Affiliation(s)
- Gonçalo P. Rosa
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (G.P.R.); (D.C.G.A.P.)
- University of the Azores, Faculty of Sciences and Technology, cE3c- Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE–Global Change and Sustainability Institute, 9500-321 Ponta Delgada, Portugal ;
| | - Ana M. L. Seca
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (G.P.R.); (D.C.G.A.P.)
- University of the Azores, Faculty of Sciences and Technology, cE3c- Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE–Global Change and Sustainability Institute, 9500-321 Ponta Delgada, Portugal ;
| | - Diana. C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (G.P.R.); (D.C.G.A.P.)
| | - M. Carmo Barreto
- University of the Azores, Faculty of Sciences and Technology, cE3c- Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE–Global Change and Sustainability Institute, 9500-321 Ponta Delgada, Portugal ;
| |
Collapse
|
6
|
Dai T, Jiang P, Liu X, Dai Q. Scopolamine mitigates oophorectomy-induced osteoporosis: potential mechanisms and direct effects on bone structure. Nat Prod Res 2024:1-9. [PMID: 39390815 DOI: 10.1080/14786419.2024.2411725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The aim of our research is to investigate the therapeutic effects of scopolamine (SCO) on osteoporosis and to explore the underlying mechanism. To study osteoporosis, we established an ovariectomy (OVX) model. The rats were divided into four groups: sham operation, OVX, OVX+SCO, and OVX+SCO+ML385 (Nrf2 inhibitor). ELISA, Realtime PCR, Western blot, and kits were utilised to assess the expression of related proteins and substances. The OVX rats exhibited significant weight gain, reduced bone volume, destruction of trabecular and cortical bone microstructure, decreased expression of ALP, OCN, OPN, COL1A1, Runx2, Nrf2 proteins, and CAT, SOD, GST, GPX levels while increased expression of TRAP protein and ROS levels. SCO was able to restore these indices in OVX rats, while ML385 blocked the effects of SCO. In conclusion, SCO inhibits oxidative stress response to exert therapeutic effects on osteoporosis by activating the Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Tianyi Dai
- Nanjing University of Chinese Medicine, Jiangsu Province, China
- Affiliated to Wuxi Hospital of Nanjing University of Chinese Medicine (Wuxi Hospital of Traditional Chinese Medicine), Jiangsu Province, China
| | - Peipei Jiang
- Department of Neurology, Hai 'an Hospital of Traditional Chinese Medicine, Jiangsu Province, China
| | - Xiaofeng Liu
- Department of Cardiology, Hai 'an Hospital of Traditional Chinese Medicine, Jiangsu Province, China
| | - Qijun Dai
- Department of Neurology, Hai 'an Hospital of Traditional Chinese Medicine, Jiangsu Province, China
| |
Collapse
|
7
|
Rathaus M, Azem L, Livne R, Ron S, Ron I, Hadar R, Efroni G, Amir A, Braun T, Haberman Y, Tirosh A. Long-term metabolic effects of non-nutritive sweeteners. Mol Metab 2024; 88:101985. [PMID: 38977130 PMCID: PMC11347859 DOI: 10.1016/j.molmet.2024.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE Excessive consumption of added sugars has been linked to the rise in obesity and associated metabolic abnormalities. Non-nutritive sweeteners (NNSs) offer a potential solution to reduce sugar intake, yet their metabolic safety remains debated. This study aimed to systematically assess the long-term metabolic effects of commonly used NNSs under both normal and obesogenic conditions. METHODS To ensure consistent sweetness level and controlling for the acceptable daily intake (ADI), eight weeks old C57BL/6 male mice were administered with acesulfame K (ace K, 535.25 mg/L), aspartame (411.75 mg/L), sucralose (179.5 mg/L), saccharin (80 mg/L), or steviol glycoside (Reb M, 536.25 mg/L) in the drinking water, on the background of either regular or high-fat diets (in high fat diet 60% of calories from fat). Water or fructose-sweetened water (82.3.gr/L), were used as controls. Anthropometric and metabolic parameters, as well as microbiome composition, were analyzed following 20-weeks of exposure. RESULTS Under a regular chow diet, chronic NNS consumption did not significantly affect body weight, fat mass, or glucose metabolism as compared to water consumption, with aspartame demonstrating decreased glucose tolerance. In diet-induced obesity, NNS exposure did not increase body weight or alter food intake. Exposure to sucralose and Reb M led to improved insulin sensitivity and decreased weight gain. Reb M specifically was associated with increased prevalence of colonic Lachnospiracea bacteria. CONCLUSIONS Long-term consumption of commonly used NNSs does not induce adverse metabolic effects, with Reb M demonstrating a mild improvement in metabolic abnormalities. These findings provide valuable insights into the metabolic impact of different NNSs, aiding in the development of strategies to combat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Moran Rathaus
