1
|
Parker J, Moris JM, Goodman LC, Paidisetty VK, Vanegas V, Turner HA, Melgar D, Koh Y. A multifactorial lens on risk factors promoting the progression of Alzheimer's disease. Brain Res 2025; 1846:149262. [PMID: 39374837 DOI: 10.1016/j.brainres.2024.149262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The prevalence of Alzheimer's disease (AD) among adults has continued to increase over the last two decades, which has sparked a significant increase in research that focuses on the topic of "brain health." While AD is partially determined by a genetic predisposition, there are still numerous pathophysiological factors that require further research. This research requirement stems from the acknowledgment that AD is a multifactorial disease that to date, cannot be prevented. Therefore, addressing and understanding the potential AD risk factors is necessary to increase the quality of life of an aging population. To raise awareness of critical pathways that impact AD progression, this review manuscript describes AD etiologies, structural impairments, and biomolecular changes that can significantly increase the risk of AD. Among them, a special highlight is given to inflammasomes, which have been shown to bolster neuroinflammation. Alike, the role of brain-derived neurotrophic factor, an essential neuropeptide that promotes the preservation of cognition is presented. In addition, the functional role of neurovascular units to regulate brain health is highlighted and contrasted to inflammatory conditions, such as cellular senescence, vascular damage, and increased visceral adiposity, who all increase the risk of neuroinflammation. Altogether, a multifactorial interventional approach is warranted to reduce the risk of AD.
Collapse
Affiliation(s)
- Jenna Parker
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Jose M Moris
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Lily C Goodman
- School of Medicine, Creighton University, Phoenix, AZ, USA
| | - Vineet K Paidisetty
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Vicente Vanegas
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Haley A Turner
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Daniel Melgar
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA.
| |
Collapse
|
2
|
Luo Y, Huang CC, Howard NC, Wang X, Liu Q, Li X, Zhu J, Amariuta T, Asgari S, Ishigaki K, Calderon R, Raman S, Ramnarine AK, Mayfield JA, Moody DB, Lecca L, Fortune SM, Murray MB, Raychaudhuri S. Paired analysis of host and pathogen genomes identifies determinants of human tuberculosis. Nat Commun 2024; 15:10393. [PMID: 39613754 DOI: 10.1038/s41467-024-54741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Infectious disease is the result of interactions between host and pathogen and can depend on genetic variations in both. We conduct a genome-to-genome study of paired human and Mycobacterium tuberculosis genomes from a cohort of 1556 tuberculosis patients in Lima, Peru. We identify an association between a human intronic variant (rs3130660, OR = 10.06, 95%CI: 4.87 - 20.77, P = 7.92 × 10-8) in the FLOT1 gene and a subclavaluee of Mtb Lineage 2. In a human macrophage infection model, we observe hosts with the rs3130660-A allele exhibited stronger interferon gene signatures. The interacting strains have altered redox states due to a thioredoxin reductase mutation. We investigate this association in a 2020 cohort of 699 patients recruited during the COVID-19 pandemic. While the prevalence of the interacting strain almost doubled between 2010 and 2020, its infection is not associated with rs3130660 in this recent cohort. These findings suggest a complex interplay among host, pathogen, and environmental factors in tuberculosis dynamics.
Collapse
Affiliation(s)
- Yang Luo
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Chuan-Chin Huang
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Nicole C Howard
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Xin Wang
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xinyi Li
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tiffany Amariuta
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samira Asgari
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kazuyoshi Ishigaki
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Kobe, Japan
| | | | - Sahadevan Raman
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandrea K Ramnarine
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob A Mayfield
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leonid Lecca
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
- Socios En Salud Sucursal Peru, Lima, Peru
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| | - Megan B Murray
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H Chan School of Public Health, Boston, MA, USA.
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Đokanović D, Gajanin R, Gojković Z, Klokić S, Sladojević I, Gajanin V, Reljić D, Jović-Đokanović O, Amidžić L, Marošević G. Expression of p16INK4a, FLOT2, and EGFR in oropharyngeal carcinoma, prognostic significance and correlation with clinicopathological characteristics. Medicine (Baltimore) 2024; 103:e38894. [PMID: 39151502 PMCID: PMC11332727 DOI: 10.1097/md.0000000000038894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 08/19/2024] Open
Abstract
Various factors can affect the survival of patients with oropharyngeal cancer. We assessed the expression of protein p16INK4a, Flotillin2, epidermal growth factor receptor, and other clinicopathological features and their prognostic value for this type of cancer. We gathered patient data on demographics, clinicopathological characteristics, treatment patterns, and outcomes. Histologically and by immunochemistry staining we determined expression of prognostic factors and molecular biomarkers. The primary endpoints were overall survival (OS), disease-specific survival (DSS), and disease-free survival (DFS). Survival was assessed using the Kaplan-Meier method and Cox regression model analyses of potential prognostic parameters. After a median follow-up of 78 months, the median OS was 41 months, with an event recorded in 77.8% of patients. Median DFS was 22 months, 37 patients (51.4%) had disease relapse. The DSS survival rate was 58.3% with a median survival of 68 months. In regards to molecular biomarkers previously mentioned, there was no statistical significance for survival categories. After conducting a multivariate analysis of significant variables, we found that only recurrence, vascular invasion, and surgical intervention remained as factors with independent effects on both OS and DFS. Recurrence and the N stage were identified as independent prognostic factors for DSS. Our analysis underscores the complexity of factors that collectively influence survival following the diagnosis of OPSCC. Several factors were found to be statistically significant. These factors included the type of surgical procedure, disease relapse, vascular invasion, lymphatic invasion, perineural invasion, advanced T stage of the disease, N stage of the disease, and smoking status. The significance of these factors may vary across different types of survival. This analysis did not find any significant impact on survival from the growth factors tested, namely epidermal growth factor receptor, Flotillin2, and p16INK4a, in the applied regression models.
Collapse
Affiliation(s)
- Dejan Đokanović
- Oncology Clinic, University Clinical Center of the Republic of Srpska, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
- Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Radoslav Gajanin
- Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Zdenka Gojković
- Oncology Clinic, University Clinical Center of the Republic of Srpska, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
- Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Semir Klokić
- Gruppenpraxis Laufen, General Practioners Office, Basel-Country, Switzerland
| | - Igor Sladojević
- Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Vesna Gajanin
- Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Dragana Reljić
- Oncology Clinic, University Clinical Center of the Republic of Srpska, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Olja Jović-Đokanović
- Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
- Infectology Cllinic, University Clinical Center of the Republic of Srpska, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Ljiljana Amidžić
- Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Goran Marošević
- Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| |
Collapse
|
4
|
Zhou N, Li X, Zheng Z, Liu J, Downie JA, Xie F. RinRK1 enhances NF receptors accumulation in nanodomain-like structures at root-hair tip. Nat Commun 2024; 15:3568. [PMID: 38670968 PMCID: PMC11053012 DOI: 10.1038/s41467-024-47794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Legume-rhizobia root-nodule symbioses involve the recognition of rhizobial Nod factor (NF) signals by NF receptors, triggering both nodule organogenesis and rhizobial infection. RinRK1 is induced by NF signaling and is essential for infection thread (IT) formation in Lotus japonicus. However, the precise mechanism underlying this process remains unknown. Here, we show that RinRK1 interacts with the extracellular domains of NF receptors (NFR1 and NFR5) to promote their accumulation at root hair tips in response to rhizobia or NFs. Furthermore, Flotillin 1 (Flot1), a nanodomain-organizing protein, associates with the kinase domains of NFR1, NFR5 and RinRK1. RinRK1 promotes the interactions between Flot1 and NF receptors and both RinRK1 and Flot1 are necessary for the accumulation of NF receptors at root hair tips upon NF stimulation. Our study shows that RinRK1 and Flot1 play a crucial role in NF receptor complex assembly within localized plasma membrane signaling centers to promote symbiotic infection.
Collapse
Affiliation(s)
- Ning Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhiqiong Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - J Allan Downie
- John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Mugiya T, Mothibe M, Khathi A, Ngubane P, Sibiya N. Glycaemic abnormalities induced by small molecule tryosine kinase inhibitors: a review. Front Pharmacol 2024; 15:1355171. [PMID: 38362147 PMCID: PMC10867135 DOI: 10.3389/fphar.2024.1355171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
In light of the expected increase in the prevalence of diabetes mellitus due to an aging population, sedentary lifestyles, an increase in obesity, and unhealthy diets, there is a need to identify potential pharmacological agents that can heighten the risk of developing diabetes. Similarly, it is equally important to also identify those agents that show blood glucose-lowering properties. Amongst these agents are tyrosine kinase inhibitors used to treat certain types of cancers. Over the last two decades, there has been an increase in the use of targeted chemotherapy for cancers such as renal cell carcinoma, chronic leukaemia, and gastrointestinal stromal tumours. Small molecule tyrosine kinase inhibitors have been at the forefront of targeted chemotherapy. Studies have shown that small molecule tyrosine kinase inhibitors can alter glycaemic control and glucose metabolism, with some demonstrating hypoglycaemic activities whilst others showing hyperglycaemic properties. The mechanism by which small molecule tyrosine kinase inhibitors cause glycaemic dysregulation is not well understood, therefore, the clinical significance of these chemotherapeutic agents on glucose handling is also poorly documented. In this review, the effort is directed at mapping mechanistic insights into the effect of various small molecule tyrosine kinase inhibitors on glycaemic dysregulation envisaged to provide a deeper understanding of these chemotherapeutic agents on glucose metabolism. Small molecule tyrosine kinase inhibitors may elicit these observed glycaemic effects through preservation of β-cell function, improving insulin sensitivity and insulin secretion. These compounds bind to a spectrum of receptors and proteins implicated in glucose regulation for example, non-receptor tyrosine kinase SRC and ABL. Then receptor tyrosine kinase EGFR, PDGFR, and FGFR.
Collapse
Affiliation(s)
- Takudzwa Mugiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Mamosheledi Mothibe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| |
Collapse
|
6
|
Tang B, Dou S. Knockdown of PAF1 reduces cervical cancer cell proliferation, migration and invasion via retarding FLOT2-mediated MEK/ERK1/2 pathway. Cell Adh Migr 2023; 17:1-10. [PMID: 37754347 PMCID: PMC10538450 DOI: 10.1080/19336918.2023.2260641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/22/2023] [Indexed: 09/28/2023] Open
Abstract
Cervical cancer (CC) is a very usual reproductive malignant tumor in women. RNA polymerase II-associated factor 1 (PAF1) and flotillin-2 (FLOT2) both have been discovered to key participators in cancers' progression. However, the effects of PAF1/FLOT2 axis on CC development have not been probed. In this study, PAF1 and FLOT2 exhibited higher expression, and silencing of PAF1 down-regulated FLOT2 expression in CC. In addition, the regulatory effects of PAF1 suppression on CC progression were reversed after FLOT2 overexpression. Next, inhibition of PAF1 slowed the tumor growth in vivo through modulating FLOT2. Besides, down-regulation of PAF1 reduced FLOT2 expression to retard the MEK/ERK1/2 pathway. In conclusion, knockdown of PAF1 suppressed CC progression via retarding FLOT2-mediated MEK/ERK1/2 pathway. Our findings illustrated that the PAF1/FLOT2 axis may be useful bio-targets for CC treatment.
Collapse
Affiliation(s)
- Bin Tang
- Department of Gynecology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Shulan Dou
- Department of Gynecology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
7
|
Mao S, Qian Y, Wei W, Lin X, Ling Q, Ye W, Li F, Pan J, Zhou Y, Zhao Y, Huang X, Huang J, Hu C, Li M, Sun J, Jin J. FLOT1 knockdown inhibits growth of AML cells through triggering apoptosis and pyroptosis. Ann Hematol 2023; 102:583-595. [PMID: 36697954 DOI: 10.1007/s00277-023-05103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
Acute myeloid leukemia (AML) is a group of hematological malignancies characterized by clonal proliferation of immature myeloid cells. Lipid rafts are highly organized membrane subdomains enriched in cholesterol, sphingolipids, and gangliosides and play roles in regulating apoptosis through subcellular redistribution. Flotillin1 (FLOT1) is a component and also a marker of lipid rafts and had been reported to be involved in the progression of cancers and played important roles in cell death. However, the role of FLOT1 in AML remains to be explored. In this study, we found that increased expression of FLOT1 was correlated with poor clinical outcome in AML patients. Knockdown of FLOT1 in AML cells not only promoted cell death in vitro but also inhibited malignant cells engraftment in vivo. Mechanically, FLOT1 knockdown triggered apoptosis and pyroptosis. FLOT1 overexpression promoted AML cell growth and apoptosis resistance. Our findings indicate that FLOT1 is a prognostic factor of AML and may be a potential target for AML treatment.
