1
|
Golbourn B, Ho B, Bondoc A, Luck A, Fan X, Richardson E, Marcellus R, Prakesch M, Halbert M, Agrawal N, Smith C, Huang A, Rutka JT. A kinome drug screen identifies multi-TKI synergies and ERBB2 signaling as a therapeutic vulnerability in MYC/TYR subgroup atypical teratoid rhabdoid tumors. Neuro Oncol 2024; 26:1895-1911. [PMID: 38981018 PMCID: PMC11448967 DOI: 10.1093/neuonc/noae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Atypical teratoid rhabdoid tumor (ATRT) is a rare, devastating, and largely incurable pediatric brain tumor. Although recent studies have uncovered 3 molecular subgroups of ATRTs with distinct disease patterns, and signaling features, the therapeutic profiles of ATRT subgroups remain incompletely elucidated. METHODS We examined the effect of 465 kinase inhibitors on a panel of ATRT subgroup-specific cell lines. We then applied multiomics analyses to investigate the underlying molecular mechanism of kinase inhibitor efficacy in ATRT subgroups. RESULTS We observed that ATRT cell lines are broadly sensitive to inhibitors of the PI3K and MAPK signaling pathways, as well as CDKs, AURKA/B kinases, and polo-like kinase 1. We identified 2 classes of multikinase inhibitors predominantly targeting receptor tyrosine kinases including PDGFR and EGFR/ERBB2 in MYC/TYR ATRT cells. The PDGFRB inhibitor, Dasatinib, synergistically affected MYC/TYR ATRT cell growth when combined with broad-acting PI3K and MAPK pathway inhibitors, including Rapamycin and Trametinib. We observed that MYC/TYR ATRT cells were also distinctly sensitive to various inhibitors of ERBB2 signaling. Transcriptional, H3K27Ac ChIPSeq, ATACSeq, and HiChIP analyses of primary MYC/TYR ATRTs revealed ERBB2 expression, which correlated with differential methylation and activation of a distinct enhancer element by DNA looping. Significantly, we show the brain penetrant EGFR/ERBB2 inhibitor, Afatinib, specifically inhibited in vitro and in vivo growth of MYC/TYR ATRT cells. CONCLUSIONS Taken together, our studies suggest combined treatments with PDGFR and ERBB2-directed TKIs with inhibitors of the PI3K and MAPK pathways as an important new therapeutic strategy for the MYC/TYR subgroup of ATRTs.
Collapse
Affiliation(s)
- Brian Golbourn
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ben Ho
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew Bondoc
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Luck
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaolian Fan
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Richardson
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Mathew Halbert
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nishant Agrawal
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian Smith
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - James T Rutka
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Qiu C, Sun N, Zeng S, Chen L, Gong F, Tian J, Xiong Y, Peng L, He H, Ming Y. Unveiling the therapeutic promise of EphA2 in glioblastoma: a comprehensive review. Discov Oncol 2024; 15:501. [PMID: 39331302 PMCID: PMC11436538 DOI: 10.1007/s12672-024-01380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM), a primary brain tumor, exhibits remarkable invasiveness and is characterized by its intricate location, infiltrative behavior, the presence of both the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB), phenotypic diversity, an immunosuppressive microenvironment with limited development yet rich vascularity, as well as the resistant nature of glioblastoma stem cells (GSCs) towards traditional chemotherapy and radiotherapy. These formidable factors present substantial obstacles in the quest for effective GBM treatments. Following extensive research spanning three decades, the hepatocellular receptor A2 (EphA2) receptor tyrosine kinase has emerged as a promising molecular target with translational potential in the realm of cancer therapy. Numerous compounds aimed at targeting EphA2 have undergone rigorous evaluation and clinical investigation. This article provides a comprehensive account of the distinctive roles played by canonical and non-canonical EphA2 signaling in various contexts, while also exploring the involvement of the EphA2-ephrin A1 signaling axis in GBM pathogenesis. Additionally, the review offers an overview of completed clinical trials targeting EphA2 for GBM treatment, shedding light on both the prospects and challenges associated with EphA2-directed interventions in the domain of cancer therapeutics.
Collapse
Affiliation(s)
- Caohang Qiu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ning Sun
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shan Zeng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Feilong Gong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Junjie Tian
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yu Xiong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Lilei Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Haiping He
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yang Ming
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China.
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
3
|
Guo Z, An P, Hong X. has-miR-134-5p inhibits the proliferation and migration of glioma cells by regulating the BDNF/ERK signaling pathway. Aging (Albany NY) 2024; 16:6510-6520. [PMID: 38579169 PMCID: PMC11042946 DOI: 10.18632/aging.205720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024]
Abstract
Our research investigated the effects of hsa-miR-134-5p on glioma progression, focusing on its interaction with the BDNF/ERK signaling pathway. U251 and U87 cell lines were analyzed post-transfection with hsa-miR-134-5p mimics and inhibitors, confirming the miRNA's binding to BDNF using dual luciferase assays. Q-PCR was employed to measure expression changes, revealing that hsa-miR-134-5p markedly inhibited glioma cell proliferation, migration, and invasion, as evidenced by CCK8, monoclonal formation, and Transwell assays. Scratch tests and Western blotting demonstrated hsa-miR-134-5p's modulation of the BDNF/ERK pathway and associated decrease in MMP2/9 protein levels. Flow cytometry suggested that hsa-miR-134-5p might also block the G0/S phase transition. In vivo studies using nude mice corroborated the tumor-suppressing effects of hsa-miR-134-5p, which were negated by elevated BDNF levels. Comparative protein analysis across groups confirmed the pathway's significance in tumorigenesis. Our findings identify hsa-miR-134-5p as a key molecule impeding glioma cell growth by curtailing the BDNF/ERK pathway, with the reversal by BDNF upregulation pointing to the potential of therapeutically exploiting the hsa-miR-134-5p/BDNF axis in glioma care.
