1
|
Liu J, Fang L, Gong C, Li J, Liu Y, Zeng P, Fan Y, Liu Y, Guo J, Wang L, Li Y. Neurotoxicity study of cenobamate-induced zebrafish early developmental stages. Toxicol Appl Pharmacol 2024; 495:117201. [PMID: 39667564 DOI: 10.1016/j.taap.2024.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Cenobamate (CNB) is a novel anti-seizure medication with significant efficacy in treating epilepsy. However, in clinical trials, the most common adverse reactions observed in patients are central nervous system (CNS) symptoms. In animal studies, administration of CNB during pregnancy or lactation has been associated with adverse effects on neurodevelopment in offspring. To optimize the clinical use of CNB, we investigated the neurotoxicity of different concentrations of CNB (10, 20, 40, 80, and 160 μM) on zebrafish embryos. Following exposure, zebrafish embryos exhibited abnormal phenotypes such as shortened body length, impaired yolk sac absorption, and decreased heart rate. Behavioral experiments showed that CNB caused abnormal movements such as decreased spontaneous tail curling frequency, shortened total movement distance, and reduced average movement speed. We also found that CNB leads to increased acetylcholinesterase (AChE) activity levels in zebrafish embryos, along with differential expression of neurodevelopment-related genes such as nestin, gfap, synapsin IIa, and gap43. In summary, our research findings indicated that CNB may induce developmental and neurotoxic effects in zebrafish embryos by altering neurotransmitter systems and the expression of neurodevelopmental genes, thereby influencing behavior. This study will provide information for the clinical use of CNB, aiming to benefit more epilepsy patients through its appropriate administration.
Collapse
Affiliation(s)
- Jiahao Liu
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Liya Fang
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Chao Gong
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Jiawei Li
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Yuanyuan Liu
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Pei Zeng
- The Third Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Yanping Fan
- The Third Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Yao Liu
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Jin Guo
- The Third Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China.
| | - Luchuan Wang
- The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China.
| | - Yue Li
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154000, PR China.
| |
Collapse
|
2
|
Hameed MQ, D'Ambrosio R, Eastman C, Hui B, Lin R, Vermudez SAD, Liebhardt A, Choe Y, Klein P, Rundfeldt C, Löscher W, Rotenberg A. A comparison of the antiepileptogenic efficacy of two rationally chosen multitargeted drug combinations in a rat model of posttraumatic epilepsy. Exp Neurol 2024; 382:114962. [PMID: 39288831 DOI: 10.1016/j.expneurol.2024.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Post-traumatic epilepsy (PTE) is a recurrent and often drug-refractory seizure disorder caused by traumatic brain injury (TBI). No single drug treatment prevents PTE, but preventive drug combinations that may prophylax against PTE have not been studied. Based on a systematic evaluation of rationally chosen drug combinations in the intrahippocampal kainate (IHK) mouse model of acquired epilepsy, we identified two multi-targeted drug cocktails that exert strong antiepileptogenic effects. The first, a combination of levetiracetam (LEV) and topiramate, only partially prevented spontaneous recurrent seizures in the model. We therefore added atorvastatin (ATV) to the therapeutic cocktail (TC) to increase efficacy, forming "TC-001". The second cocktail - a combination of LEV, ATV, and ceftriaxone, termed "TC-002" - completely prevented epilepsy in the mouse IHK model. In the present proof-of-concept study, we tested whether the two drug cocktails prevent epilepsy in a rat PTE model in which recurrent electrographic seizures develop after severe rostral parasagittal fluid percussion injury (FPI). Following FPI, rats were either treated over 3-4 weeks with vehicle or drug cocktails, starting either 1 or 4-6 h after the injury. Using mouse doses of TC-001 and TC-002, no significant antiepileptogenic effect was obtained in the rat PTE model. However, when using allometric scaling of drug doses to consider the differences in body surface area between mice and rats, PTE was prevented by TC-002. Furthermore, the latter drug cocktail partially prevented the loss of perilesional cortical parvalbumin-positive GABAergic interneurons. Plasma and brain drug analysis showed that these effects of TC-002 occurred at clinically relevant levels of the individual TC-002 drug components. In silico analysis of drug-drug brain protein interactions by the STITCH database indicated that TC-002 impacts a larger functional network of epilepsy-relevant brain proteins than each drug alone, providing a potential network pharmacology explanation for the observed antiepileptogenic and neuroprotective effects observed with this combination.
Collapse
Affiliation(s)
- Mustafa Q Hameed
- Department of Neurology and FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raimondo D'Ambrosio
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Cliff Eastman
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Benjamin Hui
- Department of Neurology and FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rui Lin
- Department of Neurology and FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sheryl Anne D Vermudez
- Department of Neurology and FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda Liebhardt
- Department of Neurology and FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yongho Choe
- Department of Neurology and FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pavel Klein
- PrevEp, Inc., Bethesda, MD, USA; Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| | | | - Wolfgang Löscher
- PrevEp, Inc., Bethesda, MD, USA; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| | - Alexander Rotenberg
- Department of Neurology and FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; PrevEp, Inc., Bethesda, MD, USA.
