1
|
Zhang Y, Zhang L, Guan Y, Chen K, Zhang W, Hu Z, Chen Y. Establishment and validation of a risk prediction model for sarcopenia in gastrointestinal cancer patients: A systematic review and meta-analysis-based approach. Clin Nutr 2024; 43:91-98. [PMID: 39357087 DOI: 10.1016/j.clnu.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVE The study aimed to develop a model to predict the risk of sarcopenia in gastrointestinal cancer patients. The goal was to identify these patients early and classify them into different risk categories based on their likelihood of developing sarcopenia. METHODS This study evaluated risk factors for sarcopenia in patients with gastrointestinal cancers through a systematic review and meta-analysis. The natural logarithm of the combined risk estimate for each factor was used as a coefficient to assign scores within the model for risk prediction. Data from 270 patients with gastrointestinal cancers, collected between October 2023 and April 2024, was used to assess the predictive performance of the scoring model. RESULTS The analysis included 17 studies that included 9405 patients with gastrointestinal cancers, out of which 4361 had sarcopenia. The model identified several significant predictors of sarcopenia, including age (OR = 2.45), sex (OR = 1.15), combined diabetes (OR = 2.02), neutrophil-to-lymphocyte ratio (NLR) category (OR = 1.61), TNM stage (OR = 1.61), and weight change (OR = 1.60). Model validation was performed using an external cohort through logistic regression, resulting in an area under the curve (AUC) of 0.773. This model attained a sensitivity of 0.714 and a specificity of 0.688 and ultimately selected 16.5 as the ideal critical risk score. Furthermore, an AUC of 0.770 was obtained from Bayesian model validation; the optimal critical risk score was determined to be 19.0, which corresponds to a sensitivity of 0.658 and a specificity of 0.847. CONCLUSIONS The model of risk prediction developed through systematic review and meta-analysis demonstrates substantial for sarcopenia in patients with gastrointestinal cancers. Its clinical usability facilitates the screening of patients at high risk for sarcopenia.
Collapse
Affiliation(s)
- Ying Zhang
- School of Nursing, Wenzhou Medical University, Wenzhou 315035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
| | - Lufang Zhang
- The First Clinical College, Wenzhou Medical University, Wenzhou 325000, China
| | - Yaqi Guan
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Keya Chen
- The First Clinical College, Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Zhang
- The First Clinical College, Wenzhou Medical University, Wenzhou 325000, China
| | - Zheqing Hu
- Department of Nursing, Cixi People's Hospital, Wenzhou Medical University, Cixi 315300, China
| | - Yu Chen
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
2
|
Lee H, Kim J. Evaluating the SarQoL ® Questionnaire as a Screening Tool for Sarcopenia among Korean Older Adults. Healthcare (Basel) 2024; 12:2000. [PMID: 39408180 PMCID: PMC11477437 DOI: 10.3390/healthcare12192000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Sarcopenia, characterized by the progressive loss of muscle mass and strength, poses significant risks to physical health, leading to a reduced quality of life (QoL), increased disability, and higher mortality rates among older adults. Early detection and intervention are crucial to prevent the cascading effects of sarcopenia, including falls, fractures, and hospitalization. This study determined an optimal cut-off point of the SarQoL® score that can serve as an effective screening tool among community-dwelling Korean older adults. METHODS The study involved 451 South Korean older adults, assessing the correlation between SarQoL® scores and sarcopenia as defined by the Asian Working Group for Sarcopenia (AWGS) criteria. Participants completed the Korean version of the SarQoL questionnaire. RESULTS Findings revealed that individuals diagnosed with sarcopenia had significantly lower SarQoL® scores compared to non-sarcopenic participants, with a cut-off score of ≤58.5 providing good diagnostic accuracy (AUC = 0.768, sensitivity = 69.3%, specificity = 75.2%). CONCLUSIONS These results underscore the questionnaire's reliability and validity in screening for sarcopenia-related QoL impairment and its potential utility as a clinical tool. Implementing the SarQoL® in routine assessments could improve clinical outcomes by enabling earlier and more precise identification of sarcopenia.