Collapse
Affiliation(s)
- Zeshang Guo
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Pingxv An
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
4
|
Murugesan A, Konda Mani S, Koochakkhani S, Subramanian K, Kandhavelu J, Thiyagarajan R, Gurbanov AV, Mahmudov KT, Kandhavelu M. Design, synthesis and anticancer evaluation of novel arylhydrazones of active methylene compounds. Int J Biol Macromol 2024; 254:127909. [PMID: 37951450 DOI: 10.1016/j.ijbiomac.2023.127909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Nerve growth factor (NGF) and its receptor, tropomyosin kinase receptor kinase type A (TrkA) is emerging as an important target for Glioblastoma (GBM) treatment. TrkA is the cancer biomarker majorly involved in tumor invasion and migration into nearby normal tissue. However, currently, available Trk inhibitors exhibit many adverse effects in cancer patients, thus demanding a novel class of ligands to regulate Trk signaling. Here, we exploited the role of TrkA (NTRK1) expression from the 651 datasets of brain tumors. RNA sequence analysis identified overexpression of NTRK1 in GBM, recurrent GBM as well in Oligoastrocytoma patients. Also, TrkA expression tends to increase over the higher grades of GBM. TrkA protein targeting hydrazone derivatives, R48, R142, and R234, were designed and their mode of interaction was studied using molecular docking and dynamic simulation studies. Ligands' stability and binding assessment reveals R48, 2 2-(2-(2-hydroxy-4-nitrophenyl) hydrazineylidene)-1-phenylbutane-1,3-dione, as a potent ligand that interacts well with TrkA's hydrophobic residues, Ile, Phe, Leu, Ala, and Val. R48- TrkA exhibits stable binding potentials with an average RMSD value <0.8 nm. R48 obeyed Lipinski's rule of five and possessed the best oral bioavailability, suggesting R48 as a potential compound with drug-likeness properties. In-vitro analysis also revealed that R48 exhibited a higher cytotoxicity effect for U87 GBM cells than TMZ with the IC50 value of 68.99 μM. It showed the lowest percentage of cytotoxicity to the non-cancerous TrkA expressing MEF cells. However, further SiRNA analysis validates the non-specific binding of R48, necessitating structural alteration for the development of R48-based TrkA inhibitor for GBM therapeutics.
Collapse
Affiliation(s)
- Akshaya Murugesan
- Department of Biotechnology, Lady Doak College, Madurai Kamaraj University, Thallakulam, Madurai 625002, India; Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O. Box 553, 33101 Tampere, Finland
| | - Saravanan Konda Mani
- Department of Biotechnology, Bharath Institute of Higher Education & Research, Chennai 600 073, Tamilnadu, India
| | - Shabnaz Koochakkhani
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O. Box 553, 33101 Tampere, Finland
| | - Kumar Subramanian
- Oncology Division, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Jayalakshmi Kandhavelu
- Oncology Division, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Atash V Gurbanov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Excellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Excellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O. Box 553, 33101 Tampere, Finland.
| |
Collapse
|
5
|
Sharpe MA, Baskin DS, Johnson RD, Baskin AM. Acquisition of Immune Privilege in GBM Tumors: Role of Prostaglandins and Bile Salts. Int J Mol Sci 2023; 24:3198. [PMID: 36834607 PMCID: PMC9958596 DOI: 10.3390/ijms24043198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Based on the postulate that glioblastoma (GBM) tumors generate anti-inflammatory prostaglandins and bile salts to gain immune privilege, we analyzed 712 tumors in-silico from three GBM transcriptome databases for prostaglandin and bile synthesis/signaling enzyme-transcript markers. A pan-database correlation analysis was performed to identify cell-specific signal generation and downstream effects. The tumors were stratified by their ability to generate prostaglandins, their competency in bile salt synthesis, and the presence of bile acid receptors nuclear receptor subfamily 1, group H, member 4 (NR1H4) and G protein-coupled bile acid receptor 1 (GPBAR1). The survival analysis indicates that tumors capable of prostaglandin and/or bile salt synthesis are linked to poor outcomes. Tumor prostaglandin D2 and F2 syntheses are derived from infiltrating microglia, whereas prostaglandin E2 synthesis is derived from neutrophils. GBMs drive the microglial synthesis of PGD2/F2 by releasing/activating complement system component C3a. GBM expression of sperm-associated heat-shock proteins appears to stimulate neutrophilic PGE2 synthesis. The tumors that generate bile and express high levels of bile receptor NR1H4 have a fetal liver phenotype and a RORC-Treg infiltration signature. The bile-generating tumors that express high levels of GPBAR1 are infiltrated with immunosuppressive microglia/macrophage/myeloid-derived suppressor cells. These findings provide insight into how GBMs generate immune privilege and may explain the failure of checkpoint inhibitor therapy and provide novel targets for treatment.