Collapse
Affiliation(s)
- Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Yu Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Wenwen Wei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Fenglin Li
- The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Yutong Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Yanchun Zhao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Chao Hu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Mengjing Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang Provincial Clinical Research Center For Hematological Disorders, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang University Cancer Center, Hangzhou, Zhejiang, People's Republic of China. .,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, People's Republic of China.
| |
Collapse
|
8
|
Wisniewski DJ, Liyasova MS, Korrapati S, Zhang X, Ratnayake S, Chen Q, Gilbert SF, Catalano A, Voeller D, Meerzaman D, Guha U, Porat-Shliom N, Annunziata CM, Lipkowitz S. Flotillin-2 regulates epidermal growth factor receptor activation, degradation by Cbl-mediated ubiquitination, and cancer growth. J Biol Chem 2023; 299:102766. [PMID: 36470425 PMCID: PMC9823131 DOI: 10.1016/j.jbc.2022.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/08/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling is frequently dysregulated in various cancers. The ubiquitin ligase Casitas B-lineage lymphoma proto-oncogene (Cbl) regulates degradation of activated EGFR through ubiquitination and acts as an adaptor to recruit proteins required for trafficking. Here, we used stable isotope labeling with amino acids in cell culture mass spectrometry to compare Cbl complexes with or without epidermal growth factor (EGF) stimulation. We identified over a hundred novel Cbl interactors, and a secondary siRNA screen found that knockdown of Flotillin-2 (FLOT2) led to increased phosphorylation and degradation of EGFR upon EGF stimulation in HeLa cells. In PC9 and H441 cells, FLOT2 knockdown increased EGF-stimulated EGFR phosphorylation, ubiquitination, and downstream signaling, reversible by EGFR inhibitor erlotinib. CRISPR knockout (KO) of FLOT2 in HeLa cells confirmed EGFR downregulation, increased signaling, and increased dimerization and endosomal trafficking. Furthermore, we determined that FLOT2 interacted with both Cbl and EGFR. EGFR downregulation upon FLOT2 loss was Cbl dependent, as coknockdown of Cbl and Cbl-b restored EGFR levels. In addition, FLOT2 overexpression decreased EGFR signaling and growth. Overexpression of wildtype (WT) FLOT2, but not the soluble G2A FLOT2 mutant, inhibited EGFR phosphorylation upon EGF stimulation in HEK293T cells. FLOT2 loss induced EGFR-dependent proliferation and anchorage-independent growth. Lastly, FLOT2 KO increased tumor formation and tumor volume in nude mice and NSG mice, respectively. Together, these data demonstrated that FLOT2 negatively regulated EGFR activation and dimerization, as well as its subsequent ubiquitination, endosomal trafficking, and degradation, leading to reduced proliferation in vitro and in vivo.
Collapse
Affiliation(s)
- David J Wisniewski
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mariya S Liyasova
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Soumya Korrapati
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Xu Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Shashikala Ratnayake
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, Maryland, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, Maryland, USA
| | - Samuel F Gilbert
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Alexis Catalano
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, Maryland, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Natalie Porat-Shliom
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
| |
Collapse
|
9
|
Kumar R, Pereira RS, Niemann J, Azimpour AI, Zanetti C, Karantanou C, Minka W, Minciacchi VR, Kowarz E, Meister M, Godavarthy PS, Maguer-Satta V, Lefort S, Wiercinska E, Bonig H, Marschalek R, Krause DS. The differential role of the lipid raft-associated protein flotillin 2 for progression of myeloid leukemia. Blood Adv 2022; 6:3611-3624. [PMID: 35298613 PMCID: PMC9631564 DOI: 10.1182/bloodadvances.2021005992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid raft-associated proteins play a vital role in membrane-mediated processes. The lipid microdomain-associated protein flotillin 2 (FLOT2), which has a scaffolding function, is involved in polarization, as well as in actin cytoskeletal organization of primitive and mature hematopoietic cells and has been associated with different malignancies. However, its involvement in myeloid leukemias is not well studied. Using murine transplantation models, we show here that the absence of FLOT2 from leukemia-initiating cells (LICs) altered the disease course of BCR-ABL1+ chronic myeloid leukemia (CML), but not of MLL-AF9-driven acute myeloid leukemia (AML). While FLOT2 was required for expression of the adhesion molecule CD44 on both CML- and AML-LIC, a defect in the cytoskeleton, cell polarity, and impaired homing ability of LIC was only observed in FLOT2-deficient BCR-ABL1+ compared with MLL-AF9+ cells. Downstream of CD44, BCR-ABL1 kinase-independent discrepancies were observed regarding expression, localization, and activity of cell division control protein 42 homolog (CDC42) between wild-type (WT) and FLOT2-deficient human CML and AML cells. Inhibition of CDC42 by ML141 impaired the homing of CML LIC and, thereby, CML progression. This suggested that alteration of both CD44 and CDC42 may be causative of impaired CML progression in the absence of FLOT2. In summary, our data suggest a FLOT2-CD44-CDC42 axis, which differentially regulates CML vs AML progression, with deficiency of FLOT2 impairing the development of CML.
Collapse
Affiliation(s)
- Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Raquel S. Pereira
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Julian Niemann
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Alexander I. Azimpour
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Costanza Zanetti
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Christina Karantanou
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Wahyu Minka
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Valentina R. Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Eric Kowarz
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Melanie Meister
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Parimala S. Godavarthy
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | | | - Sylvain Lefort
- CRCL, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Eliza Wiercinska
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Frankfurt, Germany
| | - Halvard Bonig
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Frankfurt, Germany
- Goethe University, Institute for Transfusion Medicine and Immunohematology, Frankfurt, Germany
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Daniela S. Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Germany
- Frankfurt Cancer Institute, Frankfurt, Germany; and
- Institute for General Pharmacology and Toxicology, Institute for Biochemistry II, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Li X, Yuan Y, Wang Y, Xie K, Lu S, Chen F, Zhou M, Zhen P. MicroRNA-486-3p promotes the proliferation and metastasis of cutaneous squamous cell carcinoma by suppressing flotillin-2. J Dermatol Sci 2022; 105:18-26. [PMID: 34930675 DOI: 10.1016/j.jdermsci.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Dysregulation of miR-486-3p was related to the growth and development of a variety of cancers, but the specific function of miR-486-3p in cutaneous squamous cell carcinoma (cSCC) is not to be confirmed yet. OBJECTIVE Our present study aimed to validate the potential molecular mechanisms of miR-486-3p in cSCC and the potential of miR-486-3p as a novel target for future treatment. METHODS Human cSCC samples and normal skin tissues were applied to determine the expression level of miR-486-3p and FLOT2 by fluorescence in situ hybridization (FISH) and quantitative reverse transcription PCR (qRT-PCR), respectively. As well as BALB/C nude mouse tumor model, three cSCC cells lines including HSC-1, HSC-5 and A431 were utilized to demonstrate the potential function of miR-486-3p and FLOT2 in tumorigenesis. RESULTS Our experimental results showed that miR-486-3p was highly expressed both in tumor samples and cell lines of cSCC. Upregulation of miR-486-3p enhanced the proliferation and migration ability of cSCC cell lines and promoted tumorigenicity in vivo. Furthermore, we confirmed that FLOT2 was a direct targeted gene of miR-486-3p. In contrary to the expression level of miR-486-3p, FLOT2 was low expressed in cSCC patient specimens and cell lines. Knockdown of FLOT2 promoted tumorigenesis of cSCC; whereas FLOT2 reversed the tumor-promoting effect of miR-486-3p. CONCLUSION Our data exhibited that miR-486-3p exerted its effects on carcinogenesis as an oncogene in cSCC via suppression of FLOT2. This discovery will develop new therapeutic targets of cSCC.
Collapse
Affiliation(s)
- Xiangzhi Li
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China; Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yawen Yuan
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yimeng Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kaisheng Xie
- Department of Pathology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, China
| | - Sheng Lu
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China
| | - Fuqiang Chen
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China; Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Peilin Zhen
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China.
| |
Collapse
|
11
|
Routledge D, Rogers S, Ono Y, Brunt L, Meniel V, Tornillo G, Ashktorab H, Phesse TJ, Scholpp S. The scaffolding protein flot2 promotes cytoneme-based transport of wnt3 in gastric cancer. eLife 2022; 11:77376. [PMID: 36040316 PMCID: PMC9457691 DOI: 10.7554/elife.77376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
The Wnt/β-catenin signalling pathway regulates multiple cellular processes during development and many diseases, including cell proliferation, migration, and differentiation. Despite their hydrophobic nature, Wnt proteins exert their function over long distances to induce paracrine signalling. Recent studies have identified several factors involved in Wnt secretion; however, our understanding of how Wnt ligands are transported between cells to interact with their cognate receptors is still debated. Here, we demonstrate that gastric cancer cells utilise cytonemes to transport Wnt3 intercellularly to promote proliferation and cell survival. Furthermore, we identify the membrane-bound scaffolding protein Flotillin-2 (Flot2), frequently overexpressed in gastric cancer, as a modulator of these cytonemes. Together with the Wnt co-receptor and cytoneme initiator Ror2, Flot2 determines the number and length of Wnt3 cytonemes in gastric cancer. Finally, we show that Flotillins are also necessary for Wnt8a cytonemes during zebrafish embryogenesis, suggesting a conserved mechanism for Flotillin-mediated Wnt transport on cytonemes in development and disease.
Collapse
Affiliation(s)
- Daniel Routledge
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of ExeterExeterUnited Kingdom
| | - Sally Rogers
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of ExeterExeterUnited Kingdom
| | - Yosuke Ono
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of ExeterExeterUnited Kingdom
| | - Lucy Brunt
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of ExeterExeterUnited Kingdom
| | - Valerie Meniel
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff UniversityCardiffUnited Kingdom
| | - Giusy Tornillo
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff UniversityCardiffUnited Kingdom
| | - Hassan Ashktorab
- Department of Medicine, Howard UniversityWashingtonUnited States
| | - Toby J Phesse
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff UniversityCardiffUnited Kingdom,The Peter Doherty Institute for Infection and Immunity, The University of MelbourneMelbourneAustralia
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of ExeterExeterUnited Kingdom
| |
Collapse
|
12
|
Monnery BD. Polycation-Mediated Transfection: Mechanisms of Internalization and Intracellular Trafficking. Biomacromolecules 2021; 22:4060-4083. [PMID: 34498457 DOI: 10.1021/acs.biomac.1c00697] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyplex-mediated gene transfection is now in its' fourth decade of serious research, but the promise of polyplex-mediated gene therapy has yet to fully materialize. Only approximately one in a million applied plasmids actually expresses. A large part of this is due to an incomplete understanding of the mechanism of polyplex transfection. There is an assumption that internalization must follow a canonical mechanism of receptor mediated endocytosis. Herein, we present arguments that untargeted (and most targeted) polyplexes do not utilize these routes. By incorporating knowledge of syndecan-polyplex interactions, we can show that syndecans are the "target" for polyplexes. Further, it is known that free polycations (which disrupt cell-membranes by acid-catalyzed hydrolysis of phospholipid esters) are necessary for (untargeted) endocytosis. This can be incorporated into the model to produce a novel mechanism of endocytosis, which fits the observed phenomenology. After membrane translocation, polyplex containing vesicles reach the endosome after diffusing through the actin mesh below the cell membrane. From there, they are acidified and trafficked toward the lysosome. Some polyplexes are capable of escaping the endosome and unpacking, while others are not. Herein, it is argued that for some polycations, as acidification proceeds the polyplexes excluding free polycations, which disrupt the endosomal membrane by acid-catalyzed hydrolysis, allowing the polyplex to escape. The polyplex's internal charge ratio is now insufficient for stability and it releases plasmids which diffuse to the nucleus. A small proportion of these plasmids diffuse through the nuclear pore complex (NPC), with aggregation being the major cause of loss. Those plasmids that have diffused through the NPC will also aggregate, and this appears to be the reason such a small proportion of nuclear plasmids express mRNA. Thus, the structural features which promote unpacking in the endosome and allow for endosomal escape can be determined, and better polycations can be designed.