Collapse
Affiliation(s)
- Haneul Lee
- Department of Physical Therapy, Gachon University, Incheon 21936, Republic of Korea;
| | - Jiyoun Kim
- Department of Exercise Rehabilitation, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
3
|
Silva WJ, Cruz A, Duque G. MicroRNAs and their Modulatory Effect on the Hallmarks of Osteosarcopenia. Curr Osteoporos Rep 2024; 22:458-470. [PMID: 39162945 DOI: 10.1007/s11914-024-00880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE OF THE REVIEW Osteosarcopenia is a geriatric syndrome associated with disability and mortality. This review summarizes the key microRNAs that regulate the hallmarks of sarcopenia and osteoporosis. Our objective was to identify components similarly regulated in the pathology and have therapeutic potential by influencing crucial cellular processes in both bone and skeletal muscle. RECENT FINDINGS The simultaneous decline in bone and muscle in osteosarcopenia involves a complex crosstalk between these tissues. Recent studies have uncovered several key mechanisms underlying this condition, including the disruption of cellular signaling pathways that regulate bone remodeling and muscle function and regeneration. Accordingly, emerging evidence reveals that dysregulation of microRNAs plays a significant role in the development of each of these hallmarks of osteosarcopenia. Although the recent recognition of osteosarcopenia as a single diagnosis of bone and muscle deterioration has provided new insights into the mechanisms of these underlying age-related diseases, several knowledge gaps have emerged, and a deeper understanding of the role of common microRNAs is still required. In this study, we summarize current evidence on the roles of microRNAs in the pathogenesis of osteosarcopenia and identify potential microRNA targets for treating this condition. Among these, microRNAs-29b and -128 are upregulated in the disease and exert adverse effects by inhibiting IGF-1 and SIRT1, making them potential targets for developing inhibitors of their activity. MicroRNA-21 is closely associated with the occurrence of muscle and bone loss. Conversely, microRNA-199b is downregulated in the disease, and its reduced activity may be related to increased myostatin and GSK3β activity, presenting it as a target for developing analogues that restore its function. Finally, microRNA-672 stands out for its ability to protect skeletal muscle and bone when expressed in the disease, highlighting its potential as a possible therapy for osteosarcopenia.
Collapse
Affiliation(s)
- William J Silva
- Department of Research and Development, Mirscience Therapeutics, São Paulo, Brazil
| | - André Cruz
- Department of Research and Development, Mirscience Therapeutics, São Paulo, Brazil
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group. Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
McKendry J, Coletta G, Nunes EA, Lim C, Phillips SM. Mitigating disuse-induced skeletal muscle atrophy in ageing: Resistance exercise as a critical countermeasure. Exp Physiol 2024; 109:1650-1662. [PMID: 39106083 PMCID: PMC11442788 DOI: 10.1113/ep091937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
The gradual deterioration of physiological systems with ageing makes it difficult to maintain skeletal muscle mass (sarcopenia), at least partly due to the presence of 'anabolic resistance', resulting in muscle loss. Sarcopenia can be transiently but markedly accelerated through periods of muscle disuse-induced (i.e., unloading) atrophy due to reduced physical activity, sickness, immobilisation or hospitalisation. Periods of disuse are detrimental to older adults' overall quality of life and substantially increase their risk of falls, physical and social dependence, and early mortality. Disuse events induce skeletal muscle atrophy through various mechanisms, including anabolic resistance, inflammation, disturbed proteostasis and mitochondrial dysfunction, all of which tip the scales in favour of a negative net protein balance and subsequent muscle loss. Concerningly, recovery from