1
|
Liu H, Yang R, Zhong H, Zhang Y, Wang S, Guo K, Jiang Z, He J, Huang Y, Lin Y, Chen X, Lin J. Mechanism of Qingjie Fuzheng Granules in inhibiting colitis associated colorectal cancer by regulating TLR4 and IL-4R mediated macrophage polarization. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119511. [PMID: 39978444 DOI: 10.1016/j.jep.2025.119511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingjie Fuzheng Granules (QFG), a herbal formula, has been employed as an adjuvant therapy for colitis-associated colorectal cancer (CAC), yet the underlying mechanisms by which QFG operates remain unclear. AIMS OF THE STUDY The aim of this study is to investigate whether the potential mechanism of QFG against CAC is associated with macrophage polarization. MATERIALS AND METHODS Non-targeted metabolomics and molecular docking assessed potential compounds of QFG to interact with targets associated with macrophage polarization. A model of AOM/DSS-induced CAC mice was established to analyze the effects of QFG on macrophage polarization using flow cytometry and immunohistochemical staining. In vitro experiments involved models of Ana-1 macrophages, either induced by varying QFG concentrations or with MD2 knockdown, to analyze M1-like phenotype. Meanwhile, M2-like macrophages models induced by IL-4 or culture supernatant of CT26 cells were utilized to assess the effects of QFG on M2-like macrophages. Finally, the mRNA expression of M1-like phenotype related to TLR4 pathways and the protein expression in IL-4R-mediated pathways were analyzed using RT-qPCR and Western blot, respectively. RESULTS Molecular docking confirmed the presence of binding sites between the ingredients of QFG and IL-4R or TLR4/MD2 receptor complex. QFG could induce a shift in macrophages towards an M1-like phenotype while inhibiting an M2-like phenotype in the colon with CAC mice and Ana-1 macrophages. QFG resulted in the upregulation of iNOS, IL-6, IL-1β, and TNF-α mRNA expression, which could be counteracted by TAK242, SR11302, INH14, PDTC, and LY294002, or by the knockdown of MD2. Meanwhile, QFG inhibited IL-4R-induced phosphorylation of STAT 6 and Akt. CONCLUSION Various monomer components within QFG can bind to MD2 or IL-4R, respectively, thereby inducing macrophages towards an M1-like phenotype through TLR4-mediated NF-κB, MAPK, and PI3K/Akt pathway activation, or inhibiting macrophages towards an M2-like phenotype via IL-4R-mediated JAKs pathway inhibition, ultimately exerting an inhibitory effect on the occurrence and development of CAC.
Collapse
Affiliation(s)
- Haiqin Liu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China; Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian Province, 350122, China
| | - Ruiming Yang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China; Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian Province, 350122, China
| | - Hangyan Zhong
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China; Department of Proctology, Shanghang Hospital of Traditional Chinese Medicine, Longyan, Fujian Province, 364200, China
| | - Youquan Zhang
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350001, China
| | - Shunyong Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Kangyue Guo
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Zhishan Jiang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Jiajun He
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Yunmei Huang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China; Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian Province, 350122, China
| | - Ying Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, 350001, China; Department of Pathology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, 350001, China
| | - Xuzheng Chen
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China; Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian Province, 350122, China.
| | - Jiumao Lin
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China; Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian Province, 350122, China.
| |
Collapse
|
2
|
Hooda V, Sharma A. Interactions of NK Cells and Macrophages: From Infections to Cancer Therapeutics. Immunology 2025; 174:287-295. [PMID: 39739619 DOI: 10.1111/imm.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025] Open
Abstract
The interaction between immune cells brings a consequence either on their role and functioning or the functioning of the other immune cells, modulating the whole mechanistic pathway. The interaction between natural killer (NK) cells and macrophages is one such interaction which is relatively less explored amongst diseased conditions. Their significance comes from their innate nature and secretion of large proportions of cytokines and chemokines which results in influencing adaptive immune responses. Their interplay can lead to several functional outcomes such as NK cell activation/inhibition, increased cytotoxicity and IFNγ release by NK cells, inhibition of macrophage function, etc. This paper delves into the interaction amongst NK cells and macrophages via different receptor-ligands and cytokines, particularly emphasising microbial infections and tumours. The review has the potential to uncover new insights and approaches that could lead to the development of innovative therapeutic tools and targets.