Collapse
Affiliation(s)
- Martyn A. Sharpe
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
| | - David S. Baskin
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ryan D. Johnson
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
| | - Alexandra M. Baskin
- Department of Natural Science, Marine Science, Hawaii Pacific University, Honolulu, HI 96801, USA
| |
Collapse
|
6
|
Recent development of multi-targeted inhibitors of human topoisomerase II enzyme as potent cancer therapeutics. Int J Biol Macromol 2023; 226:473-484. [PMID: 36495993 DOI: 10.1016/j.ijbiomac.2022.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Multi-target therapies have been considered one of the viable options to overcome the challenges to eradicate intrinsic and acquired drug-resistant cancer cells. While to increase the efficacy of therapeutics, the use of a single drug against multiple structurally similar sites, which noncommittedly modulate several vital cellular pathways proposed as a potential alternative to a 'single drug single target'. Besides, it reduces the usage of a number of drugs and their side effects. Topoisomerase II enzyme plays a very significant role in DNA replication and thus served as an important target for numerous anti-cancer agents. However, in spite of promising clinical results, in several cases, it was found that cancer cells have developed resistance against the anti-cancer agents targeting this enzyme. Therefore, multi-target therapies have been proposed as an alternative to overcome different drug resistance mechanisms while topoisomerases II are a primary target site. In this review, we have tried to discuss the characteristics of the binding cavity available for interactions of drugs, and potent inhibitors concurrently modulate the functions of topoisomerases II as well as other structurally related target sites. Additionally, the mechanism of drug resistance by considering molecular and cellular insights by including various types of cancers.
Collapse
|
7
|
Cancer regulator EGFR-ErbB4 heterodimer is stabilized through glycans at the dimeric interface. J Mol Model 2022; 28:399. [DOI: 10.1007/s00894-022-05395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
|
8
|
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201740. [PMID: 35851766 PMCID: PMC9475540 DOI: 10.1002/advs.202201740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Central Nervous System (CNS) diseases, such as Alzheimer's diseases (AD), Parkinson's Diseases (PD), brain tumors, Huntington's disease (HD), and stroke, still remain difficult to treat by the conventional molecular drugs. In recent years, various gene therapies have come into the spotlight as versatile therapeutics providing the potential to prevent and treat these diseases. Despite the significant progress that has undoubtedly been achieved in terms of the design and modification of genetic modulators with desired potency and minimized unwanted immune responses, the efficient and safe in vivo delivery of gene therapies still poses major translational challenges. Various non-viral nanomedicines have been recently explored to circumvent this limitation. In this review, an overview of gene therapies for CNS diseases is provided and describes recent advances in the development of nanomedicines, including their unique characteristics, chemical modifications, bioconjugations, and the specific applications that those nanomedicines are harnessed to deliver gene therapies.
Collapse
Affiliation(s)
- Meihua Luo
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandSt LuciaQLD4072Australia
| | - Leo Kit Cheung Lee
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Bo Peng
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical materials & EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClaytonVIC3168Australia
- Materials Science and EngineeringMonash University14 Alliance LaneClaytonVIC3800Australia
| |
Collapse
|
9
|
Jiménez-Morales JM, Hernández-Cuenca YE, Reyes-Abrahantes A, Ruiz-García H, Barajas-Olmos F, García-Ortiz H, Orozco L, Quiñones-Hinojosa A, Reyes-González J, Del Carmen Abrahantes-Pérez M. MicroRNA delivery systems in glioma therapy and perspectives: A systematic review. J Control Release 2022; 349:712-730. [PMID: 35905783 DOI: 10.1016/j.jconrel.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Gliomas are the deadliest of all primary brain tumors, and they constitute a serious global health problem. MicroRNAs (miRNAs) are gene expression regulators associated with glioma pathogenesis. Thus, miRNAs represent potential therapeutic agents for treating gliomas. However, miRNAs have not been established as part of the regular clinical armamentarium. This systemic review evaluates current molecular and pre-clinical studies with the aim of defining the most appealing supramolecular platform for administering therapeutic miRNA to patients with gliomas. An integrated analysis suggested that cationic lipid nanoparticles, functionalized with octa-arginine peptides, represent a potentially specific, practical, non-invasive intervention for treating gliomas. This supramolecular platform allows loading both hydrophilic (miRNA) and hydrophobic (anti-tumor drugs, like temozolomide) molecules. This systemic review is the first to describe miRNA delivery systems targeted to gliomas that integrate several types of molecules as active ingredients. Further experimental validation is warranted to confirm the practical value of miRNA delivery systems.
Collapse
Affiliation(s)
- José Marcos Jiménez-Morales
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Yanet Elisa Hernández-Cuenca
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Ander Reyes-Abrahantes
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Henry Ruiz-García
- Department of Neurosurgery, Mayo Clinic, Jacksonville, United States; Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, United States
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Mayo Clinic, Jacksonville, United States; Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, United States
| | - Jesús Reyes-González
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico.
| | | |
Collapse
|
10
|
王 瀚, 王 跃, 刘 志, 徐 建. [Targeted Drug Therapy for Intracranial Tumors]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:564-572. [PMID: 35871724 PMCID: PMC10409465 DOI: 10.12182/20220760102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 06/15/2023]
Abstract
Intracranial tumors seriously affect the physical and mental health of humans. Due to variations in the nature and the growth site of tumors, individualized and specific treatment of patients with intracranial tumor has become a hotspot topic of research, and targeted drug therapy of intracranial tumors, an important subspecialty of precision medicine, has become a key issue that scientists are working hard to tackle. At present, the rapid development in molecular biology and genomics has provided corresponding targets for precision therapies of tumors. However, the blood-brain barrier and blood-tumor barrier prevent drugs from reaching intracranial targets. Therefore, finding effective ways to elevate the concentration of intracranial drugs has become the key issue concerning existing targeted therapies for intracranial tumors. Herein, we reviewed the current status of targeted drug therapy for different intracranial tumors and discussed their efficacy, intending to provide new perspectives for the treatment of intracranial tumors with targeted drugs in the future.