disuse atrophy is more difficult for older adults than their younger counterparts. Resistance training (RT) is a potent anabolic stimulus that can robustly stimulate muscle protein synthesis and mitigate muscle losses in older adults when implemented before, during and following unloading. RT may take the form of traditional weightlifting-focused RT, bodyweight training and lower- and higher-load RT. When combined with sufficient dietary protein, RT can accelerate older adults' recovery from a disuse event, mitigate frailty and improve mobility; however, few older adults regularly participate in RT. A feasible and practical approach to improving the accessibility and acceptability of RT is through the use of resistance bands. Moving forward, RT must be prescribed to older adults to mitigate the negative consequences of disuse atrophy.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Giulia Coletta
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Everson A. Nunes
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Changhyun Lim
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Stuart M. Phillips
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
5
|
Luo YX, Zhou XH, Heng T, Yang LL, Zhu YH, Hu P, Yao XQ. Bidirectional transitions of sarcopenia states in older adults: The longitudinal evidence from CHARLS. J Cachexia Sarcopenia Muscle 2024; 15:1915-1929. [PMID: 39001569 PMCID: PMC11446714 DOI: 10.1002/jcsm.13541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Sarcopenia, the age-related loss of muscle mass and function, brings multiple adverse outcomes including disability and death. Several sarcopenia consensuses have newly introduced the premorbid concept of possible sarcopenia and recommended early lifestyle interventions. Bidirectional transitions of premorbid states have been revealed in several chronic diseases yet not clarified in sarcopenia. This study aims to investigate the underlying transition patterns of sarcopenia states. METHODS The study utilized three waves of data from a nationally representative survey, the China Health and Retirement Longitudinal Study (CHARLS), and included community-dwelling individuals aged 60 years and older with at least two sarcopenia states assessments based on the Asian Working Group for Sarcopenia criteria 2019 (AWGS2019) between 2011 and 2015. The estimated transition intensity and probability between non-sarcopenia, possible sarcopenia, sarcopenia, and death were investigated using multi-stage Markov (MSM) models. RESULTS The study comprised 4395 individuals (49.2% female, median age 67 years) with a total of 10 778 records of sarcopenia state assessment, and the mean follow-up period was 3.29 years. A total of 24.5% of individuals with a current state of possible sarcopenia returned to non-sarcopenia, 60.3% remained possible sarcopenia, 6.7% progressed to sarcopenia, and 8.5% died by the next follow-up. The transition intensity of recovery to non-sarcopenia (0.252, 95% CI 0.231-0.275) was 2.8 times greater than the deterioration to sarcopenia (0.090, 95% CI 0.080-0.100) for individuals with possible sarcopenia. For individuals with possible sarcopenia, the estimated probabilities of recovering to non-sarcopenia, progressing to sarcopenia, and transitioning to death within a 1-year observation were 0.181, 0.066, and 0.035, respectively. For individuals with sarcopenia, the estimated probabilities of recovering to non-sarcopenia, recovering to possible sarcopenia, and transitioning to death within 1-year observation were 0.016, 0.125, and 0.075, respectively. In covariables analysis, age, sex, body mass index, physical function impairment, smoking, hypertension, and diabetes are important factors influencing bidirectional transitions. CONCLUSIONS The findings highlight the bidirectional transitions of sarcopenia states among older adults and reveal a notable proportion of possible sarcopenia show potential for recovery in the natural course. Screening and intensifying interventions based on risk factors may facilitate a recovery transition.