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Loziana Azem
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rinat Livne
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sophie Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Idit Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Rotem Hadar
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Gilat Efroni
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Tzipi Braun
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel; Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amir Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
8
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2024:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
9
|
Awari VS, Barvkar VT, Ade AB, Borde MY. Endophytic fungi from Cissus quadrangularis plant a promising source of bioactive compounds. Braz J Microbiol 2024:10.1007/s42770-024-01500-0. [PMID: 39207638 DOI: 10.1007/s42770-024-01500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cissus quadrangularis is a succulent, perennial plant belonging to the family Vitaceae typically found in Asia and Africa's tropical and subtropical forest zones. It is an ancient medicinal plant, containing phytosterols, polyphenols, flavonoids, carbohydrates, and ascorbic acid. Due to the presence of phytosterols it plays a crucial role in bone fracture healing. However, due to the limited resources of these medicinal plants there is a need to search for a reservoir of biologically active metabolites. This medicinal property of the plants therefore may be attributed to the endophytic fungi within the plant. This study includes isolation of endophytic fungi from C. quadrangularis and the characterization of fungal extracts. Three endophytes were isolated namely Colletotrichum gloeosporioides, Colletotrichum siamense and Phoma sp. The qualitative analysis of targeted metabolites from Cissus quadrangularis stem and fungal extracts of all the three endophytes showed the presence of phytosterols. Methanol extracts of endophytes and C. quadrangularis plant exhibit significant antioxidant and the radical scavenging activity because of the presence of β-carotene. The Ic50 value for stem and isolated endophytes was 5.748, 19.937, 7.00, and 6.493 respectively. This study will give further scope for studying the bone healing ability of phytosterol from the endophytic isolates of C. quadrangularis plant.
Collapse
Affiliation(s)
- Vanita S Awari
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Avinash B Ade
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Mahesh Y Borde
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
10
|
Cui W, Jin Z, Lin H, Wang B, Chen G, Cheng Y. Astragalus polysaccharide alleviates IL-13-induced oxidative stress injury in nasal epithelial cells by inhibiting WTAP-mediated FBXW7 m 6A modification. Toxicol Res (Camb) 2024; 13:tfae099. [PMID: 38957784 PMCID: PMC11215160 DOI: 10.1093/toxres/tfae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
Background Allergic rhinitis (AR) a common and complicated upper airway disease mediated by specific IgE antibodies. Our study aims to explore the pharmacological effects of astragalus polysaccharide (APS) on AR and elucidate the mechanisms involved. Methods RT-qPCR and Western blotting were used to analyze mRNA and protein expression. Interleukin (IL)-13-treated human nasal epithelial cells (hNECs) was employed as the AR cell model. Cell apoptosis and viability were evaluated by TUNEL staining and MTT assay, respectively. ROS level was examined by the DCFH-DA probe. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) levels were measured by the corresponding kits. FBXW7 m6A modification level was assessed by MeRIP assay. Methods Our results showed that APS treatment reduced cell apoptosis, ROS, and MDA levels while increasing SOD, CAT, and GSH-Px levels in IL-13-treated hNECs by activating the Nrf2/HO-1 pathway. Moreover, APS alleviated IL-13-induced oxidative stress injury in hNECs by downregulating WTAP. In addition, WTAP knockdown increased FBXW7 mRNA stability by regulating FBXW7 mRNA m6A modification. It also turned out that APS alleviated IL-13-induced oxidative stress injury in hNECs through the WTAP/FBXW7 axis. Conclusions Taken together, APS inhibited WTAP-mediated FBXW7 m6A modification to alleviate IL-13-induced oxidative stress injury in hNECs.