Collapse
Affiliation(s)
- Bryn D Monnery
- Department of Organic and (Bio)Polymer Chemistry, Hasselt University, Building F, Agoralaan 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
13
|
Long non-coding RNA A1BG-AS1 promotes tumorigenesis in breast cancer by sponging microRNA-485-5p and consequently increasing expression of FLOT1 expression. Hum Cell 2021; 34:1517-1531. [PMID: 34115333 DOI: 10.1007/s13577-021-00554-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022]
Abstract
The dysregulated long non-coding RNA A1BG antisense RNA 1 (A1BG-AS1) has been implicated in the oncogenicity of hepatocellular carcinoma. Using reverse transcription quantitative polymerase chain reaction in this study, we detected A1BG-AS1 expression in breast cancer and elucidated the regulatory functions and exact mechanisms of A1BG-AS1 in breast cancer cells. The regulatory functions of A1BG-AS1 were examined in vitro using the Cell Counting Kit-8 assay, flow cytometric, and Transwell migration and invasion assays and in vivo through tumor xenograft experiments. In addition, we performed bioinformatics analysis, luciferase reporter assay, RNA immunoprecipitation, and rescue experiments to verify the interaction among A1BG-AS1, microRNA-485-5p (miR-485-5p), and flotillin-1 (FLOT1) in breast cancer. We found A1BG-AS1 to be highly expressed in breast cancer tissues and cell lines. In terms of function, depleted A1BG-AS1 markedly suppressed cell proliferation, accelerated cell apoptosis, and hindered cell migration and invasion in breast cancer. Furthermore, A1BG-AS1 interference reduced tumor growth in vivo. Mechanistic investigations confirmed that A1BG-AS1 directly interacted with miR-485-5p as a molecular sponge. We demonstrated that FLOT1 is a direct target of miR-485-5p, which could be positively regulated by A1BG-AS1 by competing for miR-485-5p. Rescue experiments clearly showed that the downregulation of miR-485-5p and upregulation of FLOT1 were capable of reversing the anticancer activities of A1BG-AS1 deficiency in terms of breast cancer cell malignancy. A1BG-AS1 acts as a miR-485-5p sponge and subsequently increases FLOT1 expression in breast cancer cells, ultimately facilitating cancer progression. Hence, the A1BG-AS1/miR-485-5p/FLOT1 pathway might offer a novel therapeutic perspective for breast cancer.
Collapse
|
14
|
Brandel A, Aigal S, Lagies S, Schlimpert M, Meléndez AV, Xu M, Lehmann A, Hummel D, Fisch D, Madl J, Eierhoff T, Kammerer B, Römer W. The Gb3-enriched CD59/flotillin plasma membrane domain regulates host cell invasion by Pseudomonas aeruginosa. Cell Mol Life Sci 2021; 78:3637-3656. [PMID: 33555391 PMCID: PMC8038999 DOI: 10.1007/s00018-021-03766-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa has gained precedence over the years due to its ability to develop resistance to existing antibiotics, thereby necessitating alternative strategies to understand and combat the bacterium. Our previous work identified the interaction between the bacterial lectin LecA and its host cell glycosphingolipid receptor globotriaosylceramide (Gb3) as a crucial step for the engulfment of P. aeruginosa via the lipid zipper mechanism. In this study, we define the LecA-associated host cell membrane domain by pull-down and mass spectrometry analysis. We unraveled a predilection of LecA for binding to saturated, long fatty acyl chain-containing Gb3 species in the extracellular membrane leaflet and an induction of dynamic phosphatidylinositol (3,4,5)-trisphosphate (PIP3) clusters at the intracellular leaflet co-localizing with sites of LecA binding. We found flotillins and the GPI-anchored protein CD59 not only to be an integral part of the LecA-interacting membrane domain, but also majorly influencing bacterial invasion as depletion of either of these host cell proteins resulted in about 50% reduced invasiveness of the P. aeruginosa strain PAO1. In summary, we report that the LecA-Gb3 interaction at the extracellular leaflet induces the formation of a plasma membrane domain enriched in saturated Gb3 species, CD59, PIP3 and flotillin thereby facilitating efficient uptake of PAO1.
Collapse
Affiliation(s)
- Annette Brandel
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Sahaja Aigal
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Simon Lagies
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstraße 49, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Manuel Schlimpert
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstraße 49, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Maokai Xu
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Anika Lehmann
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Daniel Hummel
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Department of Biochemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva, Switzerland
| | - Daniel Fisch
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Josef Madl
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, and Faculty of Medicine, University of Freiburg, Elsässer Straße 2q, 79110, Freiburg, Germany
| | - Thorsten Eierhoff
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Clinic for Vascular and Endovascular Surgery, University Hospital Münster, Albert Schweitzer Campus 1, 48149, Münster, Germany
| | - Bernd Kammerer
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstraße 49, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany.
| |
Collapse
|
15
|
Taga H, Dallaire MP, Gervais R, Richard FJ, Ma L, Corl BA, Chouinard PY. Characterization of raft microdomains in bovine mammary tissue during lactation: How they are modulated by fatty acid treatments. J Dairy Sci 2020; 104:2384-2395. [PMID: 33246605 DOI: 10.3168/jds.2020-19267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022]
Abstract
The objective of the current study was first to characterize lipid raft microdomains isolated as detergent-resistant membranes (DRM) from mammary gland tissue, and second to determine how dietary fatty acids (FA) such as conjugated linoleic acid (CLA), 19:1 cyclo, and long-chain n-3 polyunsaturated FA affect lipid raft markers of mammary cells, and to finally establish relationships between these markers and lactation performance in dairy cows. Eight Holstein cows were used in a replicated 4 × 4 Latin square design with periods of 28 d. For the first 14 d, cows received daily an abomasal infusion of (1) 406 g of a saturated FA supplement (112 g of 16:0 + 230 g of 18:0) used as a control; (2) 36 g of a CLA supplement (13.9 g of trans-10,cis-12 18:2) + 370 g of saturated FA; (3) 7 g of Sterculia fetida oil (3.1 g of 19:1 cyclo, STO) + 399 g of saturated FA; or (4) 406 g of fish oil (55.2 g of cis-5,cis-8,cis-11,cis-14,cis-17 20:5 + 59.3 g of cis-4,cis-7,cis-10,cis-13,cis-16,cis-19 22:6, FO). Mammary biopsies were harvested on d 14 of each infusion period and were followed by a 14-d washout interval. Cholera toxin subunit B, which specifically binds to ganglioside M-1 (GM-1), a lipid raft marker, was used to assess its distribution in DRM. Infusions of CLA, STO, and FO were individually compared with the control, and significance was declared at P ≤ 0.05. Milk fat yield was decreased with CLA and FO, but was not affected by STO. Milk lactose yield was decreased with CLA and STO, but was not affected by FO. Mammary tissue shows a strong GM-1-signal enrichment in isolated DRM from mammary gland tissue. Caveolin (CAV) and flotillin (FLOT) are 2 proteins considered as lipid raft markers and they are present in DRM from mammary gland tissue. Distributions of GM-1, CAV-1, and FLOT-1 showed an effect of treatments determined by their subcellular distributions in sucrose gradient fractions. Regardless of treatments, data showed positive relationships between the yield of milk fat, protein, and lactose, and the abundance GM-1 in DRM fraction. Milk protein yield was positively correlated with relative proportion of FLOT-1 in the soluble fraction, whereas lactose yield was positively correlated with relative proportion of CAV-1 in the DRM fractions. Infusion of CLA decreased mRNA abundance of CAV-1, FLOT-1, and FLOT-2. Regardless of treatments, a positive relationship was observed between fat yield and mRNA abundance of FLOT-2. In conclusion, although limited to a few markers, results of the current experiment raised potential links between variation in specific biologically active component of raft microdomains in bovine mammary gland and lactation performances in dairy cows.
Collapse
Affiliation(s)
- H Taga
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - M P Dallaire
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - R Gervais
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - F J Richard
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - L Ma
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - B A Corl
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - P Y Chouinard
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada.
| |
Collapse
|
16
|
Chytła A, Gajdzik-Nowak W, Olszewska P, Biernatowska A, Sikorski AF, Czogalla A. Not Just Another Scaffolding Protein Family: The Multifaceted MPPs. Molecules 2020; 25:molecules25214954. [PMID: 33114686 PMCID: PMC7662862 DOI: 10.3390/molecules25214954] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane palmitoylated proteins (MPPs) are a subfamily of a larger group of multidomain proteins, namely, membrane-associated guanylate kinases (MAGUKs). The ubiquitous expression and multidomain structure of MPPs provide the ability to form diverse protein complexes at the cell membranes, which are involved in a wide range of cellular processes, including establishing the proper cell structure, polarity and cell adhesion. The formation of MPP-dependent complexes in various cell types seems to be based on similar principles, but involves members of different protein groups, such as 4.1-ezrin-radixin-moesin (FERM) domain-containing proteins, polarity proteins or other MAGUKs, showing their multifaceted nature. In this review, we discuss the function of the MPP family in the formation of multiple protein complexes. Notably, we depict their significant role for cell physiology, as the loss of interactions between proteins involved in the complex has a variety of negative consequences. Moreover, based on recent studies concerning the mechanism of membrane raft formation, we shed new light on a possible role played by MPPs in lateral membrane organization.
Collapse
Affiliation(s)
- Agnieszka Chytła
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Weronika Gajdzik-Nowak
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Paulina Olszewska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Agnieszka Biernatowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Aleksander F. Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamieńskiego 73a, 51-154 Wroclaw, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
- Correspondence: ; Tel.: +48-71375-6356
| |
Collapse
|
17
|
Elia J, Petit K, Huvelin JM, Tannoury M, Diab-Assaf M, Carbonnelle D, Nazih H. Acetone Fraction of the Red Marine Alga Laurencia papillosa Reduces the Expression of Bcl-2 Anti-apoptotic Marker and Flotillin-2 Lipid Raft Marker in MCF-7 Breast Cancer Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:321-330. [PMID: 32922490 PMCID: PMC7462504 DOI: 10.22037/ijpr.2020.1100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Marine macroalgae have attracted much attention in recent years as a valuable source of bioactive metabolites. The cytotoxic potential of the Laurencia papillosa red alga collected from the Lebanese coast has been investigated on human breast cancer cells MCF-7. The crude extract of Laurencia papillosa (L. papillosa) was fractionated by column chromatography using a series of increasingly polar solvents (methylene chloride, acetone and methanol). Cytotoxicity of the crude extract and fractions was determined by MTT assay in MCF-7 cells. Apoptosis was detected by annexin V/propidium iodide assay and by measurement of Bcl-2 expression. Flotillin-2 expression was examined using RT-qPCR and Western blot. The crude extract, and the fractions of CH2Cl2 and acetone exhibited a dose-dependent cytotoxic effect on MCF-7 cells. Apoptosis was specifically induced by one of the acetone fractions having the highest cytotoxicity. It has been demonstrated by an increase in late phase apoptotic cell populations, and a decrease in Bcl-2 anti-apoptotic marker expression on mRNA and protein levels in a dose- and time- dependent manner. Furthermore, this active fraction decreased Flotillin-2 expression associated with cancer progression. Our data suggest that L. papillosa is an important source of cytotoxic metabolites. Further studies are needed for the chemical characterization of the metabolite associated with observed biological activities.