Collapse
Affiliation(s)
- 瀚 王
- 四川大学华西医院 神经外科 (成都 610041)Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
- 宜宾市第二人民医院•四川大学华西医院宜宾医院 神经外科 (宜宾 644000)Department of Neurosurgery, the Second People's Hospital of Yibin, West China Hospital, Sichuan University, Yibin 644000, China
| | - 跃龙 王
- 四川大学华西医院 神经外科 (成都 610041)Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 志勇 刘
- 四川大学华西医院 神经外科 (成都 610041)Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 建国 徐
- 四川大学华西医院 神经外科 (成都 610041)Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Bhat AQ, Ayaz MO, Hussain R, Dar MS, Hossain MM, Showket F, Dar MS, Akhter Y, Dar MJ. Identification of a stretch of four discontinuous amino acids involved in regulating kinase activity of IGF1R. J Cell Sci 2022; 135:275976. [PMID: 35686490 DOI: 10.1242/jcs.260014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/03/2022] [Indexed: 10/18/2022] Open
Abstract
IGF1R is pursued as a therapeutic target because of its abnormal expression in various cancers. Recently, we reported the presence of a putative allosteric inhibitor binding pocket in IGF1R that could be exploited for developing novel anti-cancer agents. In this study, we examined the role of nine highly conserved residues surrounding this binding pocket with the aim to screen compound libraries in order to develop small molecule allosteric inhibitors of IGF1R. We generated GFP fusion constructs of these mutants to analyze their impact on subcellular localization, kinase activity as well as downstream signalling of IGF1R. K1055H and E1056G were seen to completely abrogate the kinase activity of IGF1R whereas R1064K and L1065A were seen to significantly reduce the IGF1R activity as well. During molecular dynamics analysis, various structural and conformational changes were observed in different conserved regions of mutant proteins particularly in the activation loop resulting in compromising kinase activity of IGF1R. These results show that a stretch of four discontinuous residues within this newly identified binding pocket is critical for activity as well as the structural integrity of IGF1R.
Collapse
Affiliation(s)
- Aadil Qadir Bhat
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, India
| | - Mir Owais Ayaz
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, India
| | - Razak Hussain
- Department of botany, Central university of Jammu, Rahya Suchani 181143, J&K, India
| | - Mohmmad Saleem Dar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, India
| | - Md Mehedi Hossain
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, India
| | - Farheen Showket
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, India
| | - Mohd Saleem Dar
- Department of Biochemistry, Purdue University,West Lafayette, IN 47907, USA
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Mohd Jamal Dar
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, India
| |
Collapse
|
12
|
Erdem D, Gunaldi M, Karaman I, Adilay U, Yılmaz İ, Eseoglu M, Avcıkurt A, Isıksacan N, Erdogan U, Gunaldi O. Discoidin domain receptor 1 as a promising biomarker for high-grade gliomas. J Cancer Res Ther 2022; 19:S0. [PMID: 37147958 DOI: 10.4103/jcrt.jcrt_708_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Two fundamental challenges in the current therapeutic approach for central nervous system tumors are the tumor heterogeneity and the absence of specific treatments and biomarkers that selectively target the tumor tissue. Therefore, we aimed to investigate the potential relationship between discoidin domain receptor 1 (DDR1) expression and the prognosis and characteristics of glioma patients. Materials and Methods Tissue and serum samples from 34 brain tumor patients were evaluated for DDR1 messenger ribonucleic acid levels in comparison to 10 samples from the control group, and Kaplan-Meier survival analysis has performed. Results DDR1 expression was observed in both tissue and serum samples of the patient and control groups. DDR1 expression levels in tissue and serum samples from patients were higher in comparison to the control group, although not statistically significant (P > 0.05). A significant correlation between tumor size and DDR1 serum measurements at the level of 0.370 was reported (r = 0.370; P = 0.034). The levels of DDR1 in serum showed a positive correlation with the increasing size of tumor. The results of the 5-year survival analysis depending on the DDR1 tissue levels showed a significantly higher survival rate (P = 0.041) for patients who have DDR1 tissue levels above cutoff value. Conclusions DDR1 expression was significantly higher among brain tumor tissues and serum samples and its levels showed a positive correlation with the increased size of tumor. This study can be a starting point, since it investigated and indicated, for the first time, that DDR1 can be a novel therapeutic and prognostic target for aggressive high-grade gliomas.
Collapse
|
13
|
Coniglio SJ, Segall JE. Microglial-stimulation of glioma invasion involves the EGFR ligand amphiregulin. PLoS One 2021; 16:e0260252. [PMID: 34843542 PMCID: PMC8629255 DOI: 10.1371/journal.pone.0260252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
High grade glioma is one of the deadliest human cancers with a median survival rate of only one year following diagnosis. The highly motile and invasive nature of high grade glioma makes it difficult to completely remove surgically. Therefore, increasing our knowledge of the mechanisms glioma cells use to invade normal brain is of critical importance in designing novel therapies. It was previously shown by our laboratory that tumor-associated microglia (TAMs) stimulate glioma cell invasion and this process is dependent on CSF-1R signaling. In this study, we seek to identify pro-invasive factors that are upregulated in microglia in a CSF-1R-dependent manner. We assayed cDNA and protein from microglia treated with conditioned media from the murine glioma cell line GL261, and discovered that several EGFR ligands including amphiregulin (AREG) are strongly upregulated. This upregulation is blocked by addition of a pharmacological CSF-1R inhibitor. Using RNA interference, we show that AREG-depleted microglia are less effective at promoting invasion of GL261 cells into Matrigel-coated invasion chambers. In addition, an AREG blocking antibody strongly attenuates the ability of THP-1 macrophages to activate human glioma cell line U87 invasion. Furthermore, we have identified a signaling pathway which involves CSF-1 signaling through ERK to upregulate AREG expression in microglia. Interfering with ERK using pharmacological inhibitors prevents AREG upregulation in microglia and microglia-stimulated GL261 invasion. These data highlight AREG as a key factor in produced by tumor associated microglia in promoting glioma invasion.
