1
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Transcriptome Analysis Provides Insights into the Mechanism of Astaxanthin Enrichment in a Mutant of the Ridgetail White Prawn Exopalaemon carinicauda. Genes (Basel) 2021; 12:genes12050618. [PMID: 33919403 PMCID: PMC8143343 DOI: 10.3390/genes12050618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
A mutant of the ridgetail white prawn, which exhibited rare orange-red body color with a higher level of free astaxanthin (ASTX) concentration than that in the wild-type prawn, was obtained in our lab. In order to understand the underlying mechanism for the existence of a high level of free astaxanthin, transcriptome analysis was performed to identify the differentially expressed genes (DEGs) between the mutant and wild-type prawns. A total of 78,224 unigenes were obtained, and 1863 were identified as DEGs, in which 902 unigenes showed higher expression levels, while 961 unigenes presented lower expression levels in the mutant in comparison with the wild-type prawns. Based on Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis, as well as further investigation of annotated DEGs, we found that the biological processes related to astaxanthin binding, transport, and metabolism presented significant differences between the mutant and the wild-type prawns. Some genes related to these processes, including crustacyanin, apolipoprotein D (ApoD), cathepsin, and cuticle proteins, were identified as DEGs between the two types of prawns. These data may provide important information for us to understand the molecular mechanism of the existence of a high level of free astaxanthin in the prawn.
Collapse
|
3
|
Pondeville E, Puchot N, Parvy JP, Carissimo G, Poidevin M, Waterhouse RM, Marois E, Bourgouin C. Hemocyte-targeted gene expression in the female malaria mosquito using the hemolectin promoter from Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103339. [PMID: 32105779 PMCID: PMC7181189 DOI: 10.1016/j.ibmb.2020.103339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Hemocytes, the immune cells in mosquitoes, participate in immune defenses against pathogens including malaria parasites. Mosquito hemocytes can also be infected by arthropod-borne viruses but the pro- or anti-viral nature of this interaction is unknown. Although there has been progress on hemocyte characterization during pathogen infection in mosquitoes, the specific contribution of hemocytes to immune responses and the hemocyte-specific functions of immune genes and pathways remain unresolved due to the lack of genetic tools to manipulate gene expression in these cells specifically. Here, we used the Gal4-UAS system to characterize the activity of the Drosophila hemocyte-specific hemolectin promoter in the adults of Anopheles gambiae, the malaria mosquito. We established an hml-Gal4 driver line that we further crossed to a fluorescent UAS responder line, and examined the expression pattern in the adult progeny driven by the hml promoter. We show that the hml regulatory region drives hemocyte-specific transgene expression in a subset of hemocytes, and that transgene expression is triggered after a blood meal. The hml promoter drives transgene expression in differentiating prohemocytes as well as in differentiated granulocytes. Analysis of different immune markers in hemocytes in which the hml promoter drives transgene expression revealed that this regulatory region could be used to study phagocytosis as well as melanization. Finally, the hml promoter drives transgene expression in hemocytes in which o'nyong-nyong virus replicates. Altogether, the Drosophila hml promoter constitutes a good tool to drive transgene expression in hemocyte only and to analyze the function of these cells and the genes they express during pathogen infection in Anopheles gambiae.
Collapse
Affiliation(s)
- Emilie Pondeville
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France.
| | - Nicolas Puchot
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | | | - Guillaume Carissimo
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Mickael Poidevin
- Centre de Génétique Moléculaire, CNRS UPR 2167, Gif-sur-Yvette, France
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Eric Marois
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France
| | - Catherine Bourgouin
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France.
| |
Collapse
|
4
|
Melcarne C, Lemaitre B, Kurant E. Phagocytosis in Drosophila: From molecules and cellular machinery to physiology. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:1-12. [PMID: 30953686 DOI: 10.1016/j.ibmb.2019.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 05/20/2023]
Abstract
Phagocytosis is an evolutionarily conserved mechanism that plays a key role in both host defence and tissue homeostasis in multicellular organisms. A range of surface receptors expressed on different cell types allow discriminating between self and non-self (or altered) material, thus enabling phagocytosis of pathogens and apoptotic cells. The phagocytosis process can be divided into four main steps: 1) binding of the phagocyte to the target particle, 2) particle internalization and phagosome formation, through remodelling of the plasma membrane, 3) phagosome maturation, and 4) particle destruction in the phagolysosome. In this review, we describe our present knowledge on phagocytosis in the fruit fly Drosophila melanogaster, assessing each of the key steps involved in engulfment of both apoptotic cells and bacteria. We also assess the physiological role of phagocytosis in host defence, development and tissue homeostasis.