Collapse
Affiliation(s)
- Wei Cui
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Baiyun District, Guangzhou 510405, People's Republic of China
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| | - Zhenglong Jin
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| | - Hanyu Lin
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| | - Bin Wang
- Shenzhen Bao’an Authentic TCM Therapy Hospital, Preventive Treatment Department. No. 99 Lai'an Road Xixiang Street, Bao'an District, Shenzhen City, Guangdong Province 518000, P.R. China
| | - Guojian Chen
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| | - Yongming Cheng
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| |
Collapse
|
11
|
Zhang Y, Guo S, Fu X, Zhang Q, Wang H. Emerging insights into the role of NLRP3 inflammasome and endoplasmic reticulum stress in renal diseases. Int Immunopharmacol 2024; 136:112342. [PMID: 38820956 DOI: 10.1016/j.intimp.2024.112342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
NLRP3 inflammasome is a key component of the innate immune system, mediating the activation of caspase-1, and the maturity and secretion of the pro-inflammatory cytokine interleukin (IL)-1beta (IL-1β) and IL-18 to cope with microbial infections and cell injury. The NLRP3 inflammasome is activated by various endogenous danger signals, microorganisms and environmental stimuli, including urate, extracellular adenosine triphosphate (ATP) and cholesterol crystals. Increasing evidence indicates that the abnormal activation of NLRP3 is involved in multiple diseases including renal diseases. Hence, clarifying the mechanism of action of NLRP3 inflammasome in different diseases can help prevent and treat various diseases. Endoplasmic reticulum (ER) is an important organelle which participates in cell homeostasis maintenance and protein quality control. The unfolded protein response (UPR) and ER stress are caused by the excessive accumulation of unfolded or misfolded proteins in ER to recover ER homeostasis. Many factors can cause ER stress, including inflammation, hypoxia, environmental toxins, viral infections, glucose deficiency, changes in Ca2+ level and oxidative stress. The dysfunction of ER stress participates in multiple diseases, such as renal diseases. Many previous studies have shown that NLRP3 inflammasome and ER stress play an important role in renal diseases. However, the relevant mechanisms are not yet fully clear. Herein, we focus on the current understanding of the role and mechanism of ER stress and NLRP3 inflammasome in renal diseases, hoping to provide theoretical references for future related researches.
Collapse
Affiliation(s)
- Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xiaodi Fu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qi Zhang
- School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
12
|
Chen J, Hao Z, Li H, Wang J, Chen T, Wang Y, Shi G, Wang J, Wang Z, Zhang Z, Li J. Osteoporotic osseointegration: therapeutic hallmarks and engineering strategies. Theranostics 2024; 14:3859-3899. [PMID: 38994021 PMCID: PMC11234277 DOI: 10.7150/thno.96516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Osteoporosis is a systemic skeletal disease caused by an imbalance between bone resorption and formation. Current treatments primarily involve systemic medication and hormone therapy. However, these systemic treatments lack directionality and are often ineffective for locally severe osteoporosis, with the potential for complex adverse reactions. Consequently, treatment strategies using bioactive materials or external interventions have emerged as the most promising approaches. This review proposes twelve microenvironmental treatment targets for osteoporosis-related pathological changes, including local accumulation of inflammatory factors and reactive oxygen species (ROS), imbalance of mitochondrial dynamics, insulin resistance, disruption of bone cell autophagy, imbalance of bone cell apoptosis, changes in neural secretions, aging of bone cells, increased local bone tissue vascular destruction, and decreased regeneration. Additionally, this review examines the current research status of effective or potential biophysical and biochemical stimuli based on these microenvironmental treatment targets and summarizes the advantages and optimal parameters of different bioengineering stimuli to support preclinical and clinical research on osteoporosis treatment and bone regeneration. Finally, the review addresses ongoing challenges and future research prospects.
Collapse
Affiliation(s)
- Jiayao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Jianping Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zepu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zheyuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| |
Collapse
|
13
|
Chen X, Li C, Zhao J, Liu Y, Zhao Z, Wang Z, Li Y, Wang Y, Guo L, Li L, Chen C, Bai B, Wang S. mPPTMP195 nanoparticles enhance fracture recovery through HDAC4 nuclear translocation inhibition. J Nanobiotechnology 2024; 22:261. [PMID: 38760744 PMCID: PMC11100250 DOI: 10.1186/s12951-024-02436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/22/2024] [Indexed: 05/19/2024] Open
Abstract
Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.
