1
|
Reyat JS, Sommerfeld LC, O’Reilly M, Roth Cardoso V, Thiemann E, Khan AO, O’Shea C, Harder S, Müller C, Barlow J, Stapley RJ, Chua W, Kabir SN, Grech O, Hummel O, Hübner N, Kääb S, Mont L, Hatem SN, Winters J, Zeemering S, Morgan NV, Rayes J, Gehmlich K, Stoll M, Brand T, Schweizer M, Piasecki A, Schotten U, Gkoutos GV, Lorenz K, Cuello F, Kirchhof P, Fabritz L. PITX2 deficiency leads to atrial mitochondrial dysfunction. Cardiovasc Res 2024; 120:1907-1923. [PMID: 39129206 PMCID: PMC11630043 DOI: 10.1093/cvr/cvae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/27/2024] [Accepted: 05/23/2024] [Indexed: 08/13/2024] Open
Abstract
AIMS Reduced left atrial PITX2 is associated with atrial cardiomyopathy and atrial fibrillation (AF). PITX2 is restricted to left atrial cardiomyocytes (aCMs) in the adult heart. The links between PITX2 deficiency, atrial cardiomyopathy, and AF are not fully understood. METHODS AND RESULTS To identify mechanisms linking PITX2 deficiency to AF, we generated and characterized PITX2-deficient human aCMs derived from human induced pluripotent stem cells (hiPSC) and their controls. PITX2-deficient hiPSC-derived atrial cardiomyocytes showed shorter and disorganized sarcomeres and increased mononucleation. Electron microscopy found an increased number of smaller mitochondria compared with isogenic controls. Mitochondrial protein expression was altered in PITX2-deficient hiPSC-derived atrial cardiomyocytes. Single-nuclear RNA-sequencing found differences in cellular respiration pathways and differentially expressed mitochondrial and ion channel genes in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2 repression in hiPSC-derived atrial cardiomyocytes replicated dysregulation of cellular respiration. Mitochondrial respiration was shifted to increased glycolysis in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2-deficient human hiPSC-derived atrial cardiomyocytes showed higher spontaneous beating rates. Action potential duration was more variable with an overall prolongation of early repolarization, consistent with metabolic defects. Gene expression analyses confirmed changes in mitochondrial genes in left atria from 42 patients with AF compared with 43 patients with sinus rhythm. Dysregulation of left atrial mitochondrial (COX7C) and metabolic (FOXO1) genes was associated with PITX2 expression in human left atria. CONCLUSION PITX2 deficiency causes atrial mitochondrial dysfunction and a metabolic shift to glycolysis in human aCMs. PITX2-dependent metabolic changes can contribute to the structural and functional defects found in PITX2-deficient atria.
Collapse
Affiliation(s)
- Jasmeet S Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK
| | - Laura C Sommerfeld
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- University Center of Cardiovascular Sciences, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Molly O’Reilly
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Victor Roth Cardoso
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Institute of Cancer Genomics, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Ellen Thiemann
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Sönke Harder
- Institut für Klinische Chemie und Laboratoriumsmedizin, Massenspektrometrische Proteomanalytik, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christian Müller
- UKE Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jonathan Barlow
- Cellular Health and Metabolism Facility, College of Life and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Rachel J Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Winnie Chua
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Olivia Grech
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Oliver Hummel
- Max Delbrück Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Norbert Hübner
- Max Delbrück Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charite—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University of Munich (LMU), Marchioninistraße 15, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Lluis Mont
- Hospital Clínic, Universitat de Barcelona, Villarroel, 170, 08036, Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica, August Pi- i Sunyer, Roselló, 149-153, 08036 Barcelona, Catalonia, Spain
