1
|
Thomas RE, Mudlaff F, Schweers K, Farmer WT, Suvrathan A. Heterogeneity in Slow Synaptic Transmission Diversifies Purkinje Cell Timing. J Neurosci 2024; 44:e0455242024. [PMID: 39147589 PMCID: PMC11391503 DOI: 10.1523/jneurosci.0455-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
The cerebellum plays an important role in diverse brain functions, ranging from motor learning to cognition. Recent studies have suggested that molecular and cellular heterogeneity within cerebellar lobules contributes to functional differences across the cerebellum. However, the specific relationship between molecular and cellular heterogeneity and diverse functional outputs of different regions of the cerebellum remains unclear. Here, we describe a previously unappreciated form of synaptic heterogeneity at parallel fiber synapses to Purkinje cells in the mouse cerebellum (both sexes). In contrast to uniform fast synaptic transmission, we found that the properties of slow synaptic transmission varied by up to threefold across different lobules of the mouse cerebellum, resulting in surprising heterogeneity. Depending on the location of a Purkinje cell, the time of peak of slow synaptic currents varied by hundreds of milliseconds. The duration and decay time of these currents also spanned hundreds of milliseconds, based on lobule. We found that, as a consequence of the heterogeneous synaptic dynamics, the same brief input stimulus was transformed into prolonged firing patterns over a range of timescales that depended on Purkinje cell location.
Collapse
Affiliation(s)
- Riya Elizabeth Thomas
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Franziska Mudlaff
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Kyra Schweers
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
| | - William Todd Farmer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Aparna Suvrathan
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
| |
Collapse
|
2
|
Phelan KD, Shwe UT, Wu H, Zheng F. Investigating Contributions of Canonical Transient Receptor Potential Channel 3 to Hippocampal Hyperexcitability and Seizure-Induced Neuronal Cell Death. Int J Mol Sci 2024; 25:6260. [PMID: 38892448 PMCID: PMC11172528 DOI: 10.3390/ijms25116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Canonical transient receptor potential channel 3 (TRPC3) is the most abundant TRPC channel in the brain and is highly expressed in all subfields of the hippocampus. Previous studies have suggested that TRPC3 channels may be involved in the hyperexcitability of hippocampal pyramidal neurons and seizures. Genetic ablation of TRPC3 channel expression reduced the intensity of pilocarpine-induced status epilepticus (SE). However, the underlying cellular mechanisms remain unexplored and the contribution of TRPC3 channels to SE-induced neurodegeneration is not determined. In this study, we investigated the contribution of TRPC3 channels to the electrophysiological properties of hippocampal pyramidal neurons and hippocampal synaptic plasticity, and the contribution of TRPC3 channels to seizure-induced neuronal cell death. We found that genetic ablation of TRPC3 expression did not alter basic electrophysiological properties of hippocampal pyramidal neurons and had a complex impact on epileptiform bursting in CA3. However, TRPC3 channels contribute significantly to long-term potentiation in CA1 and SE-induced neurodegeneration. Our results provided further support for therapeutic potential of TRPC3 inhibitors and raised new questions that need to be answered by future studies.
Collapse
Affiliation(s)
- Kevin D. Phelan
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - U Thaung Shwe
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Hong Wu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Fang Zheng
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Sekerková G, Kilic S, Cheng YH, Fredrick N, Osmani A, Kim H, Opal P, Martina M. Phenotypical, genotypical and pathological characterization of the moonwalker mouse, a model of ataxia. Neurobiol Dis 2024; 195:106492. [PMID: 38575093 PMCID: PMC11089908 DOI: 10.1016/j.nbd.2024.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
We performed a comprehensive study of the morphological, functional, and genetic features of moonwalker (MWK) mice, a mouse model of spinocerebellar ataxia caused by a gain of function of the TRPC3 channel. These mice show numerous behavioral symptoms including tremor, altered gait, circling behavior, impaired motor coordination, impaired motor learning and decreased limb strength. Cerebellar pathology is characterized by early and almost complete loss of unipolar brush cells as well as slowly progressive, moderate loss of Purkinje cell (PCs). Structural damage also includes loss of synaptic contacts from parallel fibers, swollen ER structures, and degenerating axons. Interestingly, no obvious correlation was observed between PC loss and severity of the symptoms, as the phenotype stabilizes around 2 months of age, while the cerebellar pathology is progressive. This is probably due to the fact that PC function is severely impaired much earlier than the appearance of PC loss. Indeed, PC firing is already impaired in 3 weeks old mice. An interesting feature of the MWK pathology that still remains to be explained consists in a strong lobule selectivity of the PC loss, which is puzzling considering that TRPC is expressed in every PC. Intriguingly, genetic analysis of MWK cerebella shows, among other alterations, changes in the expression of both apoptosis inducing and resistance factors possibly suggesting that damaged PCs initiate specific cellular pathways that protect them from overt cell loss.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| | - Sumeyra Kilic
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Yen-Hsin Cheng
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Natalie Fredrick
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Anne Osmani
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Haram Kim
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Marco Martina
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Wu F, Bu S, Wang H. Role of TRP Channels in Metabolism-Related Diseases. Int J Mol Sci 2024; 25:692. [PMID: 38255767 PMCID: PMC10815096 DOI: 10.3390/ijms25020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.
Collapse
Affiliation(s)
| | | | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (F.W.); (S.B.)
| |
Collapse
|