Collapse
Affiliation(s)
- Josiane Elia
- MMS-EA 2160, Department of Biochemistry and Pharmacognosy, Faculty of Pharmacy, University of Nantes, Nantes, France
| | - Karina Petit
- MMS-EA 2160, Department of Biochemistry and Pharmacognosy, Faculty of Pharmacy, University of Nantes, Nantes, France
| | - Jean-Michel Huvelin
- MMS-EA 2160, Department of Biochemistry and Pharmacognosy, Faculty of Pharmacy, University of Nantes, Nantes, France
| | - Mona Tannoury
- Department of Biology, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Mona Diab-Assaf
- Department of Biochemistry and Chemistry, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Delphine Carbonnelle
- MMS-EA 2160, Department of Biochemistry and Pharmacognosy, Faculty of Pharmacy, University of Nantes, Nantes, France
| | - Hassan Nazih
- MMS-EA 2160, Department of Biochemistry and Pharmacognosy, Faculty of Pharmacy, University of Nantes, Nantes, France
| |
Collapse
|
18
|
Samson GPB, Legler DF. Membrane Compartmentalization and Scaffold Proteins in Leukocyte Migration. Front Cell Dev Biol 2020; 8:285. [PMID: 32411706 PMCID: PMC7198906 DOI: 10.3389/fcell.2020.00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 01/14/2023] Open
Abstract
Leukocyte migration across vessels into and within peripheral and lymphoid tissues is essential for host defense against invading pathogens. Leukocytes are specialized in sensing a variety of guidance cues and to integrate environmental stimuli to navigate in a timely and spatially controlled manner. These extracellular signals must be transmitted across the leukocyte’s plasma membrane in a way that intracellular signaling cascades enable directional cell movement. Therefore, the composition of the membrane in concert with proteins that influence the compartmentalization of the plasma membrane or contribute to delineate intracellular signaling molecules are key in controlling leukocyte navigation. This becomes evident by the fact that mislocalization of membrane proteins is known to deleteriously affect cellular functions that may cause diseases. In this review we summarize recent advances made in the understanding of how membrane cholesterol levels modulate chemokine receptor signaling and hence leukocyte trafficking. Moreover, we provide an overview on the role of membrane scaffold proteins, particularly tetraspanins, flotillins/reggies, and caveolins in controlling leukocyte migration both in vitro and in vivo.
Collapse
Affiliation(s)
- Guerric P B Samson
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland.,Faculty of Biology, University of Konstanz, Konstanz, Germany.,Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Abdullah M, Kimura N, Akatsu H, Hashizume Y, Ferdous T, Tachita T, Iida S, Zou K, Matsubara E, Michikawa M. Flotillin is a Novel Diagnostic Blood Marker of Alzheimer’s Disease. J Alzheimers Dis 2019; 72:1165-1176. [DOI: 10.3233/jad-190908] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Mohammad Abdullah
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Mizuho-cyo, Mizuho-ku, Nagoya, Aichi, Japan
| | - Noriyuki Kimura
- Department of Neurology, Faculty of Medicine, Oita University, Hazama, Yufu, Oita, Japan
| | - Hiroyasu Akatsu
- Department of Community-based Medical Education, Nagoya City University Graduate School of Medical Sciences, Mizuho-cyo, Mizuho-ku, Nagoya, Aichi, Japan
- Institute for Neuropathology, Fukushimura Hospital, Noyori, Toyohashi, Aichi, Japan
| | - Yoshio Hashizume
- Institute for Neuropathology, Fukushimura Hospital, Noyori, Toyohashi, Aichi, Japan
| | - Taslima Ferdous
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Mizuho-cyo, Mizuho-ku, Nagoya, Aichi, Japan
| | - Takuto Tachita
- Department of Hemotology and Oncology, Nagoya City University Graduate School of Medical Sciences, Mizuho-cyo, Mizuho-ku, Nagoya, Aichi, Japan
| | - Shinsuke Iida
- Department of Hemotology and Oncology, Nagoya City University Graduate School of Medical Sciences, Mizuho-cyo, Mizuho-ku, Nagoya, Aichi, Japan
| | - Kun Zou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Mizuho-cyo, Mizuho-ku, Nagoya, Aichi, Japan
| | - Etsuro Matsubara
- Department of Neurology, Faculty of Medicine, Oita University, Hazama, Yufu, Oita, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Mizuho-cyo, Mizuho-ku, Nagoya, Aichi, Japan
| |
Collapse
|
20
|
Elia J, Carbonnelle D, Logé C, Ory L, Huvelin JM, Tannoury M, Diab-Assaf M, Petit K, Nazih H. 4-cholesten-3-one decreases breast cancer cell viability and alters membrane raft-localized EGFR expression by reducing lipogenesis and enhancing LXR-dependent cholesterol transporters. Lipids Health Dis 2019; 18:168. [PMID: 31477154 PMCID: PMC6721338 DOI: 10.1186/s12944-019-1103-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/01/2019] [Indexed: 03/09/2023] Open
Abstract
Background The alteration of lipid metabolism in cancer cells is recognized as one of the most important metabolic hallmarks of cancer. Membrane rafts defined as plasma membrane microdomains enriched in cholesterol and sphingolipids serve as platforms for signaling regulation in cancer. The main purpose of this study was to evaluate the effect of the cholesterol metabolite, 4-cholesten-3-one, on lipid metabolism and membrane raft integrity in two breast cancer cell lines, MCF-7 and MDA-MB-231. Its ability to reduce cell viability and migration has also been investigated. Methods RT-qPCR was performed to evaluate the expression of enzymes involved in lipogenesis and cholesterol synthesis, and ABCG1 and ABCA1 transporters involved in cholesterol efflux. Its effect on cell viability and migration was studied using the MTT assay, the wound healing assay and the Transwell migration assay, respectively. The effect of 4-cholesten-3-one on membrane rafts integrity was investigated by studying the protein expression of flotillin-2, a membrane raft marker, and raft-enriched EGFR by western blot. Results Interestingly, we found that 4-cholesten-3-one treatment decreased mRNA expression of different enzymes including ACC1, FASN, SCD1 and HMGCR. We further demonstrated that 4-cholesten-3-one increased the expression of ABCG1 and ABCA1. We also found that 4-cholesten-3-one decreased the viability of MCF-7 and MDA-MB-231 cells. This effect was neutralized after treatment with LXR inverse agonist or after LXRβ knockdown by siRNA. As a result, we also demonstrated that 4-cholesten-3-one disrupts membrane rafts and cell migration capacity. Conclusion Our results show that 4-cholesten-3-one exerts promising antitumor activity by altering LXR-dependent lipid metabolism in breast cancer cells without increasing lipogenesis.
Collapse
Affiliation(s)
- Josiane Elia
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 9 Rue Bias, BP 53508, F-44035, Nantes Cedex 1, France
| | - Delphine Carbonnelle
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 9 Rue Bias, BP 53508, F-44035, Nantes Cedex 1, France
| | - Cédric Logé
- Département de Chimie Thérapeutique, Université de Nantes, Nantes Atlantique Universités, EA1155 - IICiMed, Faculté de Pharmacie, Nantes, France
| | - Lucie Ory
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 9 Rue Bias, BP 53508, F-44035, Nantes Cedex 1, France
| | - Jean-Michel Huvelin
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 9 Rue Bias, BP 53508, F-44035, Nantes Cedex 1, France
| | - Mona Tannoury
- Faculté des Sciences II, Ecole Doctorale des Sciences et de Technologie, Université Libanaise, Fanar, Lebanon
| | - Mona Diab-Assaf
- Faculté des Sciences II, Ecole Doctorale des Sciences et de Technologie, Université Libanaise, Fanar, Lebanon
| | - Karina Petit
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 9 Rue Bias, BP 53508, F-44035, Nantes Cedex 1, France
| | - Hassan Nazih
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 9 Rue Bias, BP 53508, F-44035, Nantes Cedex 1, France.
| |
Collapse
|
21
|
Chen SH, Liu XN, Peng Y. MicroRNA-351 eases insulin resistance and liver gluconeogenesis via the PI3K/AKT pathway by inhibiting FLOT2 in mice of gestational diabetes mellitus. J Cell Mol Med 2019; 23:5895-5906. [PMID: 31287224 PMCID: PMC6714143 DOI: 10.1111/jcmm.14079] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/10/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is known as different degree glucose intolerance that is initially identified during pregnancy. MicroRNAs (miRs) may be a potential candidate for treatment of GDM. Herein, we suggested that miR‐351 could be an inhibitor in the progression of GDM via the phosphoinositide 3‐kinase/protein kinase B (PI3K/AKT) pathway. Microarray analysis was used to identify differentially expressed genes and predict miRs regulating flotillin 2 (FLOT2). Target relationship between miR‐351 and FLOT2 was verified. Gestational diabetes mellitus mice were treated with a series of mimic, inhibitor and small interfering RNA to explore the effect of miR‐351 on insulin resistance (IR), cell apoptosis in pancreatic tissues and liver gluconeogenesis through evaluating GDM‐related biochemical indexes, as well as expression of miR‐351, FLOT2, PI3K/AKT pathway‐, IR‐ and liver gluconeogenesis‐related genes. MiR‐351 and FLOT2 were reported to be involved in GDM. FLOT2 was the target gene of miR‐351. Gestational diabetes mellitus mice exhibited IR and liver gluconeogenesis, up‐regulated FLOT2, activated PI3K/AKT pathway and down‐regulated miR‐351 in liver tissues. Additionally, miR‐351 overexpression and FLOT2 silencing decreased the levels of FLOT2, phosphoenolpyruvate carboxykinase, glucose‐6‐phosphatase, fasting blood glucose, fasting insulin, total cholesterol, triglyceride, glyeosylated haemoglobin and homeostasis model of assessment for IR index (HOMA‐IR), extent of PI3K and AKT phosphorylation, yet increased the levels of HOMA for islet β‐cell function, HOMA for insulin sensitivity index and glucose transporter 2 expression, indicating reduced cell apoptosis in pancreatic tissues and alleviated IR and liver gluconeogenesis. Our results reveal that up‐regulation of miR‐351 protects against IR and liver gluconeogenesis by repressing the PI3K/AKT pathway through regulating FLOT2 in GDM mice, which identifies miR‐351 as a potential therapeutic target for the clinical management of GDM.
Collapse
Affiliation(s)
- Shu-Hong Chen
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong Province, P.R. China
| | - Xiao-Nan Liu
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong Province, P.R. China
| | - Yan Peng
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong Province, P.R. China
| |
Collapse
|
22
|
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019; 7:70. [PMID: 31131274 PMCID: PMC6509475 DOI: 10.3389/fcell.2019.00070] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine kinase Akt is a master regulator of many diverse cellular functions, including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast range of downstream substrates is thus central to control of cell physiology in many different contexts and tissues. This axis must be tightly regulated, as disruption of PI3K-Akt signaling underlies the pathology of many diseases such as cancer and diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the spatial and temporal compartmentalization of Akt activation and function, including in specific nanoscale domains of the plasma membrane as well as in specific intracellular membrane compartments. Here, we review the evidence for localized activation of PI3K-Akt signaling by receptor tyrosine kinases in various specific cellular compartments, as well as that of compartment-specific functions of Akt leading to control of several fundamental cellular processes. This spatial and temporal control of Akt activation and function occurs by a large number of parallel molecular mechanisms that are central to regulation of cell physiology.
Collapse
Affiliation(s)
- Michael G. Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
23
|
Zhang L, Mao Y, Mao Q, Fan W, Xu L, Chen Y, Xu L, Wang J. FLOT1 promotes tumor development, induces epithelial-mesenchymal transition, and modulates the cell cycle by regulating the Erk/Akt signaling pathway in lung adenocarcinoma. Thorac Cancer 2019; 10:909-917. [PMID: 30838797 PMCID: PMC6449277 DOI: 10.1111/1759-7714.13027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022] Open
Abstract
Background FLOT1 is a scaffolding protein of lipid rafts that is believed to be involved in numerous cellular processes. However, few studies have explored the function of FLOT1 in the development of lung adenocarcinoma (LUAD) and the underlying mechanisms of FLOT1 activity. Methods FLOT1 knockdown and overexpression models were constructed via lentivirus. Cell growth, invasion, migration, and apoptosis were detected to evaluate the role of FLOT1 in LUAD development. Epithelial–mesenchymal transition (EMT) and cell cycle regulatory markers were then examined. Finally, the influence of FLOT1 on the Erk/Akt signaling pathway was investigated. Results FLOT1 promoted cell growth, invasion, and migration and inhibited cell apoptosis. In addition, FLOT1 induced EMT and modulated the cell cycle by activating the Erk/Akt signaling pathway. Conclusion The findings indicate a significant role of FLOT1 in LUAD development. Targeting FLOT1 may be a potential therapeutic strategy for LUAD.