Collapse
Affiliation(s)
- Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Han Zhou
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Heng
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Ling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying-Hai Zhu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Zhang Q, Halle JL, Counts BR, Pi M, Carson JA. mTORC1 and BMP-Smad1/5 regulation of serum-stimulated myotube hypertrophy: a role for autophagy. Am J Physiol Cell Physiol 2024; 327:C124-C139. [PMID: 38766767 PMCID: PMC11371323 DOI: 10.1152/ajpcell.00237.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Protein synthesis regulation is critical for skeletal muscle hypertrophy, yet other established cellular processes are necessary for growth-related cellular remodeling. Autophagy has a well-acknowledged role in muscle quality control, but evidence for its role in myofiber hypertrophy remains equivocal. Both mammalian target of rapamycin complex I (mTORC1) and bone morphogenetic protein (BMP)-Smad1/5 (Sma and Mad proteins from Caenorhabditis elegans and Drosophila, respectively) signaling are reported regulators of myofiber hypertrophy; however, gaps remain in our understanding of how this regulation is integrated with growth processes and autophagy regulation. Therefore, we investigated the mTORC1 and Smad1/5 regulation of protein synthesis and autophagy flux during serum-stimulated myotube growth. Chronic serum stimulation experiments were performed on day 5 differentiated C2C12 myotubes incubated in differentiation medium [2% horse serum (HS)] or growth medium [5% fetal bovine serum (FBS)] for 48 h. Rapamycin or LDN193189 was dosed for 48 h to inhibit mTORC1 and BMP-Smad1/5 signaling, respectively. Acute serum stimulation was examined in day 7 differentiated myotubes. Protein synthesis was measured by puromycin incorporation. Bafilomycin A1 and immunoblotting for LC3B were used to assess autophagy flux. Chronic serum stimulation increased myotube diameter 22%, total protein 21%, total RNA 100%, and Smad1/5 phosphorylation 404% and suppressed autophagy flux. Rapamycin, but not LDN193189, blocked serum-induced myotube hypertrophy and the increase in total RNA. Acute serum stimulation increased protein synthesis 111%, Smad1/5 phosphorylation 559%, and rpS6 phosphorylation 117% and suppressed autophagy flux. Rapamycin increased autophagy flux during acute serum stimulation. These results provide evidence for mTORC1, but not BMP-Smad1/5, signaling being required for serum-induced myotube hypertrophy and autophagy flux by measuring LC3BII/I expression. Further investigation is warranted to examine the role of autophagy flux in myotube hypertrophy.NEW & NOTEWORTHY The present study demonstrates that myotube hypertrophy caused by chronic serum stimulation requires mammalian target of rapamycin complex 1 (mTORC1) signaling but not bone morphogenetic protein (BMP)-Smad1/5 signaling. The suppression of autophagy flux was associated with serum-induced myotube hypertrophy and mTORC1 regulation of autophagy flux by measuring LC3BII/I expression. Rapamycin is widely investigated for beneficial effects in aging skeletal muscle and sarcopenia; our results provide evidence that rapamycin can regulate autophagy-related signaling during myotube growth, which could benefit skeletal muscle functional and metabolic health.
Collapse
Affiliation(s)
- Quan Zhang
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health ProfessionsUniversity of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Jessica L Halle
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health ProfessionsUniversity of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Brittany R Counts
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health ProfessionsUniversity of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Min Pi
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - James A Carson
- Huffines Institute for Sports Medicine & Human Performance, Department of Kinesiology & Sports Management , Texas A&M University, College Station, Texas, United States
| |
Collapse
|
7
|
Zhao H, Iyama R, Kurogi E, Hayashi T, Egawa T. Direct and acute effects of advanced glycation end products on proteostasis in isolated mouse skeletal muscle. Physiol Rep 2024; 12:e16121. [PMID: 38898369 PMCID: PMC11186708 DOI: 10.14814/phy2.16121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Advanced glycation end products (AGEs) have been implicated in several skeletal muscle dysfunctions. However, whether the adverse effects of AGEs on skeletal muscle are because of their direct action on the skeletal muscle tissue is unclear. Therefore, this study aimed to investigate the direct and acute effects of AGEs on skeletal muscle using an isolated mouse skeletal muscle to eliminate several confounders derived from other organs. The results showed that the incubation of isolated mouse skeletal muscle with AGEs (1 mg/mL) for 2-6 h suppressed protein synthesis and the mechanistic target of rapamycin signaling pathway. Furthermore, AGEs showed potential inhibitory effects on protein degradation pathways, including autophagy and the ubiquitin-proteasome system. Additionally, AGEs stimulated endoplasmic reticulum (ER) stress by modulating the activating transcription factor 6, PKR-like ER kinase, C/EBP homologous protein, and altered inflammatory cytokine expression. AGEs also stimulated receptor for AGEs (RAGE)-associated signaling molecules, including mitogen-activated protein kinases. These findings suggest that AGEs have direct and acute effect on skeletal muscle and disturb proteostasis by modulating intracellular pathways such as RAGE signaling, protein synthesis, proteolysis, ER stress, and inflammatory cytokines.
