1
|
Ducoli L, Zarnegar BJ, Porter DF, Meyers RM, Miao W, Riley NM, Srinivasan S, Jackrazi LV, Yang YY, Li Z, Wang Y, Bertozzi CR, Flynn RA, Khavari PA. irCLIP-RNP and Re-CLIP reveal patterns of dynamic protein associations on RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615518. [PMID: 39386644 PMCID: PMC11463378 DOI: 10.1101/2024.09.27.615518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
RNA binding proteins ( RBPs ) control varied processes, including RNA splicing, stability, transport, and translation 1-3 . Dysfunctional RNA-RBP interactions contribute to the pathogenesis of human disease 1,4,5 , however, characterizing the nature and dynamics of multiprotein assemblies on RNA has been challenging. To address this, non-isotopic ligation-based ultraviolet crosslinking immunoprecipitation 6 was combined with mass spectrometry ( irCLIP-RNP ) to identify RNA-dependent associated proteins ( RDAPs ) co-bound to RNA with any RBP of interest. irCLIP-RNP defined landscapes of multimeric protein assemblies on RNA, uncovering previously unknown patterns of RBP-RNA associations, including cell-type-selective combinatorial relationships between RDAPs and primary RBPs. irCLIP-RNP also defined dynamic RDAP remodeling in response to epidermal growth factor ( EGF ), uncovering EGF-induced recruitment of UPF1 adjacent to HNRNPC to effect splicing surveillance of cell proliferation mRNAs. To identify the RNAs simultaneously co-bound by multiple studied RBPs, a sequential immunoprecipitation irCLIP ( Re-CLIP ) method was also developed. Re-CLIP confirmed binding relationships seen in irCLIP-RNP and detected simultaneous HNRNPC and UPF1 co-binding on RND3 and DDX3X mRNAs. irCLIP-RNP and Re-CLIP provide a framework to identify and characterize dynamic RNA-protein assemblies in living cells.
Collapse
|
2
|
Shan M, Liu D, Sun L, Yang M, He M, Zhang Y, Xiang L, Lu L, He H, Niu D, Chen L, Li S, Chen A, He F, Wang Y, Lian J. KIAA1429 facilitates metastasis via m6A-YTHDC1-dependent RND3 down-regulation in hepatocellular carcinoma cells. Cancer Lett 2024; 584:216598. [PMID: 38224863 DOI: 10.1016/j.canlet.2023.216598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
N6-methyladenosine (m6A), a dynamically reversible modification in eukaryotic RNAs, modulates gene expression and pathological processes in various tumors. KIAA1429, the largest component of the m6A methyltransferase complex, plays an important role in m6A modification. However, the underlying mechanism of KIAA1429 in hepatocellular carcinoma (HCC) remains largely unknown. Immunohistochemical assay was performed to examine the expression of KIAA1429 in HCC tissues. Transwell, wound healing and animal experiments were used to investigate the influence of KIAA1429 on cell migration and invasion. The mRNA high-throughput sequencing (RNA-seq) and methylated RNA immunoprecipitation sequencing (MeRIP-seq) were performed to screen the downstream target of KIAA1429. RNA stability assays, RNA immunoprecipitation assay (RIP), MeRIP-qPCR and luciferase assay were used to evaluate the relationship between KIAA1429 and the m6A-modified genes. Results showed that the expression level of KIAA1429 was significantly higher in HCC tissues than in adjacent tissues, and the upregulation of KIAA1429 could promote HCC metastasis in vitro and in vivo. Mechanistically, we confirmed that KIAA1429 negatively regulated the tumor suppressor, Rho family GTPase 3 (RND3), by decreasing its mRNA stability in coordination with the m6A reader YTHDC1. Moreover, we demonstrated that KIAA1429 could regulate the m6A modification of RND3 mRNA via its RNA binding domain. Our data indicated that KIAA1429 exerted its oncogenic role by inhibiting RND3 expression in an m6A-dependent manner, suggesting that KIAA1429 might be a potential prognostic biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Meihua Shan
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Dong Liu
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Liangbo Sun
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Meng He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yang Zhang
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Li Xiang
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Lu Lu
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Haiyan He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Dun Niu
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Lingxi Chen
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Shuhui Li
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - An Chen
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China.
| | - Yue Wang
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Jiqin Lian
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|