- Centro Investigación Biomedica en Red Cardiovascular, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Stéphane N Hatem
- INSERM UMRS1166, ICAN—Institute of Cardiometabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, 91 Boulevard de l’Hôpital, 75013 Paris, France
| | - Joris Winters
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Minderbroedersberg 4-66211 LK Maastricht, The Netherlands
| | - Stef Zeemering
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Minderbroedersberg 4-66211 LK Maastricht, The Netherlands
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, WWU Münster, Albert-Schweitzer-Campus 1, D3, Domagkstraße 3, 48149 Münster, Germany
- Cardiovascular Research Institute Maastricht, Genetic Epidemiology and Statistical Genetics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Michaela Schweizer
- Department of Morphology and Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Angelika Piasecki
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Minderbroedersberg 4-66211 LK Maastricht, The Netherlands
| | - Georgios V Gkoutos
- Institute of Cancer Genomics, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., ISAS City, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Friederike Cuello
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- University Center of Cardiovascular Sciences, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Ranta‐aho J, Felice KJ, Jonson PH, Sarparanta J, Yvorel C, Harzallah I, Touraine R, Pais L, Austin‐Tse CA, Ganesh VS, O'Leary MC, Rehm HL, Hehir MK, Subramony S, Wu Q, Udd B, Savarese M. Protein-extending ACTN2 frameshift variants cause variable myopathy phenotypes by protein aggregation. Ann Clin Transl Neurol 2024; 11:2392-2405. [PMID: 39095936 PMCID: PMC11537131 DOI: 10.1002/acn3.52154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE The objective of the study is to characterize the pathomechanisms underlying actininopathies. Distal myopathies are a group of rare, inherited muscular disorders characterized by progressive loss of muscle fibers that begin in the distal parts of arms and legs. Recently, variants in a new disease gene, ACTN2, have been shown to cause distal myopathy. ACTN2, a gene previously only associated with cardiomyopathies, encodes alpha-actinin-2, a protein expressed in both cardiac and skeletal sarcomeres. The primary function of alpha-actinin-2 is to link actin and titin to the sarcomere Z-disk. New ACTN2 variants are continuously discovered; however, the clinical significance of many variants remains unknown. Thus, lack of clear genotype-phenotype correlations in ACTN2-related diseases, actininopathies, persists. METHODS Functional characterization in C2C12 cell model of several ACTN2 variants is conducted, including frameshift and missense variants associated with dominant and recessive actininopathies. We assess the genotype-phenotype correlations of actininopathies using clinical data from several patients carrying these variants. RESULTS The results show that the missense variants associated with a recessive form of actininopathy do not cause detectable alpha-actinin-2 aggregates in the cell model. Conversely, dominant frameshift variants causing a protein extension do form alpha-actinin-2 aggregates. INTERPRETATION The results suggest that alpha-actinin-2 aggregation is the disease mechanism underlying some dominant actininopathies, and thus, we recommend that protein-extending frameshift variants in ACTN2 should be classified as pathogenic. However, this mechanism is likely elicited by only a limited number of variants. Alternative functional characterization methods should be explored to further investigate other molecular mechanisms underlying actininopathies.
Collapse
Affiliation(s)
- Johanna Ranta‐aho
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| | - Kevin J. Felice
- Department of Neuromuscular MedicineHospital for Special Care2150 Corbin AvenueNew BritainConnecticut06053USA
| | - Per Harald Jonson
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| | - Jaakko Sarparanta
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| | - Cédric Yvorel
- Cardiology DepartmentHôpital NordHôpital Nord, CHU de Saint EtienneAvenue Albert RaimondSaint Priest‐en‐Jarez42270France