Collapse
Affiliation(s)
- Haiyu Zhao
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
- Laboratory of Molecular Exercise Adaptation Sciences, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Ryota Iyama
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
- Laboratory of Molecular Exercise Adaptation Sciences, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Eriko Kurogi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Tatsuro Egawa
- Laboratory of Molecular Exercise Adaptation Sciences, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| |
Collapse
|
8
|
Prabakaran AD, McFarland K, Miz K, Durumutla HB, Piczer K, El Abdellaoui Soussi F, Latimer H, Werbrich C, Chung HJ, Blair NS, Millay DP, Morris AJ, Prideaux B, Finck BN, Quattrocelli M. Intermittent glucocorticoid treatment improves muscle metabolism via the PGC1α/Lipin1 axis in an aging-related sarcopenia model. J Clin Invest 2024; 134:e177427. [PMID: 38702076 PMCID: PMC11142738 DOI: 10.1172/jci177427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/09/2024] [Indexed: 05/06/2024] Open
Abstract
Sarcopenia burdens the older population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are lacking. The glucocorticoid prednisone remodels muscle metabolism on the basis of frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone administration rescued muscle quality in aged 24-month-old mice to a level comparable to that seen in young 4-month-old mice. We discovered an age- and sex-independent glucocorticoid receptor transactivation program in muscle encompassing peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1α) and its cofactor Lipin1. Treatment coordinately improved mitochondrial abundance through isoform 1 and muscle mass through isoform 4 of the myocyte-specific PGC1α, which was required for the treatment-driven increase in carbon shuttling from glucose oxidation to amino acid biogenesis. We also probed myocyte-specific Lipin1 as a nonredundant factor coaxing PGC1α upregulation to the stimulation of both oxidative and anabolic effects. Our study unveils an aging-resistant druggable program in myocytes for the coordinated rescue of energy and mass in sarcopenia.
Collapse
Affiliation(s)
- Ashok D. Prabakaran
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kevin McFarland
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Karen Miz
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hima Bindu Durumutla
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kevin Piczer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Fadoua El Abdellaoui Soussi
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hannah Latimer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Cole Werbrich
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hyun-Jy Chung
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - N. Scott Blair
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Douglas P. Millay
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Andrew J. Morris
- Department Pharmacology and Toxicology, University of Arkansas for Medical Sciences (UAMS) College of Medicine and Central Arkansas VA Healthcare System, Little Rock, Arkansas, USA
| | - Brendan Prideaux
- Department Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Brian N. Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, Missouri, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
10
|
Franczak E, Maurer A, Drummond VC, Kugler BA, Wells E, Wenger M, Peelor FF, Crosswhite A, McCoin CS, Koch LG, Britton SL, Miller BF, Thyfault JP. Divergence in aerobic capacity and energy expenditure influence metabolic tissue mitochondrial protein synthesis rates in aged rats. GeroScience 2024; 46:2207-2222. [PMID: 37880490 PMCID: PMC10828174 DOI: 10.1007/s11357-023-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023] Open
Abstract
Age-associated declines in aerobic capacity promote the development of various metabolic diseases. In rats selectively bred for high/low intrinsic aerobic capacity, greater aerobic capacity reduces susceptibility to metabolic disease while increasing longevity. However, little remains known how intrinsic aerobic capacity protects against metabolic disease, particularly with aging. Here, we tested the effects of aging and intrinsic aerobic capacity on systemic energy expenditure, metabolic flexibility and mitochondrial protein synthesis rates using 24-month-old low-capacity (LCR) or high-capacity runner (HCR) rats. Rats were fed low-fat diet (LFD) or high-fat diet (HFD) for eight weeks, with energy expenditure (EE) and metabolic flexibility assessed utilizing indirect calorimetry during a 48 h fast/re-feeding metabolic challenge. Deuterium oxide (D2O) labeling was used to assess mitochondrial protein fraction synthesis rates (FSR) over a 7-day period. HCR rats possessed greater EE during the metabolic challenge. Interestingly, HFD induced changes in respiratory exchange ratio (RER) in male and female rats, while HCR female rat RER was largely unaffected by diet. In addition, analysis of protein FSR in skeletal muscle, brain, and liver mitochondria showed tissue-specific adaptations between HCR and LCR rats. While brain and liver protein FSR were altered by aerobic capacity and diet, these effects were less apparent in skeletal muscle. Overall, we provide evidence that greater aerobic capacity promotes elevated EE in an aged state, while also regulating metabolic flexibility in a sex-dependent manner. Modulation of mitochondrial protein FSR by aerobic capacity is tissue-specific with aging, likely due to differential energetic requirements by each tissue.