| |
Collapse
|
3
|
Kamiński K, Socała K, Abram M, Jakubiec M, Reeb KL, Temmermand R, Zagaja M, Maj M, Kolasa M, Faron-Górecka A, Andres-Mach M, Szewczyk A, Hameed MQ, Fontana ACK, Rotenberg A, Kamiński RM. Enhancement of Glutamate Uptake as Novel Antiseizure Approach: Preclinical Proof of Concept. Ann Neurol 2024. [PMID: 39512205 DOI: 10.1002/ana.27124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE Excitotoxicity is a common hallmark of epilepsy and other neurological diseases associated with elevated extracellular glutamate levels. Thus, here, we studied the protective effects of (R)-AS-1, a positive allosteric modulator (PAM) of glutamate uptake in epilepsy models. METHODS (R)-AS-1 was evaluated in a range of acute and chronic seizure models, while its adverse effect profile was assessed in a panel of standard tests in rodents. The effect of (R)-AS-1 on glutamate uptake was assessed in COS-7 cells expressing the transporter. WAY 213613, a selective competitive EAAT2 inhibitor, was used to probe the reversal of the enhanced glutamate uptake in the same transporter expression system. Confocal microscopy and Western blotting analyses were used to study a potential influence of (R)-AS-1 on GLT-1 expression in mice. RESULTS (R)-AS-1 showed robust protection in a panel of animal models of seizures and epilepsy, including the maximal electroshock- and 6 Hz-induced seizures, corneal kindling, mesial temporal lobe epilepsy, lamotrigine-resistant amygdala kindling, as well as seizures induced by pilocarpine or Theiler's murine encephalomyelitis virus. Importantly, (R)-AS-1 displayed a favorable adverse effect profile in the rotarod, the minimal motor impairment, and the Irwin tests. (R)-AS-1 enhanced glutamate uptake in vitro and this effect was abolished by WAY 213613, while no influence on GLT-1 expression in vivo was observed after repeated treatment. INTERPRETATION Collectively, our results show that (R)-AS-1 has favorable tolerability and provides robust preclinical efficacy against seizures. Thus, allosteric enhancement of EAAT2 function could offer a novel therapeutic strategy for treatment of epilepsy and potentially other neurological disorders associated with glutamate excitotoxicity. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Katelyn L Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Magdalena Kolasa
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Aleksandra Szewczyk
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Mustafa Q Hameed
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
4
|
Rubio C, Romo-Parra H, López-Landa A, Rubio-Osornio M. Classification of Current Experimental Models of Epilepsy. Brain Sci 2024; 14:1024. [PMID: 39452036 PMCID: PMC11506208 DOI: 10.3390/brainsci14101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION This article provides an overview of several experimental models, including in vivo, genetics, chemical, knock-in, knock-out, electrical, in vitro, and optogenetics models, that have been employed to investigate epileptogenesis. The present review introduces a novel categorization of these models, taking into account the fact that the most recent classification that gained widespread acceptance was established by Fisher in 1989. A significant number of such models have become virtually outdated. OBJECTIVE This paper specifically examines the models that have contributed to the investigation of partial seizures, generalized seizures, and status epilepticus. DISCUSSION A description is provided of the primary features associated with the processes that produce and regulate the symptoms of various epileptogenesis models. Numerous experimental epilepsy models in animals have made substantial contributions to the investigation of particular brain regions that are capable of inducing seizures. Experimental models of epilepsy have also enabled the investigation of the therapeutic mechanisms of anti-epileptic medications. Typically, animals are selected for the development and study of experimental animal models of epilepsy based on the specific form of epilepsy being investigated. CONCLUSIONS Currently, it is established that specific animal species can undergo epileptic seizures that resemble those described in humans. Nevertheless, it is crucial to acknowledge that a comprehensive assessment of all forms of human epilepsy has not been feasible. However, these experimental models, both those derived from channelopathies and others, have provided a limited comprehension of the fundamental mechanisms of this disease.
Collapse
Affiliation(s)
- Carmen Rubio
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
| | - Héctor Romo-Parra
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
- Psychology Department, Universidad Iberoamericana, Mexico City 01219, Mexico
| | - Alejandro López-Landa
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
| | - Moisés Rubio-Osornio
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur 3877, Mexico City 14269, Mexico
| |
Collapse
|
5
|
Chen Y, Litt B, Vitale F, Takano H. On-Demand Seizures Facilitate Rapid Screening of Therapeutics for Epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609726. [PMID: 39464023 PMCID: PMC11507747 DOI: 10.1101/2024.08.26.609726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Animal models of epilepsy are critical in drug development and therapeutic testing, but dominant methods for pharmaceutical evaluation face a tradeoff between higher throughput and etiological relevance. For example, in temporal lobe epilepsy, a type of epilepsy where seizures originate from limbic structures like the hippocampus, the main screening models are either based on acutely induced seizures in wild type, naïve animals or spontaneous seizures in chronically epileptic animals. Both types have their disadvantages - the acute convulsant or kindling induced seizures do not account for the myriad neuropathological changes in the diseased, epileptic brains, and spontaneous behavioral seizures are sparse in the chronically epileptic models, making it time-intensive to sufficiently power experiments. In this study, we took a mechanistic approach to precipitate seizures "on demand" in chronically epileptic mice. We briefly synchronized principal cells in the CA1 region of the diseased hippocampus to reliably induce stereotyped on-demand behavioral seizures. These induced seizures resembled naturally occurring spontaneous seizures in the epileptic animals and could be stopped by commonly prescribed anti-seizure medications such as levetiracetam and diazepam. Furthermore, we showed that seizures induced in chronically epileptic animals differed from those in naïve animals, highlighting the importance of evaluating therapeutics in the diseased circuit. Taken together, we envision our model to advance the speed at which both pharmacological and closed loop interventions for temporal lobe epilepsy are evaluated.
Collapse
Affiliation(s)
- Yuzhang Chen
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center; Philadelphia, PA, 19104, USA
| | - Brian Litt
- Department of Bioengineering, University of Pennsylvania; Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104, USA
| | - Flavia Vitale
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center; Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania; Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104, USA
| | - Hajime Takano
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104, USA
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Reddy DS, Vadassery A, Ramakrishnan S, Singh T, Clossen B, Wu X. Kindling Models of Epileptogenesis for Developing Disease-Modifying Drugs for Epilepsy. Curr Protoc 2024; 4:e70020. [PMID: 39436626 PMCID: PMC11498896 DOI: 10.1002/cpz1.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Kindling models are widely used animal models to study the pathobiology of epilepsy and epileptogenesis. These models exhibit distinctive features whereby sub-threshold stimuli instigate the initial induction of brief focal seizures. Over time, the severity and duration of these seizures progressively increase, leading to a fully epileptic state, which is marked by consistent development of generalized tonic-clonic seizures. Kindling involves focal stimulation via implanted depth electrodes or repeated administration of chemoconvulsants such as pentylenetetrazol. Comparative analysis of preclinical and clinical findings has confirmed a high predictive validity of fully kindled animals for testing novel antiseizure medications. Thus, kindling models remain an essential component of anticonvulsant drug development programs. This article provides a comprehensive guide to working protocols, testing of therapeutic drugs, outcome parameters, troubleshooting, and data analysis for various electrical and chemical kindling epileptogenesis models for new therapeutic development and optimization. The use of pharmacological agents or genetically modified mice in kindling experiments is valuable, offering insights into the impact of a specific target on various aspects of seizures, including thresholds, initiation, spread, termination, and the generation of a hyperexcitable network. These kindling epileptogenesis paradigms are helpful in identifying mechanisms and disease-modifying interventions for epilepsy. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Hippocampal kindling Basic Protocol 2: Amygdala kindling Basic Protocol 3: Rapid hippocampal kindling Basic Protocol 4: Chemical kindling.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
- Institute of Pharmacology and Neurotherapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Abhinav Vadassery