Collapse
Affiliation(s)
- Louqian Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Yuan Mao
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Qixing Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Weifei Fan
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Li Xu
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Jun Wang
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| |
Collapse
|
24
|
Emam SE, Ando H, Lila ASA, Shimizu T, Okuhira K, Ishima Y, Mahdy MA, Ghazy FES, Sagawa I, Ishida T. Liposome co-incubation with cancer cells secreted exosomes (extracellular vesicles) with different proteins expressions and different uptake pathways. Sci Rep 2018; 8:14493. [PMID: 30262875 PMCID: PMC6160473 DOI: 10.1038/s41598-018-32861-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
We recently showed that in vitro incubation of cells with liposomes of varying compositions can increase exosome secretion and increase the yield of harvested exosomes (extracellular vesicles, EVs). This might foster their potential therapeutic implementations. In the current study, we investigated the surface proteins and the uptake of the harvested exosomes (EVs) to see if the incubation of cells with liposomes would change the biological properties of these exosomes (EVs). Interestingly, exosomes (EVs) induced by solid cationic liposomes lacked some major exosome marker proteins such as CD9, flotillin-1, annexin-A2 and EGF, and subsequently had lower levels of cellular uptake upon re-incubation with donor cancer cells. However, exosomes (EVs) induced under normal condition and by fluid cationic liposomes, displayed the entire spectrum of proteins, and exhibited higher uptake by the donor cancer cells. Although endocytosis was the major uptake pathway of exosomes (EVs) by tumor cells, endocytosis could occur via more than one mechanism. Higher exosome uptake was observed in donor B16BL6 cells than in allogeneic C26 cells, indicating that donor cells might interact specifically with their exosomes (EVs) and avidly internalize them. Taken together, these results suggest a technique for controlling the characteristics of secreted exosomes (EVs) by incubating donor cancer cells with liposomes of varying physiochemical properties.
Collapse
Affiliation(s)
- Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Pharmaceutics, College of Pharmacy, Hail University, Hail, 81442, Saudi Arabia
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Keiichiro Okuhira
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Mahmoud A Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Fakhr-Eldin S Ghazy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ikuko Sagawa
- Support Center for Advanced Medical Sciences, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan.
| |
Collapse
|
25
|
Flotillins Regulate Focal Adhesions by Interacting with α-Actinin and by Influencing the Activation of Focal Adhesion Kinase. Cells 2018; 7:cells7040028. [PMID: 29642469 PMCID: PMC5946105 DOI: 10.3390/cells7040028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/01/2023] Open
Abstract
Cell–matrix adhesion and cell migration are physiologically important processes that also play a major role in cancer spreading. In cultured cells, matrix adhesion depends on integrin-containing contacts such as focal adhesions. Flotillin-1 and flotillin-2 are frequently overexpressed in cancers and are associated with poor survival. Our previous studies have revealed a role for flotillin-2 in cell–matrix adhesion and in the regulation of the actin cytoskeleton. We here show that flotillins are important for cell migration in a wound healing assay and influence the morphology and dynamics of focal adhesions. Furthermore, anchorage-independent growth in soft agar is enhanced by flotillins. In the absence of flotillins, especially flotillin-2, phosphorylation of focal adhesion kinase and extracellularly regulated kinase is diminished. Flotillins interact with α-actinin, a major regulator of focal adhesion dynamics. These findings are important for understanding the molecular mechanisms of how flotillin overexpression in cancers may affect cell migration and, especially, enhance metastasis formation.
Collapse
|
26
|
Nimri L, Spivak O, Tal D, Schälling D, Peri I, Graeve L, Salame TM, Yarden O, Hadar Y, Schwartz B. A recombinant fungal compound induces anti-proliferative and pro-apoptotic effects on colon cancer cells. Oncotarget 2018; 8:28854-28864. [PMID: 28416764 PMCID: PMC5438697 DOI: 10.18632/oncotarget.15859] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022] Open
Abstract
Finding intracellular pathways and molecules that can prevent the proliferation of colon cancer cells can provide significant bases for developing treatments for this disease. Ostreolysin (Oly) is a protein found in the mushroom Pleurotus ostreatus, and we have produced a recombinant version of this protein (rOly). We measured the viability of several colon cancer cells treated with rOly. Xenografts and syngeneic colon cancer cells were injected into in vivo mouse models, which were then treated with this recombinant protein. rOly treatment induced a significant reduction in viability of human and mouse colon cancer cells. In contrast, there was no reduction in the viability of normal epithelial cells from the small intestine. In the search for cellular targets of rOly, we showed that it enhances the anti-proliferative activity of drugs targeting cellular tubulin. This was accompanied by a reduction in the weight and volume of tumours in mice injected with rOly as compared to their respective control mice in two in vivo models. Our results advance the functional understanding of rOly as a potential anti-cancer treatment associated with pro-apoptotic activities preferentially targeting colon cancer cells.
Collapse
Affiliation(s)
- Lili Nimri
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Orly Spivak
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dana Tal
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dominik Schälling
- Faculty of Natural Sciences, Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart 70599, Germany
| | - Irena Peri
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Lutz Graeve
- Faculty of Natural Sciences, Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart 70599, Germany
| | - Tomer M Salame
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Betty Schwartz
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
27
|
Deng Y, Ge P, Tian T, Dai C, Wang M, Lin S, Liu K, Zheng Y, Xu P, Zhou L, Hao Q, Dai Z. Prognostic value of flotillins (flotillin-1 and flotillin-2) in human cancers: A meta-analysis. Clin Chim Acta 2018; 481:90-98. [PMID: 29499201 DOI: 10.1016/j.cca.2018.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/15/2017] [Accepted: 02/27/2018] [Indexed: 01/30/2023]
Abstract
Increasing evidence indicates that flotillins which associate with cell infiltration and metastasis are overexpressed in multiple tumors. The prognostic role of flotillins remains controversial. We conducted a comprehensive meta-analysis of published research to investigate the prognostic value of flotillins in patients with cancer. Pooled HRs (hazard ratio) with 95% CIs (confidence interval) were collected to estimate the prognostic value. Twenty-seven studies with 4803 cancer patients were finally identified. The results indicated that: (1) elevated flotillins predicted poorer OS (overall survival) (HR = 2.17, 95% CI 1.87 to 2.52; HR = 1.61, 95% CI 1.44 to 1.81) and DFS (disease-free survival) (HR = 2.41, 95% CI 1.83 to 3.18; HR = 3.01, 95% CI 2.12 to 4.27) in patients with cancer; (2) Subgroup analysis showed that the prognostic value of flotillin-1 on OS and DFS in the investigated tumors were not altered by tumor type (such as digestive system cancers, renal cell cancer, lung cancer, or others), country (China or Canada), cutoff value, detection method, analysis type or paper quality and flotillin-2 overexpression indicates poor OS in human cancers except for nasopharyngeal carcinoma. Flotillins are promising as new biomarkers to predict poor prognosis of patients with tumors. This conclusion needs more clinical studies with different types of cancer to be proven.
Collapse
Affiliation(s)
- Yujiao Deng
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Pengbo Ge
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Binzhou Medical University, Binzhou 256603, China
| | - Tian Tian
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Cong Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Meng Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Shuai Lin
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Kang Liu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yi Zheng
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Peng Xu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Linghui Zhou
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Qian Hao
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zhijun Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
28
|
Abstract
MicroRNAs (miRNAs) have been reported to be associated with cancer progression and carcinogenesis. They are small, highly conserved, noncoding RNA molecules consisting of 19-25 nucleotides. By binding to complementary binding sites within the 3'-untranslated region of target mRNAs, miRNAs inhibit the translation of mRNAs or promote their degradation. miRNAs play critical roles in cancer initiation and development by functioning either as oncogenes or as tumor suppressors. Similarly, several studies have shown that miRNAs are involved in regulating various biological processes, including apoptosis, proliferation, cellular differentiation, signal transduction, and carcinogenesis. Among miRNAs, one that may be of particular interest in cancer biology is miR-449a, which has been reported to inhibit tumor growth, invasion, and metastasis, and to promote apoptosis and differentiation through the transforming growth factor-β activated kinase 1, NOTCH, nuclear factor-κB/P65/vascular endothelial growth factor, retinoblastoma-E2F, mitogen-activated protein kinase signaling pathways, WNT-β-catenin signaling, tumor protein P53, and androgen receptor signaling pathways. The miR-449 cluster is located in the second intron of CDC20B on chromosome 5q11.2, a region that has been identified as a susceptibility locus in cancer, and the abnormal expression of miR-449a may be related to the occurrence and development of tumors. As one example, miR-449a has been reported to be involved in the development of carcinoma and may be a potential prognostic indicator. On the basis of the putative pathogenetic relationships between cancer and miR-449a, we consider that miR-449a has the potential to serve as a therapeutic agent for the treatment of some types of cancer. In this review, the role of miR-449a in tumorigenesis and its mechanism of action are explored. Furthermore, its potential as a therapeutic agent in cancer treatment is considered.
Collapse
|
29
|
Meister M, Bänfer S, Gärtner U, Koskimies J, Amaddii M, Jacob R, Tikkanen R. Regulation of cargo transfer between ESCRT-0 and ESCRT-I complexes by flotillin-1 during endosomal sorting of ubiquitinated cargo. Oncogenesis 2017; 6:e344. [PMID: 28581508 PMCID: PMC5519196 DOI: 10.1038/oncsis.2017.47] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/02/2017] [Accepted: 05/02/2017] [Indexed: 01/02/2023] Open
Abstract
Ubiquitin-dependent sorting of membrane proteins in endosomes directs them to lysosomal degradation. In the case of receptors such as the epidermal growth factor receptor (EGFR), lysosomal degradation is important for the regulation of downstream signalling. Ubiquitinated proteins are recognised in endosomes by the endosomal sorting complexes required for transport (ESCRT) complexes, which sequentially interact with the ubiquitinated cargo. Although the role of each ESCRT complex in sorting is well established, it is not clear how the cargo is passed on from one ESCRT to the next. We here show that flotillin-1 is required for EGFR degradation, and that it interacts with the subunits of ESCRT-0 and -I complexes (hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) and Tsg101). Flotillin-1 is required for cargo recognition and sorting by ESCRT-0/Hrs and for its interaction with Tsg101. In addition, flotillin-1 is also required for the sorting of human immunodeficiency virus 1 Gag polyprotein, which mimics ESCRT-0 complex during viral assembly. We propose that flotillin-1 functions in cargo transfer between ESCRT-0 and -I complexes.
Collapse
Affiliation(s)
- M Meister
- Institute of Biochemistry, Medical Faculty, Justus-Liebig University of Giessen, Giessen, Germany
| | - S Bänfer
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany
| | - U Gärtner
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig University of Giessen, Giessen, Germany
| | - J Koskimies
- Institute of Biochemistry, Medical Faculty, Justus-Liebig University of Giessen, Giessen, Germany
| | - M Amaddii
- Institute of Biochemistry, Medical Faculty, Justus-Liebig University of Giessen, Giessen, Germany
| | - R Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany
| | - R Tikkanen
- Institute of Biochemistry, Medical Faculty, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
30
|
Wang CH, Zhu XD, Ma DN, Sun HC, Gao DM, Zhang N, Qin CD, Zhang YY, Ye BG, Cai H, Shi WK, Cao MQ, Tang ZY. Flot2 promotes tumor growth and metastasis through modulating cell cycle and inducing epithelial-mesenchymal transition of hepatocellular carcinoma. Am J Cancer Res 2017; 7:1068-1083. [PMID: 28560058 PMCID: PMC5446475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023] Open
Abstract
Flotillin-2 (Flot2) is a highly conserved and ubiquitously expressed protein that resides on the cytoplasmic side of the cell membrane within specific cholesterol rich microdomains. Some studies have reported that overexpression of Flot2 is related to cancer progression. However, the role of Flot2 in hepatocellular carcinoma (HCC) remains unclarified. In this study, we aim to explore the correlation between Flot2 expression and HCC progression and the underlying mechanism. In the present study, overexpression of Flot2 in HCC tissues and cell lines was detected, and forced overexpression of Flot2 significantly promoted the proliferation, migration, invasion and metastasis of HCC in vitro and in vivo by modulating cell cycle and inducing EMT, which was mediated via up-regulation of Twist as a result of Raf/MEK/ERK1/2 pathway activation. In contrast, silencing Flot2 expression inhibited these biological processes. Furthermore, high expression of Flot2 was significantly correlated with poor prognosis of HCC patients after curative resection and is an independent risk factor. In conclusion, Flot2 promoted tumor growth and metastasis of HCC through modulating cell cycle and inducing EMT. The expression of Flot2 may play a key role in HCC progression and may be regarded as a potential poor prognostic marker for HCC.