Collapse
Affiliation(s)
- Salvatore J. Coniglio
- New Jersey Center for Science Technology and Mathematics, Kean University, Union, NJ, United States of America
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Jeffrey E. Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Gruss Lipper Biophotonics Center, Bronx, NY, United States of America
| |
Collapse
|
14
|
You G, Fan X, Hu H, Jiang T, Chen CC. Fusion Genes Altered in Adult Malignant Gliomas. Front Neurol 2021; 12:715206. [PMID: 34671307 PMCID: PMC8520976 DOI: 10.3389/fneur.2021.715206] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Malignant gliomas are highly heterogeneous brain tumors in molecular genetic background. Despite the many recent advances in the understanding of this disease, patients with adult high-grade gliomas retain a notoriously poor prognosis. Fusions involving oncogenes have been reported in gliomas and may serve as novel therapeutic targets to date. Understanding the gene fusions and how they regulate oncogenesis and malignant progression will contribute to explore new approaches for personalized treatment. By now, studies on gene fusions in gliomas remain limited. However, some current clinical trials targeting fusion genes have presented exciting preliminary findings. The aim of this review is to summarize all the reported fusion genes in high-grade gliomas so far, discuss the characterization of some of the most popular gene fusions occurring in malignant gliomas, as well as their function in tumorigenesis, and the underlying clinical implication as therapeutic targets.
Collapse
Affiliation(s)
- Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurophysiology, Beijing Neurosurgical Institute, Beijing, China
| | - Xing Fan
- Department of Neurophysiology, Beijing Neurosurgical Institute, Beijing, China
| | - Huimin Hu
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
15
|
Karami A, Hossienpour M, Mohammadi Noori E, Rahpyma M, Najafi K, Kiani A. Synergistic Effect of Gefitinib and Temozolomide on U87MG Glioblastoma Angiogenesis. Nutr Cancer 2021; 74:1299-1307. [PMID: 34296963 DOI: 10.1080/01635581.2021.1952441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
One of the most common and deadly brain tumors is Glioblastoma multiforme (GBM). Due to recent advances in angiogenesis and its related key factors, this process as a hallmark in glioblastoma has attracted more consideration from the research community. Temozolomide (TMZ) as the first-line treatment used to treat GBM but, resistance to TMZ limits its effectiveness and the need for better treatments is still felt. Therefore, we aimed to examine the Synergistic effects of Gefitinib (GFI) in combination with Temozolomide on VEGF and MMPs in glioma cell line (U87MG). Our results displayed that GFI could induce cytotoxic effects in U87MG with IC50 values of 11 μM. U87MG cells produced large amounts of VEGF without any stimuli, and the results showed that GFI in combination with TMZ caused a significant decrease in VEGF production in these cells. In this study, we demonstrated that after treating with TMZ and GFI, there was more decrease in the levels of MMP 2 and 9 secretions in cells than treatment with GFI and TMZ doses alone. This study indicates synergistic effects of GFI plus TMZ against glioma are mediated by the potentiated anti-angiogenesis. Therefore, it can be considered as a promising plan for future studies.
Collapse
Affiliation(s)
- Afshin Karami
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Hossienpour
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi Noori
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Rahpyma
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khadijeh Najafi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
17
|
Colardo M, Segatto M, Di Bartolomeo S. Targeting RTK-PI3K-mTOR Axis in Gliomas: An Update. Int J Mol Sci 2021; 22:4899. [PMID: 34063168 PMCID: PMC8124221 DOI: 10.3390/ijms22094899] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the most common and challenging malignancies of the central nervous system (CNS), due to their infiltrative nature, tendency to recurrence, and poor response to treatments. Indeed, despite the advances in neurosurgical techniques and in radiation therapy, the modest effects of therapy are still challenging. Moreover, tumor recurrence is associated with the onset of therapy resistance; it is therefore critical to identify effective and well-tolerated pharmacological approaches capable of inducing durable responses in the appropriate patient groups. Molecular alterations of the RTK/PI3K/Akt/mTOR signaling pathway are typical hallmarks of glioma, and several clinical trials targeting one or more players of this axis have been launched, showing disappointing results so far, due to the scarce BBB permeability of certain compounds or to the occurrence of resistance/tolerance mechanisms. However, as RTK/PI3K/mTOR is one of the pivotal pathways regulating cell growth and survival in cancer biology, targeting still remains a strong rationale for developing strategies against gliomas. Future rigorous clinical studies, aimed at addressing the tumor heterogeneity, the interaction with the microenvironment, as well as diverse posology adjustments, are needed-which might unravel the therapeutic efficacy and response prediction of an RTK/PI3K/mTOR-based approach.
Collapse
Affiliation(s)
| | | | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, IS, Italy; (M.C.); (M.S.)
| |
Collapse
|
18
|
Fawal MA, Jungas T, Davy A. Inhibition of DHFR targets the self-renewing potential of brain tumor initiating cells. Cancer Lett 2021; 503:129-137. [PMID: 33545223 DOI: 10.1016/j.canlet.2021.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Brain tumors are a heterogeneous group of benign and malignant tumors arising from the brain parenchyma and its surrounding structures, with in general a poor clinical outcome due to high recurrence. One of the underlying causes for this somber prognostic is the presence of brain tumor initiating cells (BTIC) endowed with self-renewal potential, multi-lineage differentiation and resistance to treatment. One promising therapeutic avenue for brain tumors is targeting BTIC self-renewal potential and forcing their differentiation. A compelling candidate is one-carbon metabolism shown to play a key role in maintaining stem cell self-renewal in several lineages. Here, we focus on dihydrofolate reductase (DHFR), a key enzyme in one-carbon metabolism, and demonstrate this enzyme's overexpression in several human brain tumors and its expression in human BTIC. We show that DHFR inhibition, either by Methotrexate (MTX) or EphB activation with synthetic ligands, reduces the tumorigenic potential of 4 human BTIC lines, by reducing their self-renewal capacities both in vitro and in a cerebral organoid glioma (GLICO) model. Our data indicate that driving BTIC differentiation by inhibiting DHFR may provide a new therapeutic approach to treating highly refractory aggressive tumors.