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Bryan Clossen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
7
|
Qian X, Sheng X, Ding J, Yiming Z, Zheng J, Zhong J, Zhang T, Li X, He S, Li W, Zhang M. Tropisetron, an Antiemetic Drug, Exerts an Anti-Epileptic Effect Through the Activation of α7nAChRs in a Rat Model of Temporal Lobe Epilepsy. CNS Neurosci Ther 2024; 30:e70086. [PMID: 39445711 PMCID: PMC11500210 DOI: 10.1111/cns.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/28/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE), a prevalent chronic neurological disorder, affects millions of individuals and is often resistant to anti-epileptic drugs. Increasing evidence has shown that acetylcholine (ACh) and cholinergic neurotransmission play a role in the pathophysiology of epilepsy. Tropisetron, an antiemetic drug used for chemotherapy in clinic, has displayed potential in the treatment of Alzheimer's disease, depression, and schizophrenia in animal models. However, as a partial agonist of α7 nicotinic acetylcholine receptors (α7nAChRs), whether tropisetron possesses the therapeutic potential for TLE has not yet been determined. METHODS In this study, tropisetron was intraperitoneally injected into pilocarpine-induced epileptic rats for 3 weeks. Alpha-bungarotoxin (α-bgt), a specific α7nAChR antagonist, was applied to investigate the mechanism of tropisetron. Rats were assessed for spontaneous recurrent seizures (SRS) and cognitive function using video surveillance and Morris's water maze testing. Hippocampal impairment and synaptic structure were evaluated by Nissl staining, immunohistochemistry, and Golgi staining. Additionally, the levels of glutamate, γ-aminobutyric acid (GABA), ACh, α7nAChRs, neuroinflammatory cytokines, glucocorticoids and their receptors, as well as synapse-associated protein (F-actin, cofilin-1) were quantified. RESULTS The results showed that tropisetron significantly reduced SRS, improved cognitive function, alleviated hippocampal sclerosis, and concurrently suppressed synaptic remodeling and the m6A modification of cofilin-1 in TLE rats. Furthermore, tropisetron lowered glutamate levels without affecting GABA levels, reduced neuroinflammation, and increased ACh levels and α7nAChR expression in the hippocampi of TLE rats. The effects of tropisetron treatment were counteracted by α-bgt. CONCLUSION In summary, these findings indicate that tropisetron exhibits an anti-epileptic effect and provides neuroprotection in TLE rats through the activation of α7nAChRs. The potential mechanism may involve the reduction of glutamate levels, enhancement of cholinergic transmission, and suppression of synaptic remodeling. Consequently, the present study not only highlights the potential of tropisetron as an anti-epileptic drug but also identifies α7nAChRs as a promising therapeutic target for the treatment of TLE.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Xinwen Sheng
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
- Department of PharmacyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jiqiang Ding
- Department of Neurosurgery, The Six Affiliated Hospital (Dongguan Eastern Central Hospital)Jinan UniversityDongguanChina
| | - Zulipiya Yiming
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Jingjun Zheng
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Jiagui Zhong
- Department of Neurosurgery, The Six Affiliated Hospital (Dongguan Eastern Central Hospital)Jinan UniversityDongguanChina
| | - Tengyue Zhang
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Xuemei Li
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Shuqiao He
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Wei Li
- Department of Neurosurgery, The Six Affiliated Hospital (Dongguan Eastern Central Hospital)Jinan UniversityDongguanChina
| | - Mei Zhang
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| |
Collapse
|
8
|
Vasović D, Stanojlović O, Hrnčić D, Šutulović N, Vesković M, Ristić AJ, Radunović N, Mladenović D. Dose-Dependent Induction of Differential Seizure Phenotypes by Pilocarpine in Rats: Considerations for Translational Potential. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1579. [PMID: 39459366 PMCID: PMC11509679 DOI: 10.3390/medicina60101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Pilocarpine is used in experimental studies for testing antiepileptic drugs, but further characterization of this model is essential for its usage in testing novel drugs. The aim of our study was to study the behavioral and EEG characteristics of acute seizures caused by different doses of pilocarpine in rats. Materials and Methods: Male Wistar rats were treated with a single intraperitoneal dose of 100 mg/kg (P100), 200 mg/kg (P200), or 300 mg/kg (P300) of pilocarpine, and epileptiform behavior and EEG changes followed within 4 h. Results: The intensity and the duration of seizures were significantly higher in P300 vs. the P200 and P100 groups, with status epilepticus dominating in P300 and self-limiting tonic-clonic seizures in the P200 group. The seizure grade was significantly higher in P200 vs. the P100 group only during the first hour after pilocarpine application. The latency of seizures was significantly shorter in P300 and P200 compared with P100 group. Conclusions: Pilocarpine (200 mg/kg) can be used as a suitable model for the initial screening of potential anti-seizure medications, while at a dose of 300 mg/kg, it can be used for study of the mechanisms of epileptogenesis.
Collapse
Affiliation(s)
- Dolika Vasović
- Clinical Centre of Serbia, University Eye Hospital, Pasterova 2, 11000 Belgrade, Serbia;
| | - Olivera Stanojlović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Višegradska 26/II, 11000 Belgrade, Serbia
| | - Dragan Hrnčić
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Višegradska 26/II, 11000 Belgrade, Serbia
| | - Nikola Šutulović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Višegradska 26/II, 11000 Belgrade, Serbia
| | - Milena Vesković
- Institute of Pathophysiology “Ljubodrag Buba Mihailović”, Faculty of Medicine, University of Belgrade, Dr Subotića 9, 11000 Belgrade, Serbia
| | - Aleksandar J. Ristić
- Neurology Clinic, Clinical Center of Serbia, Dr Subotića 6, 11000 Belgrade, Serbia
| | - Nebojša Radunović
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology “Ljubodrag Buba Mihailović”, Faculty of Medicine, University of Belgrade, Dr Subotića 9, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Löscher W. Mammalian models of status epilepticus - Their value and limitations. Epilepsy Behav 2024; 158:109923. [PMID: 38944026 DOI: 10.1016/j.yebeh.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Status epilepticus (SE) is a medical and neurologic emergency that may lead to permanent brain damage, morbidity, or death. Animal models of SE are particularly important to study the pathophysiology of SE and mechanisms of SE resistance to antiseizure medications with the aim to develop new, more effective treatments. In addition to rodents (rats or mice), larger mammalian species such as dogs, pigs, and nonhuman primates are used. This short review describes and discusses the value and limitations of the most frequently used mammalian models of SE. Issues that are discussed include (1) differences between chemical and electrical SE models; (2) the role of genetic background and environment on SE in rodents; (3) the use of rodent models (a) to study the pathophysiology of SE and mechanisms of SE resistance; (b) to study developmental aspects of SE; (c) to study the efficacy of new treatments, including drug combinations, for refractory SE; (d) to study the long-term consequences of SE and identify biomarkers; (e) to develop treatments that prevent or modify epilepsy; (e) to study the pharmacology of spontaneous seizures; (4) the limitations of animal models of induced SE; and (5) the advantages (and limitations) of naturally (spontaneously) occurring SE in epileptic dogs and nonhuman primates. Overall, mammalian models of SE have significantly increased our understanding of the pathophysiology and drug resistance of SE and identified potential targets for new, more effective treatments. This paper was presented at the 9th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in April 2024.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
10
|
Klein P, Kaminski RM, Koepp M, Löscher W. New epilepsy therapies in development. Nat Rev Drug Discov 2024; 23:682-708. [PMID: 39039153 DOI: 10.1038/s41573-024-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Epilepsy is a common brain disorder, characterized by spontaneous recurrent seizures, with associated neuropsychiatric and cognitive comorbidities and increased mortality. Although people at risk can often be identified, interventions to prevent the development of the disorder are not available. Moreover, in at least 30% of patients, epilepsy cannot be controlled by current antiseizure medications (ASMs). As a result of considerable progress in epilepsy genetics and the development of novel disease models, drug screening technologies and innovative therapeutic modalities over the past 10 years, more than 200 novel epilepsy therapies are currently in the preclinical or clinical pipeline, including many treatments that act by new mechanisms. Assisted by diagnostic and predictive biomarkers, the treatment of epilepsy is undergoing paradigm shifts from symptom-only ASMs to disease prevention, and from broad trial-and-error treatments for seizures in general to mechanism-based treatments for specific epilepsy syndromes. In this Review, we assess recent progress in ASM development and outline future directions for the development of new therapies for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA.
| | | | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab., NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
11
|
Quintanilha MVT, Gobbo GDAM, Pinheiro GB, de Souza ACB, Camargo LC, Mortari MR. Evaluating a Venom-Bioinspired Peptide, NOR-1202, as an Antiepileptic Treatment in Male Mice Models. Toxins (Basel) 2024; 16:342. [PMID: 39195752 PMCID: PMC11359417 DOI: 10.3390/toxins16080342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Epilepsy, a neurological disorder characterized by excessive neuronal activity and synchronized electrical discharges, ranks among the most prevalent global neurological conditions. Despite common use, antiepileptic drugs often result in adverse effects and lack effectiveness in controlling seizures in temporal lobe epilepsy (TLE) patients. Recent research explored the potential of occidentalin-1202, a peptide inspired by Polybia occidentalis venom, in safeguarding Wistar rats from chemically induced seizures. The present study evaluated the new analog from occidentalin-1202 named NOR-1202 using acute and chronic pilocarpine-induced models and an acute kainic acid (KA) male mice model. NOR-1202 was administered through the intracerebroventricular (i.c.v.), subcutaneous, or intraperitoneal routes, with stereotaxic procedures for the i.c.v. injection. In the acute pilocarpine-induced model, NOR-1202 (i.c.v.) protected against generalized seizures and mortality but lacked systemic antiepileptic activity. In the KA model, it did not prevent generalized seizures but improved survival. In the chronic TLE model, NOR-1202's ED50 did not differ significantly from the epileptic or healthy groups regarding time spent in spontaneous recurrent seizures during the five-day treatment. However, the NOR-1202 group exhibited more seizures than the healthy group on the second day of treatment. In summary, NOR-1202 exhibits antiepileptic effects against chemoconvulsant-induced seizures, but no effect was observed when administered systemically.
Collapse
Affiliation(s)
| | | | | | | | - Luana Cristina Camargo
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (M.V.T.Q.); (G.d.A.M.G.); (G.B.P.); (A.C.B.d.S.); (M.R.M.)
| | | |
Collapse
|
12
|
Czapińska-Ciepiela EK, Łuszczki J, Czapiński P, Czuczwar SJ, Lasoń W. Presynaptic antiseizure medications - basic mechanisms and clues for their rational combinations. Pharmacol Rep 2024; 76:623-643. [PMID: 38776036 PMCID: PMC11294404 DOI: 10.1007/s43440-024-00603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 08/02/2024]
Abstract
Among clinically highly efficient antiseizure medications (ASMs) there are modifiers of the presynaptic release machinery. Of them, levetiracetam and brivaracetam show a high affinity to the synaptic vesicle protein type 2 A (SV2A), whereas pregabalin and gabapentin are selective ligands for the α2δ1 subunits of the voltage-gated calcium channels. In this paper, we present recent progress in understanding the significance of presynaptic release machinery in the neurochemical mechanisms of epilepsy and ASMs. Furthermore, we discuss whether the knowledge of the basic mechanisms of the presynaptically acting ASMs might help establish a rational polytherapy for drug-resistant epilepsy.
Collapse
Affiliation(s)
| | - Jarogniew Łuszczki
- Department of Occupational Medicine, Medical University of Lublin, 20-090, Lublin, Poland
| | - Piotr Czapiński
- Epilepsy and Migraine Treatment Center, 31-209, Kraków, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090, Lublin, Poland
| | - Władysław Lasoń
- Maj Institute of Pharmacology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, 31-343, Kraków, Poland.
| |
Collapse
|
13
|
Talevi A, Bellera C. An update on the novel methods for the discovery of antiseizure and antiepileptogenic medications: where are we in 2024? Expert Opin Drug Discov 2024; 19:975-990. [PMID: 38963148 DOI: 10.1080/17460441.2024.2373165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Despite the availability of around 30 antiseizure medications, 1/3 of patients with epilepsy fail to become seizure-free upon pharmacological treatment. Available medications provide adequate symptomatic control in two-thirds of patients, but disease-modifying drugs are still scarce. Recently, though, new paradigms have been explored. AREAS COVERED Three areas are reviewed in which a high degree of innovation in the search for novel antiseizure and antiepileptogenic medications has been implemented: development of novel screening approaches, search for novel therapeutic targets, and adoption of new drug discovery paradigms aligned with a systems pharmacology perspective. EXPERT OPINION In the past, worldwide leaders in epilepsy have reiteratively stated that the lack of progress in the field may be explained by the recurrent use of the same molecular targets and screening procedures to identify novel medications. This landscape has changed recently, as reflected by the new Epilepsy Therapy Screening Program and the introduction of many in vitro and in vivo models that could possibly improve our chances of identifying first-in-class medications that may control drug-resistant epilepsy or modify the course of disease. Other milestones include the study of new molecular targets for disease-modifying drugs and exploration of a systems pharmacology perspective to design new drugs.