Collapse
Affiliation(s)
- Xinping Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Chengwei Li
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Jiyu Zhao
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Yunxiang Liu
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Zhizhong Zhao
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Zhenyu Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Yue Li
- Department of Biochemistry, Shanxi Medical University, Basic Medical College, Taiyuan, 030001, PR China
| | - Yunfei Wang
- Department of Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, Taiyuan, 030032, PR China
| | - Lixia Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Lu Li
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Chongwei Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China.
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China.
| | - Shaowei Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China.
| |
Collapse
|
14
|
de Souza Basso B, Bastos MS, Antunes GL, Matzenbacher LS, Rodrigues KF, Garcia MCR, de Sousa AC, Levorse VG, Luft C, Tonial GV, Pavanato GM, Astarita LV, da Silva Melo DA, Donadio MVF, Santarém ER, de Oliveira JR. Baccharis anomala DC. extract reduces inflammation and attenuates hepatic fibrosis in vivo by decreasing NF-kB and extracellular matrix compounds. Toxicon 2024; 237:107560. [PMID: 38092194 DOI: 10.1016/j.toxicon.2023.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Baccharis anomala DC. (BA) is a plant species found in the tropical regions of South America and is widely used for its hepatoprotective effects, as well as for the treatment of gastrointestinal diseases. Studies have recently reported its antioxidant and anti-inflammatory potential. BA extract can reverse the activated phenotype of hepatic stellate cells (HSC), which plays a central role in extracellular matrix (ECM) deposition in the development of liver fibrosis. Thus, this study aimed to evaluate the effects of the treatment with BA extract on liver fibrosis in a CCl4-induced liver fibrosis model in BALB/c mice. Methanolic extract was obtained from BA leaves, a gas chromatography/mass spectrometry (GC/MS) to detect the compounds present was performed, and then administered by intraperitoneal injection in Balb/C mice at a concentration of 50 and 100 mg/kg together with the administration of CCl4 for inducing liver fibrosis. After 10 weeks, blood analysis, histopathology, oxidative stress, as well as protein and gene expression in the hepatic tissue were performed. Treatment with BA extract was able to reduce profibrotic markers by reducing the expression of α-SMA and Col-1 proteins, as well as reducing the formation of free radicals and lipid peroxidation. (BA extract showed anti-inflammatory effects in the liver by suppressing NF-kB activation and reducing gene expression of signaling targets (IL-6 and iNOS). The data obtained showed that BA extract has antifibrotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Bruno de Souza Basso
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Matheus Scherer Bastos
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Géssica Luana Antunes
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Strassburger Matzenbacher
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Kétlin Fernanda Rodrigues
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Claudia Rosa Garcia
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Arieli Cruz de Sousa
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, 3, Brazil
| | - Vitor Giancarlo Levorse
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina Luft
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Giovana Vivan Tonial
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Giovanna Mezzomo Pavanato
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leandro Vieira Astarita
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Denizar Alberto da Silva Melo
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Eliane Romanato Santarém
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Che J, Yang X, Jin Z, Xu C. Nrf2: A promising therapeutic target in bone-related diseases. Biomed Pharmacother 2023; 168:115748. [PMID: 37865995 DOI: 10.1016/j.biopha.2023.115748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) plays an important role in maintaining cellular homeostasis, as it suppresses cell damage caused by external stimuli by regulating the transcription of intracellular defense-related genes. Accumulating evidence has highlighted the crucial role of reduction-oxidation (REDOX) imbalance in the development of bone-related diseases. Nrf2, a transcription factor linked to nuclear factor-erythrocyte 2, plays a pivotal role in the regulation of oxidative stress and induction of antioxidant defenses. Therefore, further investigation of the mechanism and function of Nrf2 in bone-related diseases is