Collapse
Affiliation(s)
- Cheng-Hao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, China
| | - Xiao-Dong Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, China
| | - De-Ning Ma
- Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, China
| | - Hui-Chuan Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, China
| | - Dong-Mei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, China
| | - Ning Zhang
- Department of Liver Surgery, Fudan University Shanghai Cancer Center, Cancer HospitalShanghai 200032, China
| | - Cheng-Dong Qin
- Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, China
| | - Yuan-Yuan Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, China
| | - Bo-Gen Ye
- Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, China
| | - Hao Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, China
| | - Wen-Kai Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, China
| | - Man-Qin Cao
- Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, China
| | - Zhao-You Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, China
| |
Collapse
|
31
|
Ou YX, Liu FT, Chen FY, Zhu ZM. Prognostic value of Flotillin-1 expression in patients with solid tumors. Oncotarget 2017; 8:52665-52677. [PMID: 28881760 PMCID: PMC5581059 DOI: 10.18632/oncotarget.17075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/16/2017] [Indexed: 12/01/2022] Open
Abstract
Background In numerous studies, Flotillin-1 was reported to be involved in tumor progression, indicating prognosis in various types of cancer. However, the results were inconsistent. Results A total of 2473 patients from 13 articles were included. The results indicated that: (1) Patients detected with high expression level of Flotillin-1 protein had a significantly shorter OS (HR =1.64; 95%CI: 1.39-1.88), statistical significance was also observed in subgroup meta-analyses stratified by the cancer type, nationality, detecting method, cutoff value, analysis type, sample size and publication date. (2) Patients with high Flotillin-1 protein expression level had a poorer DFS (HR = 2.49; 95%CI: 1.64-3.35), a worse RFS(HR = 3.26; 95%CI: 1.10-5.43) and a potential shorter PFS(HR = 1.84; 95%CI: 0.81-2.87). (3) The pooled odds ratios (ORs) showed that increased Flotillin-1 level was also related to lymph node metastasis (OR =6.30; 95% CI: 3.15-12.59), distant metastasis (OR =6.02; 95% CI: 1.50-24.06) and more advanced TNM stage (OR =4.69; 95% CI: 2.74-8.03). Materials and methods A comprehensive retrieval was performed in multiple databases, including PubMed, Embase, Web of Science and CNKI. The relevant articles were screened for investigating the association between increased Flotillin-1 expression level and prognosis. Additionally, clinicopathological features data was also extracted from these studies. Conclusions High expression level of Flotillin-1 protein was correlated with poorer clinical outcome. It might serve as a prognostic biomarker and a potential predictive factor of clinicopathology in various tumors. Further well-designed clinical studies should be performed to verify the clinical utility of Flotillin-1 in human solid tumors.
Collapse
Affiliation(s)
- Yang-Xi Ou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, P. R. China
| | - Fang-Teng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, P. R. China.,Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P. R. China
| | - Fang-Ying Chen
- The Health Centers of Fengzhou Town, Quanzhou 36200, Fujian Province, P. R. China
| | - Zheng-Ming Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, P. R. China
| |
Collapse
|
32
|
Gerdøe-Kristensen S, Lund VK, Wandall HH, Kjaerulff O. Mactosylceramide prevents glial cell overgrowth by inhibiting insulin and fibroblast growth factor receptor signaling. J Cell Physiol 2017; 232:3112-3127. [PMID: 28019653 DOI: 10.1002/jcp.25762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
Receptor tyrosine kinase (RTK) signaling controls key aspects of cellular differentiation, proliferation, survival, metabolism, and migration. Deregulated RTK signaling also underlies many cancers. Glycosphingolipids (GSL) are essential elements of the plasma membrane. By affecting clustering and activity of membrane receptors, GSL modulate signal transduction, including that mediated by the RTK. GSL are abundant in the nervous system, and glial development in Drosophila is emerging as a useful model for studying how GSL modulate RTK signaling. Drosophila has a simple GSL biosynthetic pathway, in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what extent this effect involves changes in upstream signaling events is unresolved. We show here that glial overgrowth in egh is strongly linked to increased activation of Insulin and fibroblast growth factor receptors (FGFR). Glial hypertrophy is phenocopied when overexpressing gain-of-function mutants of the Drosophila insulin receptor (InR) and the FGFR homolog Heartless (Htl) in wild type SPG, and is suppressed by inhibiting Htl and InR activity in egh. Knockdown of GlcCer synthase in the SPG fails to suppress glial overgrowth in egh nerves, and slightly promotes overgrowth in wild type, suggesting that RTK hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of insulin and fibroblast growth factor receptors in Drosophila glia.
Collapse
Affiliation(s)
- Stine Gerdøe-Kristensen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Viktor K Lund
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Ole Kjaerulff
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
33
|
microRNA-802 inhibits epithelial-mesenchymal transition through targeting flotillin-2 in human prostate cancer. Biosci Rep 2017; 37:BSR20160521. [PMID: 28188157 PMCID: PMC5350603 DOI: 10.1042/bsr20160521] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/26/2022] Open
Abstract
miRNAs are a class of non-coding RNAs that exert critical roles in various biological processes. The aim of the present study was to identify the functional roles of miR-802 in regulating epithelial-mesenchymal transition (EMT) in prostate cancer (PCa). miR-802 expression was detected in 73 pairs of PCa samples and PCa cell lines (PC3 and DU145 cells) by qRT-PCR. Cell proliferation was detected using MTT assay, and cell apoptosis was evaluated using flow cytometry. Transwell assay was conducted to investigate cell migration and invasion. Expression analysis of a set of EMT markers was performed to explore whether miR-802 is involved in EMT program. Xenograft model was established to investigate the function of miR-802 in carcinogenesis in vivo The direct regulation of Flotillin-2 (Flot2) by miR-802 was identified using luciferase reporter assay. miR-802 was remarkably down-regulated in PCa tissues and cell lines. Gain-of-function trails showed that miR-802 serves as an 'oncosuppressor' in PCa through inhibiting cell proliferation and promoting cell apoptosis in vitro Overexpression of miR-802 significantly suppressed in vivo PCa tumor growth. Luciferase reporter analysis identified Flot2 as a direct target of miR-802 in PCa cells. Overexpressed miR-802 significantly suppressed EMT, migration and invasion in PCa cells by regulating Flot2. We identified miR-802 as a novel tumor suppressor in PCa progression and elucidated a novel mechanism of the miR-802/Flot2 axis in the regulation of EMT, which may be a potential therapeutic target.
Collapse
|
34
|
Plasmalogen biosynthesis is spatiotemporally regulated by sensing plasmalogens in the inner leaflet of plasma membranes. Sci Rep 2017; 7:43936. [PMID: 28272479 PMCID: PMC5341075 DOI: 10.1038/srep43936] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/31/2017] [Indexed: 12/14/2022] Open
Abstract
Alkenyl ether phospholipids are a major sub-class of ethanolamine- and choline-phospholipids in which a long chain fatty alcohol is attached at the sn-1 position through a vinyl ether bond. Biosynthesis of ethanolamine-containing alkenyl ether phospholipids, plasmalogens, is regulated by modulating the stability of fatty acyl-CoA reductase 1 (Far1) in a manner dependent on the level of cellular plasmalogens. However, precise molecular mechanisms underlying the regulation of plasmalogen synthesis remain poorly understood. Here we show that degradation of Far1 is accelerated by inhibiting dynamin-, Src kinase-, or flotillin-1-mediated endocytosis without increasing the cellular level of plasmalogens. By contrast, Far1 is stabilized by sequestering cholesterol with nystatin. Moreover, abrogation of the asymmetric distribution of plasmalogens in the plasma membrane by reducing the expression of CDC50A encoding a β-subunit of flippase elevates the expression level of Far1 and plasmalogen synthesis without reducing the total cellular level of plasmalogens. Together, these results support a model that plasmalogens localised in the inner leaflet of the plasma membranes are sensed for plasmalogen homeostasis in cells, thereby suggesting that plasmalogen synthesis is spatiotemporally regulated by monitoring cellular level of plasmalogens.
Collapse
|
35
|
Song Z, Zhang X, Ye X, Feng C, Yang G, Lu Y, Lin Y, Dong C. High Expression of Stromal Cell-Derived Factor 1 (SDF-1) and NF-κB Predicts Poor Prognosis in Cervical Cancer. Med Sci Monit 2017; 23:151-157. [PMID: 28074045 PMCID: PMC5244828 DOI: 10.12659/msm.899319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background SDF-1 and NF-κB are associated with the prognosis of a wide range of cancers, but their value in cervical cancer remains controversial. The aim of this study was to investigate the expression of SDF-1and NF-κB in cervical cancer and their significance in clinical prognosis. Material/Methods The expression of SDF-1and NF-κB in 105 formalin-fixed, paraffin-embedded cervical cancer tissues and the adjacent tissues was examined by immunohistochemistry (IHC). The results were semi-quantitatively scored and analyzed by chi-square test. The overall survival times (OS) were collected by follow-up and analyzed by Kaplan-Meier analysis. Results The expression level of both SDF-1and NF-κB in cervical cancer are higher than that in the adjacent tissues (P<0.05). SDF-1 expression are correlated with tumor size and FIGO histology grade (P<0.05). NF-κB expression are correlated with tumor size and FIGO histology grade, and lymph node metastasis (LNM) status (P<0.05). The patients with a positive expression of SDF-1or NF-κB tended to have much shorter survival time than patients with negative expression. In addition, multivariate Cox regression analysis demonstrated that SDF-1 expression and lymph node metastasis are independent predictors of the OS in cervical cancer patients. Conclusions The expression of SDF-1 is significantly associated with tumor size and FIGO histology grade. The expression of NF-κB is significantly associated with tumor size, FIGO histology grade, and lymph node metastasis. The positive SDF-1or NF-κB expression is significantly correlated with poor prognosis. These may be valuable biomarkers for the prognosis and the potential therapeutic targets of cervical cancer.
Collapse
Affiliation(s)
- Zhiwang Song
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Xia Zhang
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Xiaojuan Ye
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Chan Feng
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Guang Yang
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Yonglin Lu
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Yun Lin
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Chunyan Dong
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| |
Collapse
|
36
|
Random Splicing of Several Exons Caused by a Single Base Change in the Target Exon of CRISPR/Cas9 Mediated Gene Knockout. Cells 2016; 5:cells5040045. [PMID: 27983621 PMCID: PMC5187529 DOI: 10.3390/cells5040045] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/03/2016] [Accepted: 12/09/2016] [Indexed: 12/18/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated sequence 9 (CRISPR/Cas9) system is widely used for genome editing purposes as it facilitates an efficient knockout of a specific gene in, e.g. cultured cells. Targeted double-strand breaks are introduced to the target sequence of the guide RNAs, which activates the cellular DNA repair mechanism for non-homologous-end-joining, resulting in unprecise repair and introduction of small deletions or insertions. Due to this, sequence alterations in the coding region of the target gene frequently cause frame-shift mutations, facilitating degradation of the mRNA. We here show that such CRISPR/Cas9-mediated alterations in the target exon may also result in altered splicing of the respective pre-mRNA, most likely due to mutations of splice-regulatory sequences. Using the human FLOT-1 gene as an example, we demonstrate that such altered splicing products also give rise to aberrant protein products. These may potentially function as dominant-negative proteins and thus interfere with the interpretation of the data generated with these cell lines. Since most researchers only control the consequences of CRISPR knockout at genomic and protein level, our data should encourage to also check the alterations at the mRNA level.
Collapse
|
37
|
Luo Y, Akama T, Okayama A, Yoshihara A, Sue M, Oda K, Hayashi M, Ishido Y, Hirano H, Hiroi N, Katoh R, Suzuki K. A Novel Role for Flotillin-Containing Lipid Rafts in Negative-Feedback Regulation of Thyroid-Specific Gene Expression by Thyroglobulin. Thyroid 2016; 26:1630-1639. [PMID: 27676653 DOI: 10.1089/thy.2016.0187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Thyroglobulin (Tg) stored in thyroid follicles regulates follicular function in thyroid hormone (TH) synthesis by suppressing thyroid-specific gene expression in a concentration-dependent manner. Thus, Tg is an intrinsic negative-feedback regulator that can restrain the effect of thyrotropin (TSH) in the follicle. However, the underlying mechanisms by which Tg exerts its prominent autoregulatory effect following recognition by thyrocytes remains unclear. METHODS In order to identify potential proteins that recognize and interact with Tg, mass spectrometry was used to analyze immunoprecipitated Tg-bound proteins derived from Tg-treated rat thyroid FRTL-5 cells. RESULTS Flotillin 1 and flotillin 2, two homologs that are integral membrane proteins in lipid rafts, were identified as novel Tg-binding proteins with high confidence. Further studies revealed that flotillins physically interact with endocytosed Tg, and together these proteins redistribute from the cell membrane to cytoplasmic vesicles. Treatment with the lipid raft disrupter methyl-β-cyclodextrin abolished both the endocytosis and the negative-feedback effect of Tg on thyroid-specific gene expression. Meanwhile, siRNA-mediated knockdown of flotillin 1 or flotillin 2 also significantly inhibited Tg effects on gene expression. CONCLUSION Together these results indicate that flotillin-containing lipid rafts are essential for follicular Tg to be recognized by thyrocytes and exert its negative-feedback effects in the thyroid.