Collapse
Affiliation(s)
- Alan Talevi
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina
| | - Carolina Bellera
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina
| |
Collapse
|
14
|
Pérez-Pérez D, Monío-Baca C, von Rüden EL, Buchecker V, Wagner A, Schönhoff K, Zvejniece L, Klimpel D, Potschka H. Preclinical efficacy profiles of the sigma-1 modulator E1R and of fenfluramine in two chronic mouse epilepsy models. Epilepsia 2024; 65:2470-2482. [PMID: 39119787 DOI: 10.1111/epi.18037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Given its key homeostatic role affecting mitochondria, ionotropic and metabotropic receptors, and voltage-gated ion channels, sigma-1 receptor (Sig1R) represents an interesting target for epilepsy management. Antiseizure effects of the positive allosteric modulator E1R have already been reported in acute seizure models. Although modulation of serotonergic neurotransmission is considered the main mechanism of action of fenfluramine, its interaction with Sig1R may be of additional relevance. METHODS To further explore the potential of Sig1R as a target, we assessed the efficacy and tolerability of E1R and fenfluramine in two chronic mouse models, including an amygdala kindling paradigm and the intrahippocampal kainate model. The relative contribution of the interaction with Sig1R was analyzed using combination experiments with the Sig1R antagonist NE-100. RESULTS Whereas E1R exerted pronounced dose-dependent antiseizure effects at well-tolerated doses in fully kindled mice, only limited effects were observed in response to fenfluramine, without a clear dose dependency. In the intrahippocampal kainate model, E1R failed to influence electrographic seizure activity. In contrast, fenfluramine significantly reduced the frequency of electrographic seizure events and their cumulative duration. Pretreatment with NE-100 reduced the effects of E1R and fenfluramine in the kindling model. Surprisingly, pre-exposure to NE-100 in the intrahippocampal kainate model rather enhanced and prolonged fenfluramine's antiseizure effects. SIGNIFICANCE In conclusion, the kindling data further support Sig1R as an interesting target for novel antiseizure medications. However, it is necessary to further explore the preclinical profile of E1R in chronic epilepsy models with spontaneous seizures. Despite the rather limited effects in the kindling paradigm, the findings from the intrahippocampal kainate model suggest that it is of interest to further assess a possible broad-spectrum potential of fenfluramine.
Collapse
Affiliation(s)
- Daniel Pérez-Pérez
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Cristina Monío-Baca
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Amelie Wagner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Dennis Klimpel
- Department of Forensic and Clinical Toxicology, Medizinisches Versorgungszentrum Labor Krone, Bad Salzuflen, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
15
|
Sysoev YI, Okovityi SV. Prospects of Electrocorticography in Neuropharmacological Studies in Small Laboratory Animals. Brain Sci 2024; 14:772. [PMID: 39199466 PMCID: PMC11353129 DOI: 10.3390/brainsci14080772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Electrophysiological methods of research are widely used in neurobiology. To assess the bioelectrical activity of the brain in small laboratory animals, electrocorticography (ECoG) is most often used, which allows the recording of signals directly from the cerebral cortex. To date, a number of methodological approaches to the manufacture and implantation of ECoG electrodes have been proposed, the complexity of which is determined by experimental tasks and logistical capabilities. Existing methods for analyzing bioelectrical signals are used to assess the functional state of the nervous system in test animals, as well as to identify correlates of pathological changes or pharmacological effects. The review presents current areas of applications of ECoG in neuropharmacological studies in small laboratory animals. Traditionally, this method is actively used to study the antiepileptic activity of new molecules. However, the possibility of using ECoG to assess the neuroprotective activity of drugs in models of traumatic, vascular, metabolic, or neurodegenerative CNS damage remains clearly underestimated. Despite the fact that ECoG has a number of disadvantages and methodological difficulties, the recorded data can be a useful addition to traditional molecular and behavioral research methods. An analysis of the works in recent years indicates a growing interest in the method as a tool for assessing the pharmacological activity of psychoactive drugs, especially in combination with classification and prediction algorithms.
Collapse
Affiliation(s)
- Yuriy I. Sysoev
- Pavlov Institute of Physiology, Russian Academy of Sciences (RAS), Saint Petersburg 199034, Russia
- Department of Neuroscience, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, Saint Petersburg 197022, Russia;
- N.P. Bechtereva Institute of the Human Brain, Saint Petersburg 197022, Russia
| |
Collapse
|
16
|
Di Gennaro G, Lattanzi S, Mecarelli O, Saverio Mennini F, Vigevano F. Current challenges in focal epilepsy treatment: An Italian Delphi consensus. Epilepsy Behav 2024; 155:109796. [PMID: 38643659 DOI: 10.1016/j.yebeh.2024.109796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Epilepsy, a globally prevalent neurological condition, presents distinct challenges in management, particularly for focal-onset types. This study aimed at addressing the current challenges and perspectives in focal epilepsy management, with focus on the Italian reality. METHODS Using the Delphi methodology, this research collected and analyzed the level of consensus of a panel of Italian epilepsy experts on key aspects of focal epilepsy care. Areas of focus included patient flow, treatment pathways, controlled versus uncontrolled epilepsy, follow-up protocols, and the relevance of patient-reported outcomes (PROs). This method allowed for a comprehensive assessment of consensus and divergences in clinical opinions and practices. RESULTS The study achieved consensus on 23 out of 26 statements, with three items failing to reach a consensus. There was strong agreement on the importance of timely intervention, individualized treatment plans, regular follow-ups at Epilepsy Centers, and the role of PROs in clinical practice. In cases of uncontrolled focal epilepsy, there was a clear inclination to pursue alternative treatment options following the failure of two previous therapies. Divergent views were evident on the inclusion of epilepsy surgery in treatment for uncontrolled epilepsy and the routine necessity of EEG evaluations in follow-ups. Other key findings included concerns about the lack of pediatric-specific research limiting current therapeutic options in this patient population, insufficient attention to the transition from pediatric to adult care, and need for improved communication. The results highlighted the complexities in managing epilepsy, with broad consensus on patient care aspects, yet notable divergences in specific treatment and management approaches. CONCLUSION The study offered valuable insights into the current state and complexities of managing focal-onset epilepsy. It highlighted many deficiencies in the therapeutic pathway of focal-onset epilepsy in the Italian reality, while it also underscored the importance of patient-centric care, the necessity of early and appropriate intervention, and individualized treatment approaches. The findings also called for continued research, policy development, and healthcare system improvements to enhance epilepsy management, highlighting the ongoing need for tailored healthcare solutions in this evolving field.
Collapse
Affiliation(s)
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Oriano Mecarelli
- Department of Human Neurosciences, Sapienza University, Rome (Retired) and Past President of LICE, Italian League Against Epilepsy, Rome, Italy
| | - Francesco Saverio Mennini
- Faculty of Economics, Economic Evaluation and HTA (EEHTA), CEIS, University of Rome "Tor Vergata", Rome, Italy; Institute for Leadership and Management in Health, Kingston University London, London, UK.
| | - Federico Vigevano
- Head of Paediatric Neurorehabilitation Department, IRCCS San Raffaele, Rome, Italy.