Collapse
Affiliation(s)
- Mohamad-Ali Fawal
- Molecular, Cellular and Developmental Biology (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental Biology (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Alice Davy
- Molecular, Cellular and Developmental Biology (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France.
| |
Collapse
|
19
|
Genetic Alterations of Epidermal Growth Factor Receptor in Glioblastoma: The Usefulness of Immunohistochemistry. Appl Immunohistochem Mol Morphol 2020; 27:589-598. [PMID: 29912767 DOI: 10.1097/pai.0000000000000669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Epidermal growth factor receptor (EGFR) amplification is one of the common alterations in IDH-wildtype glioblastoma. It is frequently associated with EGFRvIII mutation. To evaluate the correlation between EGFR overexpression, gene amplification, and EGFRvIII mutation, we performed immunohistochemical (IHC) analysis, fluorescence in situ hybridization by Vysis LSI EGFR/CEP7 dual color probe, and polymerase chain reaction studies in 76 patients diagnosed with glioblastomas (67 IDH-wildtype and 9 IDH-mutant). EGFR expression was scored ranging from 0 to 3+. Using formalin-fixed paraffin-embedded sections, real-time reverse transcription-polymerase chain reaction was carried out with primers specific for EGFRvIII and EGFR wildtype. In addition, we evaluated the impact of EGFR status on prognosis. EGFR gene amplifications and EGFRvIII mutations were identified in 30.3% and 15.5% of all cases, respectively. All the EGFR-amplified or EGFRvIII mutant cases were IDH-wildtype glioblastomas and tested positive with IHC. The sensitivity and specificity of EGFR IHC predicting EGFR gene amplification status were 100.0% and 46.5%, respectively. The EGFR-amplified cases tended to show more intense immunostaining (3+) in a considerable number of tumor cells (≥50%). Survival analyses of 37 IDH-wildtype glioblastoma patients revealed that none of the EGFR alterations significantly affected prognosis. EGFR IHC displayed high sensitivity and low specificity in predicting EGFR gene amplification, and interpretation of IHC results is a challenge. Therefore, EGFR IHC represents a possible screening tool for evaluation of EGFR gene amplification in clinical neuropathology, and both the intensity and proportion score facilitate interpretation of EGFR IHC.
Collapse
|
20
|
Giotta Lucifero A, Luzzi S, Brambilla I, Schena L, Mosconi M, Foiadelli T, Savasta S. Potential roads for reaching the summit: an overview on target therapies for high-grade gliomas. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:61-78. [PMID: 32608376 PMCID: PMC7975828 DOI: 10.23750/abm.v91i7-s.9956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
Background: The tailored targeting of specific oncogenes represents a new frontier in the treatment of high-grade glioma in the pursuit of innovative and personalized approaches. The present study consists in a wide-ranging overview of the target therapies and related translational challenges in neuro-oncology. Methods: A review of the literature on PubMed/MEDLINE on recent advances concerning the target therapies for treatment of central nervous system malignancies was carried out. In the Medical Subject Headings, the terms “Target Therapy”, “Target drug” and “Tailored Therapy” were combined with the terms “High-grade gliomas”, “Malignant brain tumor” and “Glioblastoma”. Articles published in the last five years were further sorted, based on the best match and relevance. The ClinicalTrials.gov website was used as a source of the main trials, where the search terms were “Central Nervous System Tumor”, “Malignant Brain Tumor”, “Brain Cancer”, “Brain Neoplasms” and “High-grade gliomas”. Results: A total of 137 relevant articles and 79 trials were selected. Target therapies entailed inhibitors of tyrosine kinases, PI3K/AKT/mTOR pathway, farnesyl transferase enzymes, p53 and pRB proteins, isocitrate dehydrogenases, histone deacetylases, integrins and proteasome complexes. The clinical trials mostly involved combined approaches. They were phase I, II, I/II and III in 33%, 42%, 16%, and 9% of the cases, respectively. Conclusion: Tyrosine kinase and angiogenesis inhibitors, in combination with standard of care, have shown most evidence of the effectiveness in glioblastoma. Resistance remains an issue. A deeper understanding of the molecular pathways involved in gliomagenesis is the key aspect on which the translational research is focusing, in order to optimize the target therapies of newly diagnosed and recurrent brain gliomas. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Ilaria Brambilla
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Lucia Schena
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Mario Mosconi
- Orthopaedic and Traumatology Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Thomas Foiadelli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Salvatore Savasta
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| |
Collapse
|
21
|
Greco C, Taresco V, Pearce AK, Vasey CE, Smith S, Rahman R, Alexander C, Cavanagh RJ, Musumeci F, Schenone S. Development of Pyrazolo[3,4- d]pyrimidine Kinase Inhibitors as Potential Clinical Candidates for Glioblastoma Multiforme. ACS Med Chem Lett 2020; 11:657-663. [PMID: 32435367 DOI: 10.1021/acsmedchemlett.9b00530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor. Residual cells at the tumor margin are responsible for up to 85% of GBM recurrences after standard treatment. Despite this evidence, the identification of compounds active on this cell population is still an underexplored field. Herein, starting from the knowledge that kinases are implicated in GBM, we evaluated three in-house pyrazolo[3,4-d]pyrimidines active as Src, Fyn, and SGK1 kinase inhibitors against patient derived cell lines from either the invasive region or contrast-enhanced core of GBM. We identified our Src inhibitor, SI306, as a promising lead compound for eradicating invasive GBM cells. Furthermore, aiming at the development of a feasible oral treatment for GBM, we performed a formulation study using 2D inkjet printing to generate soluble polymer-drug dispersions. Overall, this study led to the identification of a set of polymer-formulated pyrazolo[3,4-d]pyrimidine kinase inhibitors as promising candidates for GBM preclinical efficacy studies.