Collapse
Affiliation(s)
- Vishakha Hooda
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
3
|
Bonine N, Zanzani V, Van Hemelryk A, Vanneste B, Zwicker C, Thoné T, Roelandt S, Bekaert SL, Koster J, Janoueix-Lerosey I, Thirant C, Van Haver S, Roberts SS, Mus LM, De Wilde B, Van Roy N, Everaert C, Speleman F, Vermeirssen V, Scott CL, De Preter K. NBAtlas: A harmonized single-cell transcriptomic reference atlas of human neuroblastoma tumors. Cell Rep 2024; 43:114804. [PMID: 39368085 DOI: 10.1016/j.celrep.2024.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
Neuroblastoma, a rare embryonic tumor arising from neural crest development, is responsible for 15% of pediatric cancer-related deaths. Recently, several single-cell transcriptome studies were performed on neuroblastoma patient samples to investigate the cell of origin and tumor heterogeneity. However, these individual studies involved a small number of tumors and cells, limiting the conclusions that could be drawn. To overcome this limitation, we integrated seven single-cell or single-nucleus datasets into a harmonized cell atlas covering 362,991 cells across 61 patients. We use this atlas to decipher the transcriptional landscape of neuroblastoma at single-cell resolution, revealing associations between transcriptomic profiles and clinical outcomes within the tumor compartment. In addition, we characterize the complex immune-cell landscape and uncover considerable heterogeneity among tumor-associated macrophages. Finally, we showcase the utility of our atlas as a resource by expanding it with additional data and using it as a reference for data-driven cell-type annotation.
Collapse
Affiliation(s)
- Noah Bonine
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Vittorio Zanzani
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Ghent University, Ghent, Belgium
| | - Annelies Van Hemelryk
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Bavo Vanneste
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Christian Zwicker
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Tinne Thoné
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Sofie Roelandt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Koster
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Isabelle Janoueix-Lerosey
- Inserm U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Cécile Thirant
- Inserm U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Stéphane Van Haver
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen S Roberts
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Liselot M Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nadine Van Roy
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Celine Everaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Vanessa Vermeirssen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
4
|
Louault K, De Clerck YA, Janoueix-Lerosey I. The neuroblastoma tumor microenvironment: From an in-depth characterization towards novel therapies. EJC PAEDIATRIC ONCOLOGY 2024; 3:100161. [PMID: 39036648 PMCID: PMC11259008 DOI: 10.1016/j.ejcped.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Neuroblastoma is a cancer of the sympathetic nervous system that develops in young children, either as low-risk or high-risk disease. The tumor microenvironment (TME) is now recognized as an important player of the tumor ecosystem that may promote drug resistance and immune escape. Targeting the TME in combination with therapies directly targeting tumor cells therefore represents an interesting strategy to prevent the emergence of resistance in cancer and improve patient's outcome. The development of such strategies however requires an in-depth understanding of the TME landscape, due to its high complexity and intra and inter-tumoral heterogeneity. Various approaches have been used in the last years to characterize the immune and non-immune cell populations present in tumors of neuroblastoma patients, both quantitatively and qualitatively, in particular with the use of single-cell transcriptomics. It is anticipated that in the near future, both genomic and TME information in tumors will contribute to a precise approach to therapy in neuroblastoma. Deciphering the mechanisms of interaction between neuroblastoma cells and stromal or immune cells in the TME is key to identify novel therapeutic combinations. Over the last decade, numerous in vitro studies and in vivo pre-clinical experiments in immune-competent and immune-deficient models have identified therapeutic approaches to circumvent drug resistance and immune escape. Some of these studies have formed the basis for early phase I and II clinical trials in children with recurrent and refractory high-risk neuroblastoma. This review summarizes recently published data on the characterization of the TME landscape in neuroblastoma and novel strategies targeting various TME cellular components, molecules and pathways activated as a result of the tumor-host interactions.