Collapse
Affiliation(s)
- Edziu Franczak
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
- Kansas City Veterans Affairs Medical Center, Kansas City, MO, 64128, USA
| | - Adrianna Maurer
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
| | - Vivien Csikos Drummond
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
| | - Benjamin A Kugler
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
- Kansas Center for Metabolism and Obesity Research, Kansas City, MO, 64128, USA
- KU Diabetes Institute and Department of Internal Medicine-Division of Endocrinology and Metabolism, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Hemenway Life Sciences Innovation Center, Mailstop 3043, Kansas City, KS, 66160, USA
| | - Emily Wells
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
| | - Madi Wenger
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
- Kansas Center for Metabolism and Obesity Research, Kansas City, MO, 64128, USA
- KU Diabetes Institute and Department of Internal Medicine-Division of Endocrinology and Metabolism, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Hemenway Life Sciences Innovation Center, Mailstop 3043, Kansas City, KS, 66160, USA
| | | | - Abby Crosswhite
- Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Colin S McCoin
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
- Kansas City Veterans Affairs Medical Center, Kansas City, MO, 64128, USA
- Kansas Center for Metabolism and Obesity Research, Kansas City, MO, 64128, USA
- KU Diabetes Institute and Department of Internal Medicine-Division of Endocrinology and Metabolism, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Hemenway Life Sciences Innovation Center, Mailstop 3043, Kansas City, KS, 66160, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43606, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin F Miller
- KU Diabetes Institute and Department of Internal Medicine-Division of Endocrinology and Metabolism, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Hemenway Life Sciences Innovation Center, Mailstop 3043, Kansas City, KS, 66160, USA
| | - John P Thyfault
- Department of Cell Biology and Physiology, Medical Center, The University of Kansas, Kansas City, KS, 66160, USA.
- Kansas City Veterans Affairs Medical Center, Kansas City, MO, 64128, USA.
- Kansas Center for Metabolism and Obesity Research, Kansas City, MO, 64128, USA.
- KU Diabetes Institute and Department of Internal Medicine-Division of Endocrinology and Metabolism, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Hemenway Life Sciences Innovation Center, Mailstop 3043, Kansas City, KS, 66160, USA.
| |
Collapse
|
11
|
Affourtit C, Carré JE. Mitochondrial involvement in sarcopenia. Acta Physiol (Oxf) 2024; 240:e14107. [PMID: 38304924 DOI: 10.1111/apha.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Sarcopenia lowers the quality-of-life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age- and disease-related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia.
Collapse
Affiliation(s)
| | - Jane E Carré
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
12
|
Li DCW, Rudloff S, Langer HT, Norman K, Herpich C. Age-Associated Differences in Recovery from Exercise-Induced Muscle Damage. Cells 2024; 13:255. [PMID: 38334647 PMCID: PMC10854791 DOI: 10.3390/cells13030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Understanding the intricate mechanisms governing the cellular response to resistance exercise is paramount for promoting healthy aging. This narrative review explored the age-related alterations in recovery from resistance exercise, focusing on the nuanced aspects of exercise-induced muscle damage in older adults. Due to the limited number of studies in older adults that attempt to delineate age differences in muscle discovery, we delve into the multifaceted cellular influences of chronic low-grade inflammation, modifications in the extracellular matrix, and the role of lipid mediators in shaping the recovery landscape in aging skeletal muscle. From our literature search, it is evident that aged muscle displays delayed, prolonged, and inefficient recovery. These changes can be attributed to anabolic resistance, the stiffening of the extracellular matrix, mitochondrial dysfunction, and unresolved inflammation as well as alterations in satellite cell function. Collectively, these age-related impairments may impact subsequent adaptations to resistance exercise. Insights gleaned from this exploration may inform targeted interventions aimed at enhancing the efficacy of resistance training programs tailored to the specific needs of older adults, ultimately fostering healthy aging and preserving functional independence.