Collapse
Affiliation(s)
- Chiara Greco
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Amanda K. Pearce
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Catherine E. Vasey
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Stuart Smith
- Children’s Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Ruman Rahman
- Children’s Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Robert J. Cavanagh
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| |
Collapse
|
22
|
Pottoo FH, Javed MN, Rahman JU, Abu-Izneid T, Khan FA. Targeted delivery of miRNA based therapeuticals in the clinical management of Glioblastoma Multiforme. Semin Cancer Biol 2020; 69:391-398. [PMID: 32302695 DOI: 10.1016/j.semcancer.2020.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive (WHO grade IV) form of diffuse glioma endowed with tremendous invasive capacity. The availability of narrow therapeutic choices for GBM management adds to the irony, even the post-treatment median survival time is roughly around 14-16 months. Gene mutations seem to be cardinal to GBM formation, owing to involvement of amplified and mutated receptor tyrosine kinase (RTK)-encoding genes, leading to dysregulation of growth factor signaling pathways. Of-late, the role of different microRNAs (miRNAs) in progression and proliferation of GBM was realized, which lead to their burgeon potential applications for diagnostic and therapeutic purposes. miRNA signatures are intricately linked with onset and progression of GBM. Although, progression of GBM causes significant changes in the BBB to form BBTB, but still efficient passage of cancer therapeutics, including antibodies and miRNAs are prevented, leading to low bioavailability. Recent developments in the nanomedicine field provide novel approaches to manage GBM via efficient and brain targeted delivery of miRNAs either alone or as part of cytotoxic pharmaceutical composition, thereby modulating cell signaling in well predicted manner to promise positive therapeutic outcomes.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New-Delhi, India; School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India.
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
23
|
Das S, Bhattacharya B, Das B, Sinha B, Jamatia T, Paul K. Etiologic Role of Kinases in the Progression of Human Cancers and Its Targeting Strategies. Indian J Surg Oncol 2019; 12:34-45. [PMID: 33994726 DOI: 10.1007/s13193-019-00972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/07/2019] [Indexed: 11/30/2022] Open
Abstract
Cancer is one of the dominant causes of death worldwide while lifelong prognosis is still inauspicious. The maturation of the cancer is seen as a process of transformation of a healthy cell into a tumor-sensitive cell, which is held entirely at the cellular, molecular, and genetic levels of the organism. Tyrosine kinases can play a major, etiologic role in the inception of malignancy and devote to the uncontrolled proliferation of cancerous cells and the progression of a tumor as well as the development of metastatic disease. Angiogenesis and oncogene activation are the major event in cell proliferation. The growth of a tumor and metastasis are fully depending on angiogenesis and lymphangiogenesis triggered by chemical signals from tumor cells in a phase of rapid growth. Tyrosine kinase inhibitors are compounds that inhibit tyrosine kinases and effective in targeting angiogenesis and blocking the signaling pathways of oncogenes. Small molecule tyrosine kinase inhibitors like afatinib, erlotinib, crizotinib, gefitinib, and cetuximab are shown to a selective cut off tactic toward the constitutive activation of an oncogene in tumor cells, and thus contemplated as promising therapeutic approaches for the diagnosis of cancer and malignancies.
Collapse
Affiliation(s)
- Sanjoy Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bireswar Bhattacharya
- Regional Institute of Pharmaceutical Science and Technology, Agartala, Tripura 799005 India
| | - Biplajit Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bibek Sinha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Taison Jamatia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Kishan Paul
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
24
|
Kaundal B, Srivastava AK, Sardoiwala MN, Karmakar S, Choudhury SR. A NIR-responsive indocyanine green-genistein nanoformulation to control the polycomb epigenetic machinery for the efficient combinatorial photo/chemotherapy of glioblastoma. NANOSCALE ADVANCES 2019; 1:2188-2207. [PMID: 36131972 PMCID: PMC9419092 DOI: 10.1039/c9na00212j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 06/15/2023]
Abstract
Combinatorial photodynamics and chemotherapy have drawn enormous attention as therapeutic modalities via precise stimuli-responsive drug delivery for glioblastoma, which can overcome the limitations associated with conventional therapies. Herein, we have prepared an indocyanine green tagged, genistein encapsulated casein nanoformulation (ICG-Gen@CasNPs) that exhibits the near infra-red region responsive controlled release of genistein and enhanced cellular uptake in the human glioblastoma monolayer and a three-dimensional raft culture model via the enhanced retention effect. ICG-Gen@CasNPs, with the integrated photosensitizer indocyanine green within the nanoformulation, triggered oxidative stress, activating the apoptosis cascade, promoting cell cycle arrest and damaging the mitochondrial membrane potential, collectively directing glioblastoma cell death. The suppression of the polycomb group of proteins in the glioblastoma upon ICG-Gen@CasNPs/NIR exposure revealed the involvement of the epigenetic repression complex machinery in the regulation. Furthermore, ICG-Gen@CasNPs/PDT/PTT directed ubiquitination and proteasomal degradation of EZH2 and BMI1 indicates the implication of the polycomb in conferring glioblastoma survival. The increased activation of the apoptotic pathways and the generation of cellular reactive oxygen species upon inhibiting the expression of EZH2 and BMI1 strengthen our observations. It is worth noting that ICG-Gen@CasNPs robustly accumulated in the brain after crossing the blood-brain barrier, which represents the eminent biocompatibility and means that the system is devoid of any nonspecific toxicity in vivo. Moreover, a superior anti-tumor effect was demonstrated on a three-dimensional glioma spheroid model. Thus, this combinatorial chemo/photodynamic therapy revealed that ICG-Gen@CasNPs mediated epigenetic regulation, which is a crucial molecular mechanism of GBM suppression.