| | - Ines Harzallah
- Genetic DepartmentHôpital Nord, CHU de Saint EtienneAvenue Albert RaimondSaint Priest‐en‐Jarez42270France
| | - Renaud Touraine
- Genetic DepartmentHôpital Nord, CHU de Saint EtienneAvenue Albert RaimondSaint Priest‐en‐Jarez42270France
| | - Lynn Pais
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Division of Genetics and Genomics, Boston Children's HospitalHarvard Medical School2 Brookline PlaceBostonMassachusetts02445USA
| | - Christina A. Austin‐Tse
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Center for Genomic MedicineMassachusetts General HospitalHarvard Medical School55 Fruit StreetBostonMassachusetts02114USA
| | - Vijay S. Ganesh
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Department of NeurologyBrigham and Women's Hospital60 Fenwood RoadBostonMassachusetts02115USA
| | - Melanie C. O'Leary
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
| | - Heidi L. Rehm
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Center for Genomic MedicineMassachusetts General HospitalHarvard Medical School55 Fruit StreetBostonMassachusetts02114USA
| | - Michael K. Hehir
- Department of NeurologyLarner College of Medicine at the University of Vermont149 Beaumont AvenueBurlingtonVermont05405USA
| | - Sub Subramony
- Department of NeurologyUniversity of Florida College of Medicine1505 SW Archer RoadGainesvilleFlorida32610USA
| | - Qian Wu
- Department of PathologyUniversity of Connecticut School of Medicine263 Farmington AvenueFarmingtonConnecticut06030USA
| | - Bjarne Udd
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Tampere Neuromuscular CenterTampere University and Tampere University HospitalBiokatu 8Tampere33520Finland
| | - Marco Savarese
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| |
Collapse
|
3
|
Ranta-Aho J, Felice KJ, Jonson PH, Sarparanta J, Palmio J, Tasca G, Sabatelli M, Yvorel C, Harzallah I, Touraine R, Pais L, Austin-Tse CA, Ganesh V, O'Leary MC, Rehm HL, Hehir MK, Subramony S, Wu Q, Udd B, Savarese M. Rare ACTN2 Frameshift Variants Resulting in Protein Extension Cause Distal Myopathy and Hypertrophic Cardiomyopathy through Protein Aggregation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.23298671. [PMID: 38293186 PMCID: PMC10827258 DOI: 10.1101/2024.01.17.23298671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Distal myopathies are a group of rare, inherited muscular disorders characterized by progressive loss of muscle fibers that begins in the distal parts of arms and legs. Recently, variants in a new disease gene, ACTN2 , have been shown to cause distal myopathy. ACTN2 , a gene previously only associated with cardiomyopathies, encodes alpha-actinin-2, a protein expressed in both cardiac and skeletal sarcomeres. The primary function of alpha-actinin-2 is to link actin and titin to the sarcomere Z-disk. New ACTN2 variants are continuously discovered, however, the clinical significance of many variants remains unknown. Thus, lack of clear genotype-phenotype correlations in ACTN2 -related diseases, actininopathies, persists. Objective The objective of the study is to characterize the pathomechanisms underlying actininopathies. Methods Functional characterization in C2C12 cell models of several ACTN2 variants is conducted, including frameshift and missense variants associated with dominant actininopathies. We assess the genotype-phenotype correlations of actininopathies using clinical data from several patients carrying these variants. Results The results show that the missense variants associated with a recessive form of actininopathy do not cause detectable alpha-actinin-2 aggregates in the cell model. Conversely, dominant frameshift variants causing a protein extension do produce alpha-actinin-2 aggregates. Interpretation The results suggest that alpha-actinin-2 aggregation is the disease mechanism underlying some dominant actininopathies, and thus we recommend that protein-extending frameshift variants in ACTN2 should be classified as pathogenic. However, this mechanism is likely elicited by only a limited number of variants. Alternative functional characterization methods should be explored to further investigate other molecular mechanisms underlying actininopathies.