essential. Considerable evidence suggests that increased nuclear transcription of Nrf2 in response to external stimuli promotes the expression of intracellular antioxidant-related genes, which in turn leads to the inhibition of bone remodeling imbalance, improved fracture recovery, reduced occurrence of osteoarthritis, and greater tumor resistance. Certain natural extracts can selectively target Nrf2, potentially offering therapeutic benefits for osteogenic arthropathy. In this article, the biological characteristics of Nrf2 are reviewed, the intricate interplay between Nrf2-regulated REDOX imbalance and bone-related diseases is explored, and the potential preventive and protective effects of natural products targeting Nrf2 in these diseases are elucidated. A comprehensive understanding of the role of Nrf2 in the development of bone-related diseases provides valuable insights into clinical interventions and can facilitate the discovery of novel Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoli Yang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Ewais O, Abdel-Tawab H, El-Fayoumi H, Aboelhadid SM, Al-Quraishy S, Falkowski P, Abdel-Baki AAS. Administration of Ethanolic Extract of Spinacia oleracea Rich in Omega-3 Improves Oxidative Stress and Goblet Cells in Broiler Chickens Infected with Eimeria tenella. Molecules 2023; 28:6621. [PMID: 37764396 PMCID: PMC10534835 DOI: 10.3390/molecules28186621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
This study investigated the anticoccidial activity of spinach (Spinacia oleracea) whole-plant extract against Eimeria tenella, both in vitro and in vivo. For this purpose, one hundred 8-day-old broiler chicks of both sexes were divided into four groups (n = 25 in each group). Chicks in the first group served as the negative control (non-treated-non-infected). Chicks in the second group were challenged at 18 days old with 5 × 104E. tenella sporulated oocysts. The third group was challenged with 5 × 104 sporulated E. tenella oocysts at 18 days old after receiving spinach extract at a dose of 50 mg/kg at 8 days old. The fourth group received 0.2 mg/kg diclazuril (Coxiril® 0.2%) in their diet two days before being orally infected with 5 × 104 sporulated E. tenella oocysts and this continued till day 10 post-infection (PI). The growth performance, clinical symptoms, oocyst shedding, histological findings, and biochemical parameters were used to evaluate the efficacy on day 8 PI when the infection was at its peak. A gas chromatography examination revealed that omega-3 fatty acids were the main constituents of the spinach extract, followed by oleic acid, palmitic acid, and phytol, with amounts of 23.37%, 17.53%, 11.26%, and 7.97%, respectively. The in vitro investigation revealed that the spinach extract at concentrations of 10% and 5% inhibited the oocyst sporulation by 52.1% and 45.1%, respectively. The 5% concentration was selected for the in vivo trial based on the results of the in vitro study. The infected-untreated group showed high levels of OPG; lower body weight; a greater number of parasite stages; few goblet cells; decreased SOD, CAT, and GPX levels; and increased MDA and NO levels. The spinach-treated group, on the other hand, showed a significant decrease in oocyst output per gram of feces (OPG), increased body weight, decreased parasitic stages, and a nearly normal number of goblet cells. Additionally, it reduced malondialdehyde (MDA) and nitric oxide (NO), while increasing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX). In conclusion, spinach produced significant antioxidant effects, increased body weight, reduced the number of oocysts and parasite stages in the caecum, and restored the number of goblet cells relative to those of an uninfected control. Furthermore, spinach extract inhibits the sporulation percentage of E. tenella oocysts. The ethanolic extract of S. oleracea (whole plant) contained high concentrations of fatty acids, palmitic acid, Phytol, betulin, and ursolic aldehyde, all of which are known to regulate the antioxidant pathway and modulate inflammatory processes and may be the main reason for its anticoccidial activity.
Collapse
Affiliation(s)
- Osama Ewais
- Department of Parasitology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt (H.A.-T.); (A.-A.S.A.-B.)
| | - Heba Abdel-Tawab
- Department of Parasitology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt (H.A.-T.); (A.-A.S.A.-B.)
| | - Huda El-Fayoumi
- Department of Parasitology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt (H.A.-T.); (A.-A.S.A.-B.)
| | - Shawky M Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh12211, Saudi Arabia;
| | - Piotr Falkowski
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wrocław, Poland;
| | - Abdel-Azeem S. Abdel-Baki
- Department of Parasitology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt (H.A.-T.); (A.-A.S.A.-B.)