Collapse
Affiliation(s)
- Yuqian Luo
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 3 Department of Pathology, Faculty of Medicine, University of Yamanashi , Yamanashi, Japan
| | - Takeshi Akama
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Akiko Okayama
- 4 Advanced Medical Research Center, Yokohama City University , Yokohama, Japan
| | - Aya Yoshihara
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 5 Department of Education Planning and Development, Faculty of Medicine, Toho University , Tokyo, Japan
| | - Mariko Sue
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 6 Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University , Tokyo, Japan
| | - Kenzaburo Oda
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 6 Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University , Tokyo, Japan
| | - Moyuru Hayashi
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Yuko Ishido
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Hisashi Hirano
- 3 Department of Pathology, Faculty of Medicine, University of Yamanashi , Yamanashi, Japan
| | - Naoki Hiroi
- 5 Department of Education Planning and Development, Faculty of Medicine, Toho University , Tokyo, Japan
| | - Ryohei Katoh
- 3 Department of Pathology, Faculty of Medicine, University of Yamanashi , Yamanashi, Japan
| | - Koichi Suzuki
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| |
Collapse
|
38
|
4.1N is involved in a flotillin-1/β-catenin/Wnt pathway and suppresses cell proliferation and migration in non-small cell lung cancer cell lines. Tumour Biol 2016; 37:12713-12723. [DOI: 10.1007/s13277-016-5146-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/11/2016] [Indexed: 01/14/2023] Open
|
39
|
Völlner F, Ali J, Kurrle N, Exner Y, Eming R, Hertl M, Banning A, Tikkanen R. Loss of flotillin expression results in weakened desmosomal adhesion and Pemphigus vulgaris-like localisation of desmoglein-3 in human keratinocytes. Sci Rep 2016; 6:28820. [PMID: 27346727 PMCID: PMC4922016 DOI: 10.1038/srep28820] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 06/09/2016] [Indexed: 01/01/2023] Open
Abstract
Desmosomes are adhesion plaques that mediate cell-cell adhesion in many tissues, including the epidermis, and generate mechanical resistance to tissues. The extracellular domains of desmosomal cadherin proteins, desmogleins and desmocollins, are required for the interaction with cadherins of the neighbouring cells, whereas their cytoplasmic tails associate with cytoplasmic proteins which mediate connection to intermediate filaments. Disruption of desmosomal adhesion by mutations, autoantibodies or bacterial toxins results in severe human disorders of e.g. the skin and the heart. Despite the vital role of desmosomes in various tissues, the details of their molecular assembly are not clear. We here show that the two members of the flotillin protein family directly interact with the cytoplasmic tails of desmogleins. Depletion of flotillins in human keratinocytes results in weakened desmosomal adhesion and reduced expression of desmoglein-3, most likely due to a reduction in the desmosomal pool due to increased turnover. In the absence of flotillins, desmoglein-3 shows an altered localisation pattern in the cell-cell junctions of keratinocytes, which is highly similar to the localisation observed upon treatment with pemphigus vulgaris autoantibodies. Thus, our data show that flotillins, which have previously been connected to the classical cadherins, are also of importance for the desmosomal cell adhesion.
Collapse
Affiliation(s)
- Frauke Völlner
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Jawahir Ali
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Nina Kurrle
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Yvonne Exner
- Department of Dermatology and Allergology, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| |
Collapse
|
40
|
Kang M, Ren MP, Zhao L, Li CP, Deng MM. miR-485-5p acts as a negative regulator in gastric cancer progression by targeting flotillin-1. Am J Transl Res 2015; 7:2212-2222. [PMID: 26807169 PMCID: PMC4697701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/11/2015] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) play important roles in cancer progression including gastric cancer. miR-485-5p is reported as a potential suppressor in breast cancer, but its expression, cellular function and clinic features in gastric cancer is not known. In our study, we found that miR-485-5p expression was down-regulated in gastric cancer cell lines. miR-485-5p could inhibit gastric cancer cell growth in vitro and in vivo. We also found that miR-485-5p suppressed gastric cancer cell metastasis and sphere formation. It was confirmed flotillin-1 (Flot1) as a direct target of miR-485-5p, and up-regulation of miR-485-5p could decrease expression of Flot1 in gastric cancer cells. Further investigation showed that ectopic expression of Flot1 partially reversed the inhibition effect of enforced miR-485-5p expression on the malignant phenotypes of gastric cancer cells. The low expression of miR-485-5p in gastric cancer tissues was related to advanced clinical features and poorer prognosis. Our study suggested that miR-485-5p could be a potential prognostic marker and functions as a tumor suppressor in human gastric cancer by post-transcriptionally targeting Flot1.
Collapse
Affiliation(s)
- Min Kang
- Department of Digestive Diseases, Affiliated Hospital of Luzhou Medical CollegeLuzhou, Sichuan, China
| | - Mei-Ping Ren
- Drug and Functional Food Center, Luzhou Medical CollegeLuzhou, Sichuan, China
| | - Lei Zhao
- Department of Digestive Diseases, The Second Affiliated Hospital of Haerbin Medical UniversityHaerbin, China
| | - Chang-Ping Li
- Department of Digestive Diseases, Affiliated Hospital of Luzhou Medical CollegeLuzhou, Sichuan, China
| | - Ming-Ming Deng
- Department of Digestive Diseases, Affiliated Hospital of Luzhou Medical CollegeLuzhou, Sichuan, China
| |
Collapse
|
41
|
Li Q, Peng J, Li X, Leng A, Liu T. miR-449a targets Flot2 and inhibits gastric cancer invasion by inhibiting TGF-β-mediated EMT. Diagn Pathol 2015; 10:202. [PMID: 26576674 PMCID: PMC4650491 DOI: 10.1186/s13000-015-0435-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/17/2015] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Flot2, a highly conserved protein of the SPFH domain containing proteins family, has recently been identified as oncogene to be involved in the tumorigenesis and metastasis of several cancers including gastric cancer. However, the underlying molecular mechanism of Flot2 in gastric cancer (GC) is largely unknown. METHODS qRT-PCR and western blot was performed to detect miR-449a and Flot2 expression in GC cell lines and Normal human gastric epithelial cells. Then, luciferase reporter assay was used to elucidate whether Flot2 is a target gene of miR-449a. Finally, the roles and mechanism of miR-449a in regulation of tumor invasion were further investigated. RESULTS In this study, miR-449a expression was downregulated and Flot2 was upregulated in all GC cell lines as compared with that in GES-1. luciferase reporter assay identified Flot2 as a novel direct target of miR-449a. miR-449a regulated GC cell invasion by suppressing Flot2 expression. Expression analysis of a set of epithelial-mesenchymal transition (EMT) markers showed that miR-449a reduced the expression of mesenchymal markers (vimentin and N-cadherin) and induced the expression of epithelial marker (E-cadherin), which was consistent with silenced Flot2. Moreover, Flot2 is necessary for TGF-β-induced EMT in GC cells. CONCLUSIONS Our results demonstrated that miR-449a suppressed Flot2 expression results in decreased cell invasion through repressing TGF-β-mediated-EMT, and provides a new theoretical basis to further investigate miR-449a-regulated Flot2 as a potential biomarker and a promising approach for GC treatment.
Collapse
Affiliation(s)
- Qian Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.
| | - Jie Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.
| | - Xinhua Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.
| | - Aimin Leng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.
| |
Collapse
|
42
|
Luo JY, Fu ZY, Maimaiti A, Zhou Y, Yang YN, Yu ZX, Chen BD, Liu F, Ma YT. Flotillin-2 Gene Is Associated with Coronary Artery Disease in Chinese Han Population. Genet Test Mol Biomarkers 2015; 19:679-83. [PMID: 26556629 DOI: 10.1089/gtmb.2015.0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Flotillin-2, an important protein of vesicular endocytosis, is commonly used as a marker protein for lipid microdomains. It plays an essential role in cellular cholesterol uptake and biliary cholesterol reabsorption. Excessive cholesterol intake could cause dyslipidemia, which is a major risk factor of coronary artery disease (CAD). AIMS To investigate the association between the human flotillin-2 gene polymorphism and CAD in the Chinese Han population. MATERIALS AND METHODS Three single-nucleotide polymorphisms (SNPs; rs10205, rs3816848 and rs8081659) of the flotillin-2 gene were genotyped by real-time polymerase chain reaction in 307 CAD patients and 441 control subjects. RESULTS The genotypic distribution of these three SNPs was significantly different between CAD patients and control subjects (all p < 0.05). There were significant differences in the plasma levels of total cholesterol (TC) among different genotypes in the CAD group and control group. For rs3816848, CAD patients with the GG genotype had a higher level of TC than those with an AG or AA genotype (p < 0.001). For rs8081659, CAD patients with TT genotype had a higher level of TC than those with a CT or CC genotype (p < 0.001). Multiple logistic regression analysis showed that the GG genotype of rs3816848 was an independent risk factor for CAD (odds ratio [OR] = 1.786; 95% CI = 1.099-2.902; p = 0.019). CONCLUSION There was a strong association between polymorphisms of flotillin-2 gene and CAD in the Chinese Han population. Persons with the GG genotype of rs3816848 may have a higher risk of CAD. Moreover, the plasma levels of TC were significantly different among the different genotypes of the rs3816848 and rs8081659 SNPs in the CAD group as well as the control group.
Collapse
Affiliation(s)
- Jun-Yi Luo
- 1 Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| | - Zhen-Yan Fu
- 1 Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| | - Ailifeire Maimaiti
- 1 Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| | - Yun Zhou
- 1 Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| | - Yi-Ning Yang
- 1 Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| | - Zi-Xiang Yu
- 1 Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| | - Bang-Dang Chen
- 2 Key Laboratory of Cardiovascular Disease Research of Xinjiang , Urumqi, China
| | - Fen Liu
- 2 Key Laboratory of Cardiovascular Disease Research of Xinjiang , Urumqi, China
| | - Yi-Tong Ma
- 1 Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi, China
| |
Collapse
|
43
|
Liu J, Huang W, Ren C, Wen Q, Liu W, Yang X, Wang L, Zhu B, Zeng L, Feng X, Zhang C, Chen H, Jia W, Zhang L, Xia X, Chen Y. Flotillin-2 promotes metastasis of nasopharyngeal carcinoma by activating NF-κB and PI3K/Akt3 signaling pathways. Sci Rep 2015. [PMID: 26206082 PMCID: PMC4648439 DOI: 10.1038/srep11614] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lipid raft proteins have been confirmed to be important in cell signal transduction. Some reports have shown that the aberrant expression of lipid raft proteins is associated with malignant phenotypes in some cancers. However, the role of the lipid raft protein flotillin-2 (Flot-2) in nasopharyngeal carcinoma (NPC) remains to be comprehensively characterized. Here, overexpression of Flot-2 in NPC tissues and cell lines was detected by immunostaining, and Flot-2 expression was found to be positively associated with NPC metastasis. Furthermore, inhibiting Flot-2 expression impaired the malignancy of the highly metastatic NPC cell line 5-8F by constraining its growth and proliferation, mobility and migration, and decreasing the capacity of 5-8F cells to metastasize in nude mice. In contrast, forced overexpression of Flot-2 increased the malignancy of 6-10B, a non-metastatic NPC cell line that weakly expresses Flot-2. Moreover, in 5-8F-shFlot-2 cells, which have inhibited Flot-2 expression, the NF-κB and PI3K/Akt3 pathways were inactivated. Subsequently, MMPs expression were decreased, and Foxo1 activity was increased. In addition, enhanced NF-κB and PI3K/Akt3 activities were observed in Flot-2 overexpressing 6-10B cells. Thus, Flot-2 exerts a pro-neoplastic role in NPC and is involved in tumor progression and metastasis. Moreover, Flot-2 exerts its role through NF-κB and PI3K/Akt3 signaling.