Collapse
Affiliation(s)
- C Melcarne
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - B Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - E Kurant
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 34988, Israel.
| |
Collapse
|
5
|
Host and Bacterial Factors Control Susceptibility of Drosophila melanogaster to Coxiella burnetii Infection. Infect Immun 2017; 85:IAI.00218-17. [PMID: 28438980 DOI: 10.1128/iai.00218-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022] Open
Abstract
Coxiella burnetii is the causative agent of Q fever, a zoonotic disease that threatens both human and animal health. Due to the paucity of experimental animal models, little is known about how host factors interface with bacterial components and affect pathogenesis. Here, we used Drosophila melanogaster, in conjunction with the biosafety level 2 (BSL2) Nine Mile phase II (NMII) clone 4 strain of C. burnetii, as a model to investigate host and bacterial components implicated in infection. We demonstrate that adult Drosophila flies are susceptible to C. burnetii NMII infection and that this bacterial strain, which activates the immune deficiency (IMD) pathway, is able to replicate and cause mortality in the animals. We show that in the absence of Eiger, the only known tumor necrosis factor (TNF) superfamily homolog in Drosophila, Coxiella-infected flies exhibit reduced mortality from infection. We also demonstrate that the Coxiella type 4 secretion system (T4SS) is critical for the formation of the Coxiella-containing vacuole and establishment of infection in Drosophila Altogether, our data reveal that the Drosophila TNF homolog Eiger and the Coxiella T4SS are implicated in the pathogenesis of C. burnetii in flies. The Drosophila/NMII model mimics relevant aspects of the infection in mammals, such as a critical role of host TNF and the bacterial T4SS in pathogenesis. Our work also demonstrates the usefulness of this BSL2 model to investigate both host and Coxiella components implicated in infection.
Collapse
|
6
|
Chiang ACY, Yang H, Yamashita YM. spict, a cyst cell-specific gene, regulates starvation-induced spermatogonial cell death in the Drosophila testis. Sci Rep 2017; 7:40245. [PMID: 28071722 PMCID: PMC5223112 DOI: 10.1038/srep40245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022] Open
Abstract
Tissues are maintained in a homeostatic state by balancing the constant loss of old cells with the continued production of new cells. Tissue homeostasis can shift between high and low turnover states to cope with environmental changes such as nutrient availability. Recently, we discovered that the elimination of transit-amplifying cells plays a critical role in maintaining the stem cell population during protein starvation in the Drosophila testis. Here, we identify spict, a gene expressed specifically in differentiating cyst cells, as a regulator of spermatogonial death. Spict is upregulated in cyst cells that phagocytose dying spermatogonia. We propose that phagocytosis and subsequent clearance of dead spermatogonia, which is partly promoted by Spict, contribute to stem cell maintenance during prolonged protein starvation.