Collapse
Affiliation(s)
- Donna Ching Wah Li
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Stefan Rudloff
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| | | | - Kristina Norman
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Catrin Herpich
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| |
Collapse
|
13
|
Rutledge CA. Molecular mechanisms underlying sarcopenia in heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:7. [PMID: 38455513 PMCID: PMC10919908 DOI: 10.20517/jca.2023.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The loss of skeletal muscle, also known as sarcopenia, is an aging-associated muscle disorder that is disproportionately present in heart failure (HF) patients. HF patients with sarcopenia have poor outcomes compared to the overall HF patient population. The prevalence of sarcopenia in HF is only expected to grow as the global population ages, and novel treatment strategies are needed to improve outcomes in this cohort. Multiple mechanistic pathways have emerged that may explain the increased prevalence of sarcopenia in the HF population, and a better understanding of these pathways may lead to the development of therapies to prevent muscle loss. This review article aims to explore the molecular mechanisms linking sarcopenia and HF, and to discuss treatment strategies aimed at addressing such molecular signals.
Collapse
Affiliation(s)
- Cody A. Rutledge
- Acute Medicine Section, Division of Medicine, Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Granic A, Suetterlin K, Shavlakadze T, Grounds M, Sayer A. Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clin Sci (Lond) 2023; 137:1721-1751. [PMID: 37986616 PMCID: PMC10665130 DOI: 10.1042/cs20230319] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Ageing is a complex biological process associated with increased morbidity and mortality. Nine classic, interdependent hallmarks of ageing have been proposed involving genetic and biochemical pathways that collectively influence ageing trajectories and susceptibility to pathology in humans. Ageing skeletal muscle undergoes profound morphological and physiological changes associated with loss of strength, mass, and function, a condition known as sarcopenia. The aetiology of sarcopenia is complex and whilst research in this area is growing rapidly, there is a relative paucity of human studies, particularly in older women. Here, we evaluate how the nine classic hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication contribute to skeletal muscle ageing and the pathophysiology of sarcopenia. We also highlight five novel hallmarks of particular significance to skeletal muscle ageing: inflammation, neural dysfunction, extracellular matrix dysfunction, reduced vascular perfusion, and ionic dyshomeostasis, and discuss how the classic and novel hallmarks are interconnected. Their clinical relevance and translational potential are also considered.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| | - Karen Suetterlin
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, U.K
| | - Tea Shavlakadze
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, NY, U.S.A
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Avan A. Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| |
Collapse
|
15
|
Prabakaran AD, McFarland K, Miz K, Durumutla HB, Piczer K, El Abdellaoui Soussi F, Latimer H, Werbrich C, Blair NS, Millay DP, Prideaux B, Finck BN, Quattrocelli M. Glucocorticoid intermittence coordinates rescue of energy and mass in aging-related sarcopenia through the myocyte-autonomous PGC1alpha-Lipin1 transactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562573. [PMID: 37905062 PMCID: PMC10614926 DOI: 10.1101/2023.10.16.562573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Sarcopenia burdens the elderly population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are missing. The glucocorticoid prednisone remodels muscle metabolism based on frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone rescued muscle quality in aged 24-month-old mice to levels comparable to young 4-month-old mice. We discovered an age- and sex-independent glucocorticoid receptor transactivation program in muscle encompassing PGC1alpha and its co-factor Lipin1. Treatment coordinately improved mitochondrial abundance through isoform 1 and muscle mass through isoform 4 of the myocyte-specific PGC1alpha, which was required for the treatment-driven increase in carbon shuttling from glucose oxidation to amino acid biogenesis. We also probed the myocyte-specific Lipin1 as non-redundant factor coaxing PGC1alpha upregulation to the stimulation of both oxidative and anabolic capacities. Our study unveils an aging-resistant druggable program in myocytes to coordinately rescue energy and mass in sarcopenia.