| |
Collapse
|
17
|
de Alencar MVOB, Islam MT, da Mata AMOF, Dos Reis AC, de Lima RMT, de Oliveira Ferreira JR, de Castro E Sousa JM, Ferreira PMP, de Carvalho Melo-Cavalcante AA, Rauf A, Hemeg HA, Alsharif KF, Khan H. Anticancer effects of phytol against Sarcoma (S-180) and Human Leukemic (HL-60) cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80996-81007. [PMID: 37308630 DOI: 10.1007/s11356-023-28036-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Phytol (Pyt), a diterpenoid, possesses many important bioactivities. This study evaluates the anticancer effects of Pyt on sarcoma 180 (S-180) and human leukemia (HL-60) cell lines. For this purpose, cells were treated with Pyt (4.72, 7.08, or 14.16 μM) and a cell viability assay was performed. Additionally, the alkaline comet assay and micronucleus test with cytokinesis were also performed using doxorubicin (6 μM) and hydrogen peroxide (10 mM) as positive controls and stressors, respectively. Results revealed that Pyt significantly reduced the viability and rate of division in S-180 and HL-60 cells with IC50 values of 18.98 ± 3.79 and 1.17 ± 0.34 μM, respectively. Pyt at 14.16 μM exerted aneugenic and/or clastogenic effects in S-180 and HL-60 cells, where the number of micronuclei and other nuclear abnormalities (e.g., nucleoplasmic bridges and nuclear buds) were frequently observed. Moreover, Pyt at all concentrations induced apoptosis and showed necrosis at 14.16 μM, suggesting its anticancer effects on the tested cancer cell lines. Taken together, Pyt showed promising anticancer effects, possibly through inducing apoptosis and necrosis mechanisms, and it exerted aneugenic and/or clastogenic effects on the S-180 and HL-60 cell lines.
Collapse
Affiliation(s)
- Marcus Vinícius Oliveira Barros de Alencar
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Biomedical Sciences Research and Innovation Laboratory, Postgraduate Program in Biotechnology, INTA University Center, Sobral, 62.011-230, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Muhammad Torequl Islam
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Ana Maria Oliveira Ferreira da Mata
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Antonielly Campinho Dos Reis
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Rosália Maria Torres de Lima
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | | | - João Marcelo de Castro E Sousa
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64.049-550, Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi, Khyber Pakhtunkhwa, 23430, Pakistan
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, 41411, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, Taif, 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
18
|
Dai W, Pang X, Peng W, Zhan X, Chen C, Zhao W, Zeng C, Mei Q, Chen Q, Kuang W, Gou Z, Hu X. Liver Protection of a Low-Polarity Fraction from Ficus pandurata Hance, Prepared by Supercritical CO 2 Fluid Extraction, on CCl 4-Induced Acute Liver Injury in Mice via Inhibiting Apoptosis and Ferroptosis Mediated by Strengthened Antioxidation. Molecules 2023; 28:molecules28052078. [PMID: 36903326 PMCID: PMC10004706 DOI: 10.3390/molecules28052078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Ficus pandurata Hance (FPH) is a Chinese herbal medicine widely used for health care. This study was designed to investigate the alleviation efficacy of the low-polarity ingredients of FPH (FPHLP), prepared by supercritical CO2 fluid extraction technology, against CCl4-induced acute liver injury (ALI) in mice and uncover its underlying mechanism. The results showed that FPHLP had a good antioxidative effect determined by the DPPH free radical scavenging activity test and T-AOC assay. The in vivo study showed that FPHLP dose-dependently protected against liver damage via detection of ALT, AST, and LDH levels and changes in liver histopathology. The antioxidative stress properties of FPHLP suppressed ALI by increasing levels of GSH, Nrf2, HO-1, and Trx-1 and reducing levels of ROS and MDA and the expression of Keap1. FPHLP significantly reduced the level of Fe2+ and expression of TfR1, xCT/SLC7A11, and Bcl2, while increasing the expression of GPX4, FTH1, cleaved PARP, Bax, and cleaved caspase 3. The results demonstrated that FPHLP protected mouse liver from injury induced by CCl4 via suppression of apoptosis and ferroptosis. This study suggests that FPHLP can be used for liver damage protection in humans, which strongly supports its traditional use as a herbal medicine.
Collapse
Affiliation(s)
- Weibo Dai
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China
| | - Xiaoyan Pang
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China
| | - Weiwen Peng
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China
| | - Xinyi Zhan
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China
| | - Chang Chen
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China
| | - Wenchang Zhao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Congyan Zeng
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China
| | - Quanxi Mei
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Weihong Kuang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (W.K.); (X.H.)
| | - Zhanping Gou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523121, China
- Correspondence: (W.K.); (X.H.)
| |
Collapse
|