| |
Collapse
|
17
|
Cornelssen C, Payne A, Parker DL, Alexander M, Merrill R, Senthilkumar S, Christensen J, Wilcox KS, Odéen H, Rolston JD. Development of an MR-Guided Focused Ultrasound (MRgFUS) Lesioning Approach for the Fornix in the Rat Brain. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:920-926. [PMID: 38521695 DOI: 10.1016/j.ultrasmedbio.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE High-intensity magnetic resonance-guided focused ultrasound (MRgFUS) is a non-invasive therapy to lesion brain tissue, used clinically in patients and pre-clinically in several animal models. Challenges with focused ablation in rodent brains can include skull and near-field heating and accurately targeting small and deep brain structures. We overcame these challenges by creating a novel method consisting of a craniectomy skull preparation, a high-frequency transducer (3 MHz) with a small ultrasound focal spot, a transducer positioning system with an added manual adjustment of ∼0.1 mm targeting accuracy, and MR acoustic radiation force imaging for confirmation of focal spot placement. METHODS The study consisted of two main parts. First, two skull preparation approaches were compared. A skull thinning approach (n = 7 lesions) was compared to a craniectomy approach (n = 22 lesions), which confirmed a craniectomy was necessary to decrease skull and near-field heating. Second, the two transducer positioning systems were compared with the fornix chosen as a subcortical ablation target. We evaluated the accuracy of targeting using histologic methods from a high-frequency transducer with a small ultrasound focal spot and MR acoustic radiation force imaging. RESULTS Comparing a motorized adjustment system (∼1 mm precision, n = 17 lesions) to the motorized system with an added micromanipulator (∼0.1 mm precision, n = 14 lesions), we saw an increase in the accuracy of targeting the fornix by 133%. CONCLUSIONS The described work allows for repeatable and accurate targeting of small and deep structures in the rodent brain, such as the fornix, enabling the investigation of neurological disorders in chronic disease models.
Collapse
Affiliation(s)
- Carena Cornelssen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA.
| | - Allison Payne
- Department of Radiology & Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Dennis L Parker
- Department of Radiology & Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Matthew Alexander
- Department of Radiology & Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Robb Merrill
- Department of Radiology & Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Sharayu Senthilkumar
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Jacob Christensen
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Karen S Wilcox
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Henrik Odéen
- Department of Radiology & Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - John D Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Neurosurgery, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Stafstrom CE. Cyclin-Dependent Kinase-Like 5 Deficiency Disorder: A Calcium Channelopathy? Epilepsy Curr 2024; 24:191-193. [PMID: 38898903 PMCID: PMC11185205 DOI: 10.1177/15357597241249045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Epilepsy-Linked Kinase CDKL5 Phosphorylates Voltage-Gated Calcium Channel Cav2.3, Altering Inactivation Kinetics and Neuronal Excitability Sampedro-Castañeda M, Baltussen LL, Lopes AT, Qiu Y, Sirvio L, Mihaylov SR, Claxton S, Richardson JC, Lignani G, Ultanir SK. Nat Commun . 2023;14(1):7830. doi:10.1038/s41467-023-43475-w Developmental and epileptic encephalopathies (DEEs) are a group of rare childhood disorders characterized by severe epilepsy and cognitive deficits. Numerous DEE genes have been discovered thanks to advances in genomic diagnosis, yet putative molecular links between these disorders are unknown. CDKL5 deficiency disorder (CDD, DEE2), one of the most common genetic epilepsies, is caused by loss-of-function mutations in the brain enriched kinase CDKL5. To elucidate CDKL5 function, we looked for CDKL5 substrates using a SILAC-based phosphoproteomic screen. We identified the voltage-gated Ca2+ channel Cav2.3 (encoded by CACNA1E) as a physiological target of CDKL5 in mice and humans. Recombinant channel electrophysiology and interdisciplinary characterization of Cav2.3 phosphomutant mice revealed that loss of Cav2.3 phosphorylation leads to channel gain-of-function via slower inactivation and enhanced cholinergic stimulation, resulting in increased neuronal excitability. Our results thus show that CDD is partly a channelopathy. The properties of unphosphorylated Cav2.3 closely resemble those described for CACNA1E gain-of-function mutations causing DEE69, a disorder sharing clinical features with CDD. We show that these two single-gene diseases are mechanistically related and could be ameliorated with Cav2.3 inhibitors.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Division of Pediatric Neurology, Johns Hopkins University School of Medicine
| |
Collapse
|
19
|
Witkin JM, Shafique H, Smith JL, Cerne R. Is there a biochemical basis for purinergic P2X3 and P2X4 receptor antagonists to be considered as anti-seizure medications? Biochem Pharmacol 2024; 222:116046. [PMID: 38341001 DOI: 10.1016/j.bcp.2024.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Patients with epilepsy require improved medications. Purinergic receptors were identified as late as 1976 and are slowly emerging as potential drug targets for the discovery of antiseizure medications. While compounds interacting with these receptors have been approved for use as medicines (e.g., gefapixant for cough) and continue to be explored for a number of diseases (e.g., pain, cancer), there have been no purinergic receptor antagonists that have been advanced for epilepsy. There are very few studies on the channel conducting receptors, P2X3 and P2X4, that suggest their possible role in seizure generation or control. However, the limited data available provides some compelling reasons to believe that they could be valuable antiseizure medication drug targets. The data implicating P2X3 and P2X4 receptors in epilepsy includes the role played by ATP in neuronal excitability and seizures, receptor localization, increased receptor expression in epileptic brain, the involvement of these receptors in seizure-associated inflammation, crosstalk between these purinergic receptors and neuronal processes involved in seizures (GABAergic and glutamatergic neurotransmission), and the significant attenuation of seizures and seizure-like activity with P2X receptor blockade. The discovery of new and selective antagonists for P2X3 and P2X4 receptors is ongoing, armed with new structural data to guide rational design. The availability of safe, brain-penetrant compounds will likely encourage the clinical exploration of epilepsy as a disease entity.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; Department of Neuroscience and Trauma Research, Ascension St. Vincent, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | | | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
20
|
Zhang S, Xie S, Zheng Y, Chen Z, Xu C. Current advances in rodent drug-resistant temporal lobe epilepsy models: Hints from laboratory studies. Neurochem Int 2024; 174:105699. [PMID: 38382810 DOI: 10.1016/j.neuint.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Anti-seizure drugs (ASDs) are the first choice for the treatment of epilepsy, but there is still one-third of patients with epilepsy (PWEs) who are resistant to two or more appropriately chosen ASDs, named drug-resistant epilepsy (DRE). Temporal lobe epilepsy (TLE), a common type of epilepsy usually associated with hippocampal sclerosis (HS), shares the highest proportion of drug resistance (approximately 70%). In view of the key role of the temporal lobe in memory, emotion, and other physiological functions, patients with drug-resistant temporal lobe epilepsy (DR-TLE) are often accompanied by serious complications, and surgical procedures also yield extra considerations. The exact mechanisms for the genesis of DR-TLE remain unillustrated, which makes it hard to manage patients with DR-TLE in clinical practice. Animal models of DR-TLE play an irreplaceable role in both understanding the mechanism and searching for new therapeutic strategies or drugs. In this review article, we systematically summarized different types of current DR-TLE models, and then recent advances in mechanism investigations obtained in these models were presented, especially with the development of advanced experimental techniques and tools. We are deeply encouraged that novel strategies show great therapeutic potential in those DR-TLE models. Based on the big steps reached from the bench, a new light has been shed on the precise management of DR-TLE.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shengyang Xie
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yang Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