Collapse
Affiliation(s)
- Ason C-Y Chiang
- Department of Cell and Developmental Biology, Medical School, University of Michigan Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan Ann Arbor, MI 48109
| | - Heiko Yang
- Life Sciences Institute, University of Michigan Ann Arbor, MI 48109.,Medical Scientist Training Program, University of Michigan Ann Arbor, MI 48109.,Cellular and Molecular Biology Program, University of Michigan Ann Arbor, MI 48109
| | - Yukiko M Yamashita
- Department of Cell and Developmental Biology, Medical School, University of Michigan Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan Ann Arbor, MI 48109.,Cellular and Molecular Biology Program, University of Michigan Ann Arbor, MI 48109.,Howard Hughes Medical Institute, University of Michigan Ann Arbor, MI 48109
| |
Collapse
|
7
|
Bader CA, Sorvina A, Simpson PV, Wright PJ, Stagni S, Plush SE, Massi M, Brooks DA. Imaging nuclear, endoplasmic reticulum and plasma membrane events in real time. FEBS Lett 2016; 590:3051-60. [DOI: 10.1002/1873-3468.12365] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Christie A. Bader
- Mechanisms in Cell Biology and Disease Research Group School of Pharmacy and Medical Sciences Sansom Institute for Health Research University of South Australia Adelaide Australia
| | - Alexandra Sorvina
- Mechanisms in Cell Biology and Disease Research Group School of Pharmacy and Medical Sciences Sansom Institute for Health Research University of South Australia Adelaide Australia
| | - Peter V. Simpson
- Department of Chemistry and Nanochemistry Research Institute Curtin University Bently Australia
| | - Phillip J. Wright
- Department of Chemistry and Nanochemistry Research Institute Curtin University Bently Australia
| | - Stefano Stagni
- Department of Industrial Chemistry ‘Toso Montanari’ University of Bologna Italy
| | - Sally E. Plush
- Mechanisms in Cell Biology and Disease Research Group School of Pharmacy and Medical Sciences Sansom Institute for Health Research University of South Australia Adelaide Australia
| | - Massimiliano Massi
- Department of Chemistry and Nanochemistry Research Institute Curtin University Bently Australia
| | - Douglas A. Brooks
- Mechanisms in Cell Biology and Disease Research Group School of Pharmacy and Medical Sciences Sansom Institute for Health Research University of South Australia Adelaide Australia
| |
Collapse
|
8
|
Meehan TL, Joudi TF, Timmons AK, Taylor JD, Habib CS, Peterson JS, Emmanuel S, Franc NC, McCall K. Components of the Engulfment Machinery Have Distinct Roles in Corpse Processing. PLoS One 2016; 11:e0158217. [PMID: 27347682 PMCID: PMC4922577 DOI: 10.1371/journal.pone.0158217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/13/2016] [Indexed: 01/10/2023] Open
Abstract
Billions of cells die in our bodies on a daily basis and are engulfed by phagocytes. Engulfment, or phagocytosis, can be broken down into five basic steps: attraction of the phagocyte, recognition of the dying cell, internalization, phagosome maturation, and acidification. In this study, we focus on the last two steps, which can collectively be considered corpse processing, in which the engulfed material is degraded. We use the Drosophila ovarian follicle cells as a model for engulfment of apoptotic cells by epithelial cells. We show that engulfed material is processed using the canonical corpse processing pathway involving the small GTPases Rab5 and Rab7. The phagocytic receptor Draper is present on the phagocytic cup and on nascent, phosphatidylinositol 3-phosphate (PI(3)P)- and Rab7-positive phagosomes, whereas integrins are maintained on the cell surface during engulfment. Due to the difference in subcellular localization, we investigated the role of Draper, integrins, and downstream signaling components in corpse processing. We found that some proteins were required for internalization only, while others had defects in corpse processing as well. This suggests that several of the core engulfment proteins are required for distinct steps of engulfment. We also performed double mutant analysis and found that combined loss of draper and αPS3 still resulted in a small number of engulfed vesicles. Therefore, we investigated another known engulfment receptor, Crq. We found that loss of all three receptors did not inhibit engulfment any further, suggesting that Crq does not play a role in engulfment by the follicle cells. A more complete understanding of how the engulfment and corpse processing machinery interact may enable better understanding and treatment of diseases associated with defects in engulfment by epithelial cells.
Collapse
Affiliation(s)
- Tracy L. Meehan
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- * E-mail: (KM); (TM)
| | - Tony F. Joudi
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Allison K. Timmons
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Jeffrey D. Taylor
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Corey S. Habib
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Jeanne S. Peterson
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Shanan Emmanuel
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Nathalie C. Franc
- The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
| | - Kimberly McCall
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- * E-mail: (KM); (TM)
| |
Collapse
|