Collapse
Affiliation(s)
- Ashok Daniel Prabakaran
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kevin McFarland
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Karen Miz
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hima Bindu Durumutla
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kevin Piczer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fadoua El Abdellaoui Soussi
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hannah Latimer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cole Werbrich
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - N. Scott Blair
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Douglas P Millay
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Brian N Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St Louis, MO, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
16
|
Isiktas O, Guzel FB, Ozturk I, Topal K, Sahin M, Altunoren O, Gungor O. The frequency of sarcopenia has increased in patients with glomerulonephritis. Nephrology (Carlton) 2023. [PMID: 37148150 DOI: 10.1111/nep.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
AIM Sarcopenia is defined as the loss of muscle mass and muscle strength, and its frequency increases in kidney patients. However, sarcopenia frequency in patients with glomerulonephritis is unknown. The present study aimed to investigate the frequency of sarcopenia in patients with glomerulonephritis and compare the results with the healthy population for the first time in the literature. PATIENTS AND METHODS A total of 110 participants, including 70 patients previously diagnosed with glomerulonephritis and 40 healthy individuals, were included in the study. The diagnosis of sarcopenia was made based on the EWSGOP 2 Criteria. RESULTS The mean age of the glomerulonephritis patients group was 39.3 ± 1.5. In the anthropometric measurements of the patients, walking speed was low in 50 patients (71.4%), muscle strength was decreased in 44 patients (62.9%), and sarcopenia was detected in 10 patients (14.3%) according to the EWGSOP 2 Criteria. Considering the anthropometric measurements of the control group, sarcopenia was not detected in any of the subjects according to the EWGSOP 2 Criteria. CONCLUSION The result of the present study revealed that the rate of sarcopenia was significantly higher in glomerulonephritis patients compared to the healthy population and that sarcopenia can also be observed even in middle age in this population. We think it would be beneficial for clinicians treating glomerulonephritis to be more careful regarding sarcopenia and keep these parameters in mind during treatment.
Collapse
Affiliation(s)
- Okay Isiktas
- Department of Internal Medicine, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Fatma Betul Guzel
- Department of Nephrology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ilyas Ozturk
- Department of Nephrology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Kenan Topal
- Adana City Training and Research Hospital, Department of Family Medicine, Health Sciences University, Adana, Turkey
| | - Murat Sahin
- Department of Endocrinology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Orcun Altunoren
- Department of Nephrology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ozkan Gungor
- Department of Nephrology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
17
|
Lee YH, Kuk MU, So MK, Song ES, Lee H, Ahn SK, Kwon HW, Park JT, Park SC. Targeting Mitochondrial Oxidative Stress as a Strategy to Treat Aging and Age-Related Diseases. Antioxidants (Basel) 2023; 12:antiox12040934. [PMID: 37107309 PMCID: PMC10136354 DOI: 10.3390/antiox12040934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondria are one of the organelles undergoing rapid alteration during the senescence process. Senescent cells show an increase in mitochondrial size, which is attributed to the accumulation of defective mitochondria, which causes mitochondrial oxidative stress. Defective mitochondria are also targets of mitochondrial oxidative stress, and the vicious cycle between defective mitochondria and mitochondrial oxidative stress contributes to the onset and development of aging and age-related diseases. Based on the findings, strategies to reduce mitochondrial oxidative stress have been suggested for the effective treatment of aging and age-related diseases. In this article, we discuss mitochondrial alterations and the consequent increase in mitochondrial oxidative stress. Then, the causal role of mitochondrial oxidative stress on aging is investigated by examining how aging and age-related diseases are exacerbated by induced stress. Furthermore, we assess the importance of targeting mitochondrial oxidative stress for the regulation of aging and suggest different therapeutic strategies to reduce mitochondrial oxidative stress. Therefore, this review will not only shed light on a new perspective on the role of mitochondrial oxidative stress in aging but also provide effective therapeutic strategies for the treatment of aging and age-related diseases through the regulation of mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Moon Kyoung So
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Soon Kil Ahn
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Sang Chul Park
- The Future Life & Society Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|