21
|
Löscher W. Of Mice and Men: The Inter-individual Variability of the Brain's Response to Drugs. eNeuro 2024; 11:ENEURO.0518-23.2024. [PMID: 38355298 PMCID: PMC10867552 DOI: 10.1523/eneuro.0518-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Biological variation is ubiquitous in nature. Despite highly standardized breeding and husbandry under controlled environmental conditions, phenotypic diversity exists in laboratory mice and rats just as it does in humans. The resulting inter-individual variability affects various characteristics of animal disease models, including the responsiveness to drugs. Thus, the common practice of averaging data within an experimental group can lead to misinterpretations in neuroscience and other research fields. In this commentary, the impact of inter-individual variation in drug responsiveness is illustrated by examples from the testing of antiseizure medications in rodent temporal lobe epilepsy models. Individual mice and rats rendered epileptic by treatment according to standardized protocols fall into groups that either do or do not respond to antiseizure medications, thus mimicking the clinical situation in patients with epilepsy. Population responses are not normally distributed, and divergent responding is concealed in averages subjected to parametric statistical tests. Genetic, epigenetic, and environmental factors are believed to contribute to inter-individual variation in drug response but the specific molecular and physiological causes are not well understood. Being aware of inter-individual variability in rodents allows an improved interpretation of both behavioral phenotypes and drug effects in a pharmacological experiment.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
22
|
Martínez-Aguirre C, Márquez LA, Santiago-Castañeda CL, Carmona-Cruz F, Nuñez-Lumbreras MDLA, Martínez-Rojas VA, Alonso-Vanegas M, Aguado-Carrillo G, Gómez-Víquez NL, Galván EJ, Cuéllar-Herrera M, Rocha L. Cannabidiol Modifies the Glutamate Over-Release in Brain Tissue of Patients and Rats with Epilepsy: A Pilot Study. Biomedicines 2023; 11:3237. [PMID: 38137458 PMCID: PMC10741033 DOI: 10.3390/biomedicines11123237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Drug-resistant epilepsy (DRE) is associated with high extracellular levels of glutamate. Studies support the idea that cannabidiol (CBD) decreases glutamate over-release. This study focused on investigating whether CBD reduces the evoked glutamate release in cortical synaptic terminals obtained from patients with DRE as well as in a preclinical model of epilepsy. Synaptic terminals (synaptosomes) were obtained from the epileptic neocortex of patients with drug-resistant temporal lobe epilepsy (DR-TLE, n = 10) or drug-resistant extratemporal lobe epilepsy (DR-ETLE, n = 10) submitted to epilepsy surgery. Synaptosomes highly purified by Percoll-sucrose density gradient were characterized by confocal microscopy and Western blot. Synaptosomes were used to estimate the high KCl (33 mM)-evoked glutamate release in the presence of CBD at different concentrations. Our results revealed responsive tissue obtained from seven patients with DR-TLE and seven patients with DR-ETLE. Responsive tissue showed lower glutamate release (p < 0.05) when incubated with CBD at low concentrations (less than 100 µM) but not at higher concentrations. Tissue that was non-responsive to CBD (DR-TLE, n = 3 and DR-ELTE, n = 3) showed high glutamate release despite CBD exposure at different concentrations. Simultaneously, a block of the human epileptic neocortex was used to determine its viability through whole-cell and extracellular electrophysiological recordings. The electrophysiological evaluations supported that the responsive and non-responsive human epileptic neocortices used in the present study exhibited proper neuronal viability and stability to acquire electrophysiological responses. We also investigated whether the subchronic administration of CBD could reduce glutamate over-release in a preclinical model of temporal lobe epilepsy. Administration of CBD (200 mg/kg, p.o. every 24 h for 7 days) to rats with lithium-pilocarpine-evoked spontaneous recurrent seizures reduced glutamate over-release in the hippocampus. The present study revealed that acute exposure to low concentrations of CBD can reduce the glutamate over-release in synaptic terminals obtained from some patients with DRE. This effect is also evident when applied subchronically in rats with spontaneous recurrent seizures. An important finding was the identification of a group of patients that were non-responsive to CBD effects. Future studies are essential to identify biomarkers of responsiveness to CBD to control DRE.
Collapse
Affiliation(s)
- Christopher Martínez-Aguirre
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Luis Alfredo Márquez
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Cindy Lizbeth Santiago-Castañeda
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Francia Carmona-Cruz
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Maria de los Angeles Nuñez-Lumbreras
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Vladimir A. Martínez-Rojas
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
- Center for Research on Aging, Center for Research and Advanced Studies, Mexico City 14330, Mexico
| | - Mario Alonso-Vanegas
- International Center for Epilepsy Surgery, HMG-Coyoacán Hospital, Mexico City 04380, Mexico;
| | - Gustavo Aguado-Carrillo
- Clinic of Epilepsy, General Hospital of México Dr. Eduardo Liceaga, Mexico City 06720, Mexico
| | - Norma L. Gómez-Víquez
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Emilio J. Galván
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
- Center for Research on Aging, Center for Research and Advanced Studies, Mexico City 14330, Mexico
| | - Manola Cuéllar-Herrera
- Clinic of Epilepsy, General Hospital of México Dr. Eduardo Liceaga, Mexico City 06720, Mexico
| | - Luisa Rocha
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| |
Collapse
|
23
|
Varlamova EG, Borisova EV, Evstratova YA, Newman AG, Kuldaeva VP, Gavrish MS, Kondakova EV, Tarabykin VS, Babaev AA, Turovsky EA. Socrates: A Novel N-Ethyl-N-nitrosourea-Induced Mouse Mutant with Audiogenic Epilepsy. Int J Mol Sci 2023; 24:17104. [PMID: 38069426 PMCID: PMC10707124 DOI: 10.3390/ijms242317104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation-inhibition balance in the brain, and it can serve as a mouse model of epilepsy.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Ekaterina V. Borisova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Yuliya A. Evstratova
- Federal State Budgetary Educational Institution of Higher Education “MIREA—Russian Technological University”, 78, Vernadskogo Ave., 119454 Moscow, Russia;
| | - Andrew G. Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
| | - Vera P. Kuldaeva
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Victor S. Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Alexey A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| |
Collapse
|
24
|
Kaur A, Kumar S, Goel RK. Adjunct antiseizure effect of clotrimazole in a rotenone corneal kindling mouse model of mitochondrial drug-resistant epilepsy. Epilepsy Res 2023; 198:107246. [PMID: 37925976 DOI: 10.1016/j.eplepsyres.2023.107246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
This study aimed to investigate the therapeutic potential of clotrimazole, an inhibitor of the transient receptor potential cation channel, for treating mitochondrial drug-resistant epilepsy and to understand its underlying neurochemical mechanisms. Adult albino mice underwent rotenone-corneal kindling, receiving daily electric shocks (15 mA, 20 V, 6-Hz for 3 s) through a corneal electrode, to induce mitochondrial drug-resistant epilepsy. The onset of drug resistance was confirmed by the significant (p < 0.05) lack of seizure control with standard antiseizure medications including levetiracetam (40 mg/kg), valproate (250 mg/kg), phenytoin (35 mg/kg), lamotrigine (15 mg/kg), and carbamazepine (40 mg/kg). Drug-resistant mice were then classified into one vehicle-treated group and three groups treated with varying doses of clotrimazole (40, 80, and 160 mg/kg orally). Neurochemical analysis of the seizurogenic hippocampus and cerebral cortex was conducted using high-performance liquid chromatography with an electrochemical detector. Administration of clotrimazole alongside standard antiseizure medications led to a significant decrease (p < 0.05) in seizure scores suggesting the restoration of antiseizure effects. Neurochemicals, including tryptophan, serotonin, kynurenine, serine, taurine, gamma-aminobutyric acid, and glutamate, were significantly restored post-clotrimazole treatment. Overall, the present study underscores the adjunct antiseizure effect of clotrimazole in a rotenone corneal kindling mouse model of mitochondrial drug-resistant epilepsy, emphasising its role in neurochemical restoration.
