1
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Pollé OG, Pyr Dit Ruys S, Lemmer J, Hubinon C, Martin M, Herinckx G, Gatto L, Vertommen D, Lysy PA. Plasma proteomics in children with new-onset type 1 diabetes identifies new potential biomarkers of partial remission. Sci Rep 2024; 14:20798. [PMID: 39242727 PMCID: PMC11379901 DOI: 10.1038/s41598-024-71717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Partial remission (PR) occurs in only half of people with new-onset type 1 diabetes (T1D) and corresponds to a transient period characterized by low daily insulin needs, low glycemic fluctuations and increased endogenous insulin secretion. While identification of people with newly-onset T1D and significant residual beta-cell function may foster patient-specific interventions, reliable predictive biomarkers of PR occurrence currently lack. We analyzed the plasma of children with new-onset T1D to identify biomarkers present at diagnosis that predicted PR at 3 months post-diagnosis. We first performed an extensive shotgun proteomic analysis using Liquid Chromatography-Tandem-Mass-Spectrometry (LCMS/MS) on the plasma of 16 children with new-onset T1D and quantified 98 proteins significantly correlating with Insulin-Dose Adjusted glycated hemoglobin A1c score (IDAA1C). We next applied a series of both qualitative and statistical filters and selected protein candidates that were associated to pathophysiological mechanisms related to T1D. Finally, we translationally verified several of the candidates using single-shot targeted proteomic (PRM method) on raw plasma. Taken together, we identified plasma biomarkers present at diagnosis that may predict the occurrence of PR in a single mass-spectrometry run. We believe that the identification of new predictive biomarkers of PR and β-cell function is key to stratify people with new-onset T1D for β-cell preservation therapies.
Collapse
Affiliation(s)
- Olivier G Pollé
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
- Specialized Pediatrics Service, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | | | - Julie Lemmer
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Camille Hubinon
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Manon Martin
- Computational Biology and Bioinformatics (CBIO) Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Gaetan Herinckx
- MASSPROT Platform, Institut de Duve, UCLouvain, Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics (CBIO) Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Didier Vertommen
- MASSPROT Platform, Institut de Duve, UCLouvain, Brussels, Belgium
| | - Philippe A Lysy
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
- Specialized Pediatrics Service, Cliniques universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
3
|
Wu Y, Shen G, Hao C. Negative pressure wound therapy (NPWT) is superior to conventional moist dressings in wound bed preparation for diabetic foot ulcers: A randomized controlled trial. Saudi Med J 2023; 44:1020-1029. [PMID: 37777272 PMCID: PMC10541979 DOI: 10.15537/smj.2023.44.20230386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/24/2023] [Indexed: 10/02/2023] Open
Abstract
OBJECTIVES To compare the efficacy of negative pressure wound therapy (NPWT) and alginate dressings on wound bed preparation prior to split thickness skin graft (STSG) surgery for patients with chronic diabetic foot ulcers (DFUs). METHODS Between September 2022 and March 2023, we completed a randomized controlled trial in Nanjing First Hospital and PLA 454 Hospital. Patients were divided into 2 groups: i) the NPWT group (with vacuum-assisted closure, n=50); ii) the control group (with alginates dressings, n=50). Once DFU wound was filled with healthy granulation tissues, STSG surgery was performed. The time to STSG surgery was regarded as the primary outcome. The survival rates of skin graft, the wound blood perfusion, the wound neutrophil extracellular traps (NETs) formation, and polarization of M1 and M2 macrophages in DFU wounds were regarded ad secondary outcomes. RESULTS Patients in the NPWT group had less time to STSG surgery than the control group. The patients in the NPWT group had prominently increased survival rates of skin graft, increased wound blood perfusion, and decreased NET formation in comparison with the control group. The macrophages in DFU wounds switched from M1 to M2 phenotype in the NPWT group. CONCLUSION Negative pressure wound therapy is superior to conventional moist dressings in wound bed preparation prior to STSG surgery for patients with chronic DFUs.
Collapse
Affiliation(s)
- Yin Wu
- From the Department of Burn and Plastic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Gan Shen
- From the Department of Burn and Plastic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Chao Hao
- From the Department of Burn and Plastic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Bissenova S, Buitinga M, Boesch M, Korf H, Casteels K, Teunkens A, Mathieu C, Gysemans C. High-Throughput Analysis of Neutrophil Extracellular Trap Levels in Subtypes of People with Type 1 Diabetes. BIOLOGY 2023; 12:882. [PMID: 37372166 DOI: 10.3390/biology12060882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Neutrophils might play an important role in the pathogenesis of autoimmune diseases, including type 1 diabetes (T1D), by contributing to immune dysregulation via a highly inflammatory program called neutrophil extracellular trap (NET) formation or NETosis, involving the extrusion of chromatin entangled with anti-microbial proteins. However, numerous studies reported contradictory data on NET formation in T1D. This might in part be due to the inherent heterogeneity of the disease and the influence of the disease developmental stage on neutrophil behavior. Moreover, there is a lack of a standardized method to measure NETosis in an unbiased and robust manner. In this study, we employed the Incucyte® ZOOM live-cell imaging platform to study NETosis levels in various subtypes of adult and pediatric T1D donors compared to healthy controls (HC) at baseline and in response to phorbol-myristate acetate (PMA) and ionomycin. Firstly, we determined that the technique allows for an operator-independent and automated quantification of NET formation across multiple time points, which showed that PMA and ionomycin induced NETosis with distinct kinetic characteristics, confirmed by high-resolution microscopy. NETosis levels also showed a clear dose-response curve to increasing concentrations of both stimuli. Overall, using Incucyte® ZOOM, no aberrant NET formation was observed over time in the different subtypes of T1D populations, irrespective of age, compared to HC. These data were corroborated by the levels of peripheral NET markers in all study participants. The current study showed that live-cell imaging allows for a robust and unbiased analysis and quantification of NET formation in real-time. Peripheral neutrophil measures should be complemented with dynamic quantification of NETing neutrophils to make robust conclusions on NET formation in health and disease.
Collapse
Affiliation(s)
- Samal Bissenova
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Mijke Buitinga
- Department of Nutrition and Movement Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6211 LK Maastricht, The Netherlands
| | - Markus Boesch
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Kristina Casteels
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - An Teunkens
- Anesthesiology and Algology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|