Collapse
Affiliation(s)
- Kevin Louault
- Children’s Hospital Los Angeles, Cancer, and Blood Disease Institute, 4650 Sunset Bld., Los Angeles, CA, USA
| | - Yves A. De Clerck
- Children’s Hospital Los Angeles, Cancer, and Blood Disease Institute, 4650 Sunset Bld., Los Angeles, CA, USA
- Department of Pediatrics and Biochemistry and Molecular Medicine, University of Southern California, CA, USA
| | - Isabelle Janoueix-Lerosey
- Curie Institute, PSL Research University, Inserm U830, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Curie Institute, Paris, France
| |
Collapse
|
5
|
Wang M, Sun Y, Gu R, Tang Y, Han G, Zhao S. Shikonin reduces M2 macrophage population in ovarian cancer by repressing exosome production and the exosomal galectin 3-mediated β-catenin activation. J Ovarian Res 2024; 17:101. [PMID: 38745186 PMCID: PMC11092256 DOI: 10.1186/s13048-024-01430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Shikonin (SK), a naphthoquinone with anti-tumor effects, has been found to decrease production of tumor-associated exosomes (exo). This study aims to verify the treatment effect of SK on ovarian cancer (OC) cells, especially on the production of exo and their subsequent effect on macrophage polarization. METHODS OC cells SKOV3 and A2780 were treated with SK. The exo were isolated from OC cells with or without SK treatment, termed OC exo and SK OC exo, respectively. These exo were used to treat PMA-induced THP-1 cells (M0 macrophages). M2 polarization of macrophages was determined by measuring the M2 specific cell surface markers CD163 and CD206 as well as the secretion of M2 cytokine IL-10. The functions of galectin 3 (LGALS3/GAL3) and β-catenin in macrophage polarization were determined by gain- or loss-of-function assays. CB-17 SCID mice were subcutaneously injected with SKOV3 cells to generate xenograft tumors, followed by OC exo or SK OC exo treatment for in vivo experiments. RESULTS SK suppressed viability, migration and invasion, and apoptosis resistance of OC cells in vitro. Compared to OC exo, SK OC exo reduced the M2 polarization of macrophages. Regarding the mechanism, SK reduced exo production in cancer cells, and it decreased the protein level of GAL3 in exo and recipient macrophages, leading to decreased β-catenin activation. M2 polarization of macrophages was restored by LGALS3 overexpression but decreased again by the β-catenin inhibitor FH535. Compared to OC exo, the SK OC exo treatment reduced the xenograft tumor growth in mice, and it decreased the M2 macrophage infiltration within tumor tissues. CONCLUSION This study suggests that SK reduces M2 macrophage population in OC by repressing exo production and blocking exosomal GAL3-mediated β-catenin activation.
Collapse
Affiliation(s)
- Min Wang
- Department of Gynaecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, No.1, Zhongfu Road, Nanjing, Jiangsu, 210003, P.R. China
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, No. 48, Huaishu Lane, Liangxi District, Wuxi, Jiangsu, 214000, P.R. China
| | - Yangyan Sun
- Department of Gynecology, Jiangyin People's Hospital, Wuxi, Jiangsu, 214400, P.R. China
| | - Rui Gu
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, No. 48, Huaishu Lane, Liangxi District, Wuxi, Jiangsu, 214000, P.R. China
| | - Yan Tang
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, No. 48, Huaishu Lane, Liangxi District, Wuxi, Jiangsu, 214000, P.R. China
| | - Guorong Han
- Department of Gynaecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, No.1, Zhongfu Road, Nanjing, Jiangsu, 210003, P.R. China.
| | - Shaojie Zhao
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, No. 48, Huaishu Lane, Liangxi District, Wuxi, Jiangsu, 214000, P.R. China.
| |
Collapse
|
6
|
Hammad R, Selim M, Eldosoky MA, Elmadbouly AA, Abd El Hakam FEZ, Elshafei A, Fawzy M, Hammad M. Contribution of plasma MicroRNA-21, MicroRNA-155 and circulating monocytes plasticity to childhood neuroblastoma development and induction treatment outcome. Pathol Res Pract 2024; 254:155060. [PMID: 38194805 DOI: 10.1016/j.prp.2023.155060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
Neuroblastoma (NB) accounts for 15% of all pediatric cancer fatalities (NB). Biomarkers that facilitate early NB detection are needed because by the time of diagnosis, over half of NBs had spread. MicroRNA-21(miR-21) and miR-155 are involved in cancer biology due to their immune modulation functions. Altered monocyte subset distribution is thought to be involved in a number of solid tumors due to its immunological role. We aimed to investigate the expression levels of miR-21 and miR-155 and their association with circulating monocytes subsets in NB and to evaluate if they correlate to the disease pathogenesis and outcome. PATIENTS AND METHODS This case control study involved 79 children classified into 39 newly diagnosed NB children and 40 age and sex matched healthy children. Real-time PCR was used to assess the expression of plasma miR-21 and miR-155. The frequency of circulating monocytes subsets was assessed by flow cytometry. RESULTS NB group showed significant up-regulation in expression of miR-21(20.9 folds) and miR-155 (1.8 folds) when compared to the control group (p < 0.001) and (p = 0.02) respectively. Also, frequency of circulating intermediate monocytes revealed significant up regulation in children with NB. In NB patients, there was a positive correlation between miR-21 and frequency of total and intermediate monocytes (r = 0.5 p < 0.001 and r = 0.7, p < 0.001, respectively). We found no discernible differences when we compared study markers between the high risk and intermediate risk groups. In addition, no significant difference was seen in study markers when patients were sub-grouped according to their induction treatment response. ROC curve analysis revealed that miR-21 up-regulation distinguished NB in childhood at an AUC of 0.94 (82% sensitivity and 100% specificity) while miR-155 up-regulation had less capacity to distinguish NB in childhood at an AUC of 0.65 (38% sensitivity and 93% specificity). CONCLUSION miR-21 can be utilized as a sensitive biomarker for childhood NB development. In pediatric NB, miR-21 was linked to intermediate monocyte plasticity. Both, miR-21 and miR-155 had no impact on NB outcome.