Collapse
Affiliation(s)
- Arvinder Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Sandeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India; Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
25
|
Auvin S, Galanopoulou AS, Moshé SL, Potschka H, Rocha L, Walker MC. Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2891-2908. [PMID: 37676719 PMCID: PMC10836613 DOI: 10.1111/epi.17751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Despite progress in the development of anti-seizure medications (ASMs), one third of people with epilepsy have drug-resistant epilepsy (DRE). The working definition of DRE, proposed by the International League Against Epilepsy (ILAE) in 2010, helped identify individuals who might benefit from presurgical evaluation early on. As the incidence of DRE remains high, the TASK1 workgroup on DRE of the ILAE/American Epilepsy Society (AES) Joint Translational Task Force discussed the heterogeneity and complexity of its presentation and mechanisms, the confounders in drawing mechanistic insights when testing treatment responses, and barriers in modeling DRE across the lifespan and translating across species. We propose that it is necessary to revisit the current definition of DRE, in order to transform the preclinical and clinical research of mechanisms and biomarkers, to identify novel, effective, precise, pharmacologic treatments, allowing for earlier recognition of drug resistance and individualized therapies.
Collapse
Affiliation(s)
| | - Stéphane Auvin
- Institut Universitaire de France, Paris, France; Paediatric Neurology, Assistance Publique - Hôpitaux de Paris, EpiCARE ERN Member, Robert-Debré Hospital, Paris, France; University Paris-Cité, Paris, France
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Luisa Rocha
- Pharmacobiology Department. Center for Research and Advanced Studies (CINVESTAV). Mexico City, Mexico
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
26
|
Cornelssen C, Payne A, Parker D, Alexander M, Merrill R, Senthilkumar S, Christensen J, Wilcox KS, Odéen H, Rolston JD. Development of an MR-guided focused ultrasound (MRgFUS) lesioning approach for small and deep structures in the rat brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561930. [PMID: 37905085 PMCID: PMC10614739 DOI: 10.1101/2023.10.11.561930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Objective High-intensity magnetic resonance-guided focused ultrasound (MRgFUS) is a noninvasive therapy to lesion brain tissue, used clinically in patients and preclinically in several animal models. Challenges with focused ablation in rodent brains can include skull and near-field heating and accurately targeting small and deep brain structures. We overcame these challenges by creating a novel method consisting of a craniectomy skull preparation, a high-frequency transducer (3 MHz) with a small ultrasound focal spot, a transducer positioning system with an added manual adjustment of ∼0.1 mm targeting accuracy, and MR acoustic radiation force imaging for confirmation of focal spot placement. Methods The study consisted of two main parts. First, two skull preparation approaches were compared. A skull thinning approach (n=7 lesions) was compared to a craniectomy approach (n=22 lesions), which confirmed a craniectomy was necessary to decrease skull and near-field heating. Second, the two transducer positioning systems were compared with the fornix chosen as a subcortical ablation target. We evaluated the accuracy of targeting using a high-frequency transducer with a small ultrasound focal spot and MR acoustic radiation force imaging. Results Comparing a motorized adjustment system (∼1 mm precision, n=17 lesions) to the motorized system with an added micromanipulator (∼0.1 mm precision, n=14 lesions), we saw an increase in the accuracy of targeting the fornix by 133%. The described work allows for repeatable and accurate targeting of small and deep structures in the rodent brain, such as the fornix, enabling the investigation of neurological disorders in chronic disease models.
Collapse
|
27
|
Rissardo JP, Fornari Caprara AL. Cenobamate (YKP3089) and Drug-Resistant Epilepsy: A Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1389. [PMID: 37629678 PMCID: PMC10456719 DOI: 10.3390/medicina59081389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Cenobamate (CNB), ([(R)-1-(2-chlorophenyl)-2-(2H-tetrazol-2-yl)ethyl], is a novel tetrazole alkyl carbamate derivative. In November 2019, the Food and Drug Administration approved Xcopri®, marketed by SK Life Science Inc., (Paramus, NJ, USA) for adult focal seizures. The European Medicines Agency approved Ontozry® by Arvelle Therapeutics Netherlands B.V.(Amsterdam, The Neatherlands) in March 2021. Cenobamate is a medication that could potentially change the perspectives regarding the management and prognosis of refractory epilepsy. In this way, this study aims to review the literature on CNB's pharmacological properties, pharmacokinetics, efficacy, and safety. CNB is a highly effective drug in managing focal onset seizures, with more than twenty percent of individuals with drug-resistant epilepsy achieving seizure freedom. This finding is remarkable in the antiseizure medication literature. The mechanism of action of CNB is still poorly understood, but it is associated with transient and persistent sodium currents and GABAergic neurotransmission. In animal studies, CNB showed sustained efficacy and potency in the 6 Hz test regardless of the stimulus intensity. CNB was revealed to be the most cost-effective drug among different third-generation antiseizure medications. Also, CNB could have neuroprotective effects. However, there are still concerns regarding its potential for abuse and suicidality risk, which future studies should clearly assess, after which protocols should be changed. The major drawback of CNB therapy is the slow and complex titration and maintenance phases preventing the wide use of this new agent in clinical practice.
Collapse
Affiliation(s)
- Jamir Pitton Rissardo
- Medicine Department, Federal University of Santa Maria, Santa Maria 97105-900, Brazil;
| | | |
Collapse
|