Collapse
|
4
|
Rodriguez Garcia M, Schmeckpeper J, Landim-Vieira M, Coscarella IL, Fang X, Ma W, Spran PA, Yuan S, Qi L, Kahmini AR, Shoemaker MB, Atkinson JB, Kekenes-Huskey PM, Irving TC, Chase PB, Knollmann BC, Pinto JR. Disruption of Z-Disc Function Promotes Mechanical Dysfunction in Human Myocardium: Evidence for a Dual Myofilament Modulatory Role by Alpha-Actinin 2. Int J Mol Sci 2023; 24:14572. [PMID: 37834023 PMCID: PMC10572656 DOI: 10.3390/ijms241914572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The ACTN2 gene encodes α-actinin 2, located in the Z-disc of the sarcomeres in striated muscle. In this study, we sought to investigate the effects of an ACTN2 missense variant of unknown significance (p.A868T) on cardiac muscle structure and function. Left ventricular free wall samples were obtained at the time of cardiac transplantation from a heart failure patient with the ACTN2 A868T heterozygous variant. This variant is in the EF 3-4 domain known to interact with titin and α-actinin. At the ultrastructural level, ACTN2 A868T cardiac samples presented small structural changes in cardiomyocytes when compared to healthy donor samples. However, contractile mechanics of permeabilized ACTN2 A868T variant cardiac tissue displayed higher myofilament Ca2+ sensitivity of isometric force, reduced sinusoidal stiffness, and faster rates of tension redevelopment at all Ca2+ levels. Small-angle X-ray diffraction indicated increased separation between thick and thin filaments, possibly contributing to changes in muscle kinetics. Molecular dynamics simulations indicated that while the mutation does not significantly impact the structure of α-actinin on its own, it likely alters the conformation associated with titin binding. Our results can be explained by two Z-disc mediated communication pathways: one pathway that involves α-actinin's interaction with actin, affecting thin filament regulation, and the other pathway that involves α-actinin's interaction with titin, affecting thick filament activation. This work establishes the role of α-actinin 2 in modulating cross-bridge kinetics and force development in the human myocardium as well as how it can be involved in the development of cardiac disease.
Collapse
Affiliation(s)
| | - Jeffrey Schmeckpeper
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Xuan Fang
- Department of Cell & Molecular Physiology, Loyola University, Chicago, IL 60660, USA
| | - Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Payton A. Spran
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Shengyao Yuan
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Lin Qi
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Aida Rahimi Kahmini
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - M. Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James B. Atkinson
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Thomas C. Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Björn C. Knollmann
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jose Renato Pinto
- Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
6
|
Zhou L, Huang J, Li H, Duan H, Hua Y, Guo Y, Zhou K, Li Y. Impaired Cardiomyocyte Maturation Leading to DCM: A Case Report and Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1158. [PMID: 37374362 DOI: 10.3390/medicina59061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Background: The maturation of cardiomyocytes is a rapidly evolving area of research within the field of cardiovascular medicine. Understanding the molecular mechanisms underlying cardiomyocyte maturation is essential to advancing our knowledge of the underlying causes of cardiovascular disease. Impaired maturation can lead to the development of cardiomyopathy, particularly dilated cardiomyopathy (DCM). Recent studies have confirmed the involvement of the ACTN2 and RYR2 genes in the maturation process, facilitating the functional maturation of the sarcomere and calcium handling. Defective sarcomere and electrophysiological maturation have been linked to severe forms of cardiomyopathy. This report presents a rare case of DCM with myocardial non-compaction, probably resulting from allelic collapse of both the ACTN2 and RYR2 genes. Case Presentation: The proband in this case was a four-year-old male child who presented with a recurrent and aggressive reduction in activity tolerance, decreased ingestion volume, and profuse sweating. Electrocardiography revealed significant ST-T segment depression (II, III, aVF V3-V6 ST segment depression >0.05 mV with inverted T-waves). Echocardiography showed an enlarged left ventricle and marked myocardial non-compaction. Cardiac magnetic resonance imaging revealed increased left ventricular trabeculae, an enlarged left ventricle, and a reduced ejection fraction. Whole exome sequencing revealed a restricted genomic depletion in the 1q43 region (chr1:236,686,454-237,833,988/Hg38), encompassing the coding genes ACTN2, MTR, and RYR2. The identified variant resulted in heterozygous variations in these three genes, with the ACTN2 g.236,686,454-236,764,631_del and RYR2 g.237,402,134-237,833,988_del variants being the dominant contributors to the induction of cardiomyopathy. The patient was finally diagnosed with DCM and left ventricular myocardial non-compaction. Conclusions: This study reports a rare case of DCM with myocardial non-compaction caused by the allelic collapse of the ACTN2 and RYR2 genes. This case provides the first human validation of the critical role of cardiomyocyte maturation in maintaining cardiac function and stability and confirms the key findings of previous experimental research conducted by our group. This report emphasizes the connection between genes involved in regulating the maturation of cardiomyocytes and the development of cardiomyopathy.
Collapse
Affiliation(s)
- Letao Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jinglan Huang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Department of Nursing, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyu Duan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yuxuan Guo
- Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Peking University, Beijing 100191, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|