Collapse
Affiliation(s)
- Jie Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Xiangya Road 110, 410078, Changsha, Hunan, P. R. China
| | - Wei Huang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Xiangya Road 110, 410078, Changsha, Hunan, P. R. China
| | - Caiping Ren
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Xiangya Road 110, 410078, Changsha, Hunan, P. R. China
| | - Qiuyuan Wen
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Xiangya Road 110, 410078, Changsha, Hunan, P. R. China
| | - Weidong Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Xiangya Road 110, 410078, Changsha, Hunan, P. R. China
| | - Xuyu Yang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Xiangya Road 110, 410078, Changsha, Hunan, P. R. China
| | - Lei Wang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Xiangya Road 110, 410078, Changsha, Hunan, P. R. China
| | - Bin Zhu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Xiangya Road 110, 410078, Changsha, Hunan, P. R. China
| | - Liang Zeng
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan, P. R. China
| | - Xiangling Feng
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Xiangya Road 110, 410078, Changsha, Hunan, P. R. China
| | - Chang Zhang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Xiangya Road 110, 410078, Changsha, Hunan, P. R. China
| | - Huan Chen
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Xiangya Road 110, 410078, Changsha, Hunan, P. R. China
| | - Wei Jia
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Xiangya Road 110, 410078, Changsha, Hunan, P. R. China
| | - Lihua Zhang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Xiangya Road 110, 410078, Changsha, Hunan, P. R. China
| | - Xiaomeng Xia
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Yuxiang Chen
- Hepatobiliary &Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
44
|
Flot-2 Expression Correlates with EGFR Levels and Poor Prognosis in Surgically Resected Non-Small Cell Lung Cancer. PLoS One 2015; 10:e0132190. [PMID: 26161893 PMCID: PMC4498790 DOI: 10.1371/journal.pone.0132190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/10/2015] [Indexed: 11/29/2022] Open
Abstract
We previously reported that expression of Flotillin 2 (Flot-2), a protein isolated from caveolae/lipid raft domains, increased significantly in nasopharyngeal carcinoma (NPC) compared with normal tissues. Signal transduction through epidermal growth factor receptors (EGFR) and Flot-2 play an important role in cancer development, but their precise role in lung cancer has not been investigated. In this study, we have investigated the correlation between the expression of Flot-2 and EGFR, which increase significantly in non-small cell lung cancer (NSCLC) patients (n=352) compared with non-cancer tissues. Additionally, patients with advanced stages of NSCLC had higher positive expression of Flot-2 and EGFR than patients with early stages. NSCLC patients with increased expression of Flot-2 and EGFR had significantly less overall survival rates than patients with less expression of Flot-2 and EGFR. Taken together, our data suggest that increased expression of Flot-2 and EGFR in NSCLC patients is inversely proportional to the disease prognosis and that increased expression of Flot-2 associated with increased EGFR may serve as a biomarker to predict poor disease prognosis.
Collapse
|
45
|
Charming neighborhoods on the cell surface: plasma membrane microdomains regulate receptor tyrosine kinase signaling. Cell Signal 2015; 27:1963-76. [PMID: 26163824 DOI: 10.1016/j.cellsig.2015.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTK) are an important family of growth factor and hormone receptors that regulate many aspects of cellular physiology. Ligand binding by RTKs at the plasma membrane elicits activation of many signaling intermediates. The spatial and temporal regulation of RTK signaling within cells is an important determinant of receptor signaling outcome. In particular, the compartmentalization of the plasma membrane into a number of microdomains allows context-specific control of RTK signaling. Indeed various RTKs are recruited to and enriched within specific plasma membrane microdomains under various conditions, including lipid-ordered domains such as caveolae and lipid rafts, clathrin-coated structures, tetraspanin-enriched microdomains, and actin-dependent protrusive membrane microdomains such as dorsal ruffles and invadosomes. We examine the evidence for control of RTK signaling by each of these plasma membrane microdomains, as well as molecular mechanisms for how this spatial organization controls receptor signaling.
Collapse
|
46
|
Cholinergic transactivation of the EGFR in HaCaT keratinocytes stimulates a flotillin-1 dependent MAPK-mediated transcriptional response. Int J Mol Sci 2015; 16:6447-63. [PMID: 25803106 PMCID: PMC4394542 DOI: 10.3390/ijms16036447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/06/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
Acetylcholine and its receptors regulate numerous cellular processes in keratinocytes and other non-neuronal cells. Muscarinic acetylcholine receptors are capable of transactivating the epidermal growth factor receptor (EGFR) and, downstream thereof, the mitogen-activated protein kinase (MAPK) cascade, which in turn regulates transcription of genes involved in cell proliferation and migration. We here show that cholinergic stimulation of human HaCaT keratinocytes results in increased transcription of matrix metalloproteinase MMP-3 as well as several ligands of the epidermal growth factor family. Since both metalloproteinases and the said ligands are involved in the transactivation of the EGFR, this transcriptional upregulation may provide a positive feed-forward loop for EGFR/MAPK activation. We here also show that the cholinergic EGFR and MAPK activation and the upregulation of MMP-3 and EGF-like ligands are dependent on the expression of flotillin-1 which we have previously shown to be a regulator of MAPK signaling.
Collapse
|
47
|
Tian H, Lu JY, Shao C, Huffman KE, Carstens RM, Larsen JE, Girard L, Liu H, Rodriguez-Canales J, Frenkel EP, Wistuba II, Minna JD, Hofmann SL. Systematic siRNA Screen Unmasks NSCLC Growth Dependence by Palmitoyltransferase DHHC5. Mol Cancer Res 2015; 13:784-94. [PMID: 25573953 DOI: 10.1158/1541-7786.mcr-14-0608] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/30/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Protein S-palmitoylation is a widespread and dynamic posttranslational modification that regulates protein-membrane interactions, protein-protein interactions, and protein stability. A large family of palmitoyl acyl transferases, termed the DHHC family due to the presence of a common catalytic motif, catalyzes S-palmitoylation; the role of these enzymes in cancer is largely unexplored. In this study, an RNAi-based screen targeting all 23 members of the DHHC family was conducted to examine the effects on the growth in non-small cell lung cancer (NSCLC). Interestingly, siRNAs directed against DHHC5 broadly inhibited the growth of multiple NSCLC lines but not normal human bronchial epithelial cell (HBEC) lines. Silencing of DHHC5 by lentivirus-mediated expression of DHHC5 shRNAs dramatically reduced in vitro cell proliferation, colony formation, and cell invasion in a subset of cell lines that were examined in further detail. The phenotypes were restored by transfection of a wild-type DHHC5 plasmid but not by a plasmid expressing a catalytically inactive DHHC5. Tumor xenograft formation was severely inhibited by DHHC5 knockdown and rescued by DHHC5 expression, using both a conventional and tetracycline-inducible shRNA. These data indicate that DHHC5 has oncogenic capacity and contributes to tumor formation in NSCLC, thus representing a potential novel therapeutic target. IMPLICATIONS Inhibitors of DHHC5 enzyme activity may inhibit non-small cell lung cancer growth.
Collapse
Affiliation(s)
- Hui Tian
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jui-Yun Lu
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chunli Shao
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth E Huffman
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ryan M Carstens
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jill E Larsen
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luc Girard
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hui Liu
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Eugene P Frenkel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - John D Minna
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sandra L Hofmann
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
48
|
Liu Y, Lin L, Huang Z, Ji B, Mei S, Lin Y, Shen Z. High expression of flotillin-2 is associated with poor clinical survival in cervical carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:622-628. [PMID: 25755754 PMCID: PMC4348905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
AIMS To investigate the expression and clinical significance of flotillin-2 (FLOT2) in cervical cancer (CC). METHODS We examined FLOT2 mRNA levels in 10 pairs of cervical cancer and adjacent normal tissues. Immunohistochemistry was performed to analyze FLOT2 protein expression in 115 archived cervical cancer samples. The association between FLOT2 levels, clinicopathologic factors and prognosis was analyzed statistically as well. RESULTS The cancer tissues of CC patients had clearly increased expression of FLOT2 at mRNA level as compared to adjacent nontumorous tissues. Survival analysis of CC patients indicated that FLOT2 expression was significantly associated with poor overall and local recurrence-free survival (P = 0.025 and P = 0.028, respectively). Moreover, FLOT2 expression was significantly correlated with clinical stage, tumor differentiation, and lymph nodes metastasis. Multivariate analysis revealed that FLOT2 expression was an independent prognostic factor for overall survival in CC patients. CONCLUSION FLOT2 may serve as an oncogene in the development of CC, and may serve as a clinicopathologic biomarker for prognosis in CC patients.
Collapse
Affiliation(s)
- Yaqiong Liu
- Department of Obstetrics and Gynecology, Guangzhou Women and Children Medical Center, Guangzhou Medical University Affiliated Women and Children Medical CenterGuangzhou 510120, China
| | - Li Lin
- Department of Obstetrics and Gynecology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen 518000, China
| | - Zijian Huang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children Medical Center, Guangzhou Medical University Affiliated Women and Children Medical CenterGuangzhou 510120, China
| | - Bing Ji
- Department of Obstetrics and Gynecology, Guangzhou Women and Children Medical Center, Guangzhou Medical University Affiliated Women and Children Medical CenterGuangzhou 510120, China
| | - Shanshan Mei
- Department of Obstetrics and Gynecology, Guangzhou Women and Children Medical Center, Guangzhou Medical University Affiliated Women and Children Medical CenterGuangzhou 510120, China
| | - Ying Lin
- Department of Obstetrics and Gynecology, People’s Hospital of Hunan ProvinceChangsha 410005, China
| | - Zhuanxing Shen
- Department of Obstetrics and Gynecology, Guangzhou Women and Children Medical Center, Guangzhou Medical University Affiliated Women and Children Medical CenterGuangzhou 510120, China
| |
Collapse
|
49
|
Kang Y, Regmi SC, Kim MY, Banskota S, Gautam J, Kim DH, Kim JA. Anti-angiogenic activity of macrolactin A and its succinyl derivative is mediated through inhibition of class I PI3K activity and its signaling. Arch Pharm Res 2014; 38:249-60. [PMID: 25547980 DOI: 10.1007/s12272-014-0535-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/20/2014] [Indexed: 02/01/2023]
Abstract
In the current study, macrolactin compounds, macrolactin A (MA) and 7-O-succinyl macrolactin A (SMA), were investigated for their anti-angiogenic activities and action mechanism. MA and SMA inhibited in vitro and in vivo angiogenesis induced by three different classes of pro-angiogenic factors, VEGF, IL-8, and TNF-α. SMA exhibited stronger anti-angiogenic activity than MA, and such anti-angiogenic activity of SMA was consistently observed in MDA-MB-231 human breast cancer cell-inoculated CAM assay showing dose-dependent suppression of tumor growth and tumor-induced angiogenesis. In an in vitro PI3K competitive activity assay, SMA induced concentration-dependent inhibition of class I PI3K isoforms, p110α, p110β, p110δ, and p110γ. In addition, non-receptor tyrosine kinase c-Src, which is involved in the activation of PI3K heterodimer, was suppressed by MA and SMA. Correspondingly, MA and SMA significantly inhibited the stimulus-induced phosphorylation of Akt, mTOR, p70S6K, and ribosomal S6 in human umbilical vein endothelial cells (HUVECs). At the same time, the stimulus-induced production of reactive oxygen species (ROS) and activation of NF-κB were significantly suppressed by MA and SMA. Moreover, the macrolactins suppressed NF-κB-regulated HSP90 protein expression, which stabilizes phosphorylated Akt and NADPH oxidase. Suppression of NF-κB in macrolactin-treated HUVECs with concurrent inhibition of rS6 indicates that MAs effectively block angiogenesis through down-regulation of genes related to angiogenesis at both transcriptional and translational levels. Taken together, the results demonstrate that anti-angiogenic effect of MA and SMA is mediated through inhibition of PI3K/Akt and NADPH oxidase-derived ROS/NF-κB signaling pathways. These results further indicate that MA and SMA may be applicable for treatment of various diseases associated with angiogenesis.
Collapse
Affiliation(s)
- Youra Kang
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Yan Y, Yang FQ, Zhang HM, Che J, Zheng JH. Up-regulation of flotillin-2 is associated with renal cell carcinoma progression. Tumour Biol 2014; 35:10479-86. [DOI: 10.1007/s13277-014-2343-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/10/2014] [Indexed: 11/30/2022] Open
|