1
|
Luan F, Zou J, Zhang X, Zeng J, Peng X, Li R, Shi Y, Zeng N. The extraction, purification, structural features, bioactivities, and applications of Schisandra chinensis polysaccharides: A review. Int J Biol Macromol 2024; 262:130030. [PMID: 38336330 DOI: 10.1016/j.ijbiomac.2024.130030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Schisandra chinensis, as a famous medicinal and food homologous plant, has a long history of medicinal and dietary therapy. It has the functions of nourishing the kidney, calming the heart, tranquilising the mind, tonifying Qi and producing fluid to relieve mental stress, based on the theory of traditional Chinese medicine. Accumulating evidence has shown that S. chinensis polysaccharides (SCPs) are one of the most important bioactive macromolecules and exhibit diverse biological activities in vitro and in vivo, including neuroprotective, hepatoprotective, immunomodulatory, antioxidant, hypoglycemic, cardioprotective, antitumour and anti-inflammatory activities, etc. This review aims to thoroughly review the recent advances in the extraction and purification methods, structural features, biological activities and structure-activity relationships, potential applications and quality assessment of SCPs, and further highlight the therapeutic potentials and health functions of SCPs in the fields of therapeutic agents and functional food development. Future insights and challenges of SCPs were also critically discussed. Overall, the present review provides a theoretical overview for the further development and utilization of S. chinensis polysaccharides in the health food and pharmaceutical fields.
Collapse
Affiliation(s)
- Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Ruiyu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China.
| |
Collapse
|
2
|
Wróbel-Biedrawa D, Podolak I. Anti-Neuroinflammatory Effects of Adaptogens: A Mini-Review. Molecules 2024; 29:866. [PMID: 38398618 PMCID: PMC10891670 DOI: 10.3390/molecules29040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Introduction: Adaptogens are a group of plants that exhibit complex, nonspecific effects on the human body, increasing its ability to adapt, develop resilience, and survive in stress conditions. They are found in many traditional medicinal systems and play a key role in restoring the body's strength and stamina. Research in recent years has attempted to elucidate the mechanisms behind their pharmacological effects, but it appears that these effects are difficult to define precisely and involve multiple molecular pathways. Neuroinflammation: In recent years, chronic inflammation has been recognized as one of the common features of many central nervous system disorders (dementia and other neurodegenerative diseases, depression, anxiety, ischemic stroke, and infections). Because of the specific nature of the brain, this process is called neuroinflammation, and its suppression can result in an improvement of patients' condition and may promote their recovery. Adaptogens as anti-inflammatory agents: As has been discovered, adaptogens display anti-inflammatory effects, which suggests that their application may be broader than previously thought. They regulate gene expression of anti- and proinflammatory cytokines (prostaglandins, leukotriens) and can modulate signaling pathways (e.g., NF-κB). Aim: This mini-review aims to present the anti-neuroinflammatory potential of the most important plants classified as adaptogens: Schisandra chinensis, Eleutherococcus senticosus, Rhodiola rosea and Withania somnifera.
Collapse
Affiliation(s)
| | - Irma Podolak
- Department of Pharmacognosy, Jagiellonian University Collegium Medicum, Medyczna 9, 30-688 Cracow, Poland;
| |
Collapse
|
3
|
Wang Z, Jiang D, Wang X, Jiang Y, Sun Q, Ling W, An X, Ji C, Li S, Qi Y, Kang B. Spermidine improves the antioxidant capacity and morphology of intestinal tissues and regulates intestinal microorganisms in Sichuan white geese. Front Microbiol 2024; 14:1292984. [PMID: 38293560 PMCID: PMC10824853 DOI: 10.3389/fmicb.2023.1292984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Intestinal health is very important to the health of livestock and poultry, and is even a major determining factor in the performance of livestock and poultry production. Spermidine is a type of polyamine that is commonly found in a variety of foods, and can resist oxidative stress, promote cell proliferation and regulate intestinal flora. Methods In this study, we explored the effects of spermidine on intestinal health under physiological states or oxidative stress conditions by irrigation with spermidine and intraperitoneal injection of 3-Nitropropionic acid (3-NPA) in Sichuan white goose. Results and discussion Our results showed that spermidine could increase the ratio of intestinal villus to crypt and improve intestinal morphology. In addition, spermidine can also reduce malondialdehyde (MDA) accumulation caused by 3-NPA by increasing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) enzyme activity, thus alleviating intestinal damage. Furthermore, spermidine can regulate intestinal digestive enzyme activities and affect intestinal digestion and absorption ability. Spermidine can also promote an increase in intestinal microbial diversity and abundance and alleviate the change of microflora structure caused by 3-NPA. In conclusion, spermidine promotes the production of beneficial intestinal metabolites such as Wikstromol, Alpha-bisabolol and AS 1-5, thus improving the level of intestinal health. Taken together, these results indicate that spermidine can improve intestinal health by improving intestinal morphology, increasing antioxidant capacity and regulating intestinal flora structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Awogbindin I, Wanklin M, Verkhratsky A, Tremblay MÈ. Microglia in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:497-512. [PMID: 39207709 DOI: 10.1007/978-3-031-55529-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are manifested by a progressive death of neural cells, resulting in the deterioration of central nervous system (CNS) functions, ultimately leading to specific behavioural and cognitive symptoms associated with affected brain regions. Several neurodegenerative disorders are caused by genetic variants or mutations, although the majority of cases are sporadic and linked to various environmental risk factors, with yet an unknown aetiology. Neuroglial changes are fundamental and often lead to the pathophysiology of neurodegenerative diseases. In particular, microglial cells, which are essential for maintaining CNS health, become compromised in their physiological functions with the exposure to environmental risk factors, genetic variants or mutations, as well as disease pathology. In this chapter, we cover the contribution of neuroglia, especially microglia, to several neurodegenerative diseases, including Nasu-Hakola disease, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, infectious disease-associated neurodegeneration, and metal-precipitated neurodegeneration. Future research perspectives for the field pertaining to the therapeutic targeting of microglia across these disease conditions are also discussed.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Department of Biochemistry, Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Michael Wanklin
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Afridi R, Bhusal A, Tsuda M, Ryu H, Suk K. Function of Glial Cells in Neuroinflammatory and Neuroimmunological Responses II. Cells 2023; 12:1750. [PMID: 37443784 PMCID: PMC10341340 DOI: 10.3390/cells12131750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
It is now well established that glial cells play an equal, if not greater, role in regulating intricate functions of the central nervous system (CNS) compared with neurons [...].
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|