Collapse
Affiliation(s)
- Reham Hammad
- Clinical Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Mustafa Selim
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Mona A Eldosoky
- Clinical Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa A Elmadbouly
- Clinical Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
| | | | - Ahmed Elshafei
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Fawzy
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Egypt
| | - Mahmoud Hammad
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
7
|
Cornice J, Verzella D, Arboretto P, Vecchiotti D, Capece D, Zazzeroni F, Franzoso G. NF-κB: Governing Macrophages in Cancer. Genes (Basel) 2024; 15:197. [PMID: 38397187 PMCID: PMC10888451 DOI: 10.3390/genes15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are the major component of the tumor microenvironment (TME), where they sustain tumor progression and or-tumor immunity. Due to their plasticity, macrophages can exhibit anti- or pro-tumor functions through the expression of different gene sets leading to distinct macrophage phenotypes: M1-like or pro-inflammatory and M2-like or anti-inflammatory. NF-κB transcription factors are central regulators of TAMs in cancers, where they often drive macrophage polarization toward an M2-like phenotype. Therefore, the NF-κB pathway is an attractive therapeutic target for cancer immunotherapy in a wide range of human tumors. Hence, targeting NF-κB pathway in the myeloid compartment is a potential clinical strategy to overcome microenvironment-induced immunosuppression and increase anti-tumor immunity. In this review, we discuss the role of NF-κB as a key driver of macrophage functions in tumors as well as the principal strategies to overcome tumor immunosuppression by targeting the NF-κB pathway.
Collapse
Affiliation(s)
- Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| |
Collapse
|
8
|
Bottino C, Vitale C, Dondero A, Castriconi R. B7-H3 in Pediatric Tumors: Far beyond Neuroblastoma. Cancers (Basel) 2023; 15:3279. [PMID: 37444389 DOI: 10.3390/cancers15133279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
B7-H3 is a 4Ig transmembrane protein that emerged as a tumor-associated antigen in neuroblastoma. It belongs to the B7 family, shows an immunoregulatory role toward NK and T cells, and, therefore, has been included in the growing family of immune checkpoints. Besides neuroblastoma, B7-H3 is expressed by many pediatric cancers including tumors of the central nervous system, sarcomas, and acute myeloid leukemia. In children, particularly those affected by solid tumors, the therapeutic protocols are aggressive and cause important life-threatening side effects. Moreover, despite the improved survival observed in the last decade, a relevant number of patients show therapy resistance and fatal relapses. Immunotherapy represents a new frontier in the cure of cancer patients and the targeting of tumor antigens or immune checkpoints blockade showed exciting results in adults. In this encouraging scenario, researchers and clinicians are exploring the possibility to use immunotherapeutics targeting B7-H3; these include mAbs and chimeric antigen receptor T-cells (CAR-T). These tools are rapidly evolving to improve the efficacy and decrease the unwanted side effects; drug-conjugated mAbs, bi-tri-specific mAbs or CAR-T, and, very recently, NK cell engagers (NKCE), tetra-specific molecules engaging a tumor-associated antigen and NK cells, have been generated. Preclinical data are promising, and clinical trials are ongoing. Hopefully, the B7-H3 targeting will provide important benefits to cancer patients.
Collapse
Affiliation(s)
- Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|