Collapse
Affiliation(s)
- Babita Kaundal
- Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector 64 Mohali Punjab India
| | - Anup K Srivastava
- Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector 64 Mohali Punjab India
| | | | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector 64 Mohali Punjab India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector 64 Mohali Punjab India
| |
Collapse
|
25
|
Grodzik M, Szczepaniak J, Strojny-Cieslak B, Hotowy A, Wierzbicki M, Jaworski S, Kutwin M, Soltan E, Mandat T, Lewicka A, Chwalibog A. Diamond Nanoparticles Downregulate Expression of CycD and CycE in Glioma Cells. Molecules 2019; 24:molecules24081549. [PMID: 31010146 PMCID: PMC6515518 DOI: 10.3390/molecules24081549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/06/2023] Open
Abstract
Our previous studies have shown that diamond nanoparticles (NDs) exhibited antiangiogenic and proapoptotic properties in vitro in glioblastoma multiforme (GBM) cells and in tumors in vivo. Moreover, NDs inhibited adhesion, leading to the suppression of migration and invasion of GBM. In the present study, we hypothesized that the NDs might also inhibit proliferation and cell cycle in glioma cells. Experiments were performed in vitro with the U87 and U118 lines of GBM cells, and for comparison, the Hs5 line of stromal cells (normal cells) after 24 h and 72 h of treatment. The analyses included cell morphology, cell death, viability, and cell cycle analysis, double timing assay, and gene expression (Rb, E2F1, CycA, CycB, CycD, CycE, PTEN, Ki-67). After 72 h of ND treatment, the expression level of Rb, CycD, and CycE in the U118 cells, and E2F1, CycD, and CycE in the U87 cells were significantly lower in comparison to those in the control group. We observed that decreased expression of cyclins inhibited the G1/S phase transition, arresting the cell cycle in the G0/G1 phase in glioma cells. The NDs did not affect the cell cycle as well as PTEN and Ki-67 expression in normal cells (Hs5), although it can be assumed that the NDs reduced proliferation and altered the cell cycle in fast dividing cells.
Collapse
Affiliation(s)
- Marta Grodzik
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Jaroslaw Szczepaniak
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Barbara Strojny-Cieslak
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Anna Hotowy
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Mateusz Wierzbicki
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Slawomir Jaworski
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Marta Kutwin
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Emilia Soltan
- Department of Neurosurgery, Oncology Center- Maria Sklodowska Curie Memorial, Warsaw, Roentgena 5, 02-781 Warsaw, Poland.
| | - Tomasz Mandat
- Department of Neurosurgery, Oncology Center- Maria Sklodowska Curie Memorial, Warsaw, Roentgena 5, 02-781 Warsaw, Poland.
| | - Aneta Lewicka
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
| | - Andre Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark.
| |
Collapse
|
26
|
Viswanathan A, Kute D, Musa A, Konda Mani S, Sipilä V, Emmert-Streib F, Zubkov FI, Gurbanov AV, Yli-Harja O, Kandhavelu M. 2-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)benzonitrile as novel inhibitor of receptor tyrosine kinase and PI3K/AKT/mTOR signaling pathway in glioblastoma. Eur J Med Chem 2019; 166:291-303. [DOI: 10.1016/j.ejmech.2019.01.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/30/2022]
|
27
|
Fang J, Wang H, Fang X, Li N, Hu H, Bian M, Yang P. Low STYK1 expression indicates poor prognosis in gastric cancer. Cancer Manag Res 2018; 10:6669-6676. [PMID: 30584361 PMCID: PMC6289209 DOI: 10.2147/cmar.s181910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The expression of serine threonine tyrosine kinase 1 (STYK1), a member of the receptor protein tyrosine kinase (RPTK) family, is abnormal in several cancers. However, the molecular mechanism of STYK1 regulation of gastric cancer (GC) progression is unknown. Materials and methods We evaluated STYK1 expression in GC tissues and the corresponding normal tissues. Specimens from 93 patients with GC were examined with immunohistochemical staining. The relationship between STYK1 protein expression and the patients' clinicopathological features was assessed. Kaplan-Meier and Cox proportional regression analyses were used to evaluate the association between STYK1 expression and survival. Results STYK1 expression was decreased in GC tissues. Low STYK1 expression was significantly associated with poor tumor differentiation (P=0.023), advanced clinical stage (P=0.021), and poor overall survival (OS; P=0.034). Univariate and multivariate analyses revealed that STYK1expression was an independent prognostic indicator (HR =0.53, 95% CI =0.29-0.95, P=0.039; HR =0.51, 95% CI =0.24-0.91, P=0.030, respectively). Conclusion Downregulated STYK1 expression correlated significantly with poor tumor differentiation, advanced clinical stage, and poor OS in GC. STYK1 might be a diagnostic and prognostic indicator in patients with GC.
Collapse
Affiliation(s)
- Jian Fang
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China, ;
| | - Hao Wang
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, Jiangsu, China
| | - Xiao Fang
- Department of Orthopaedics, Hefei Orthopaedics Hospital, Hefei 230000, Anhui, China
| | - Na Li
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China, ;
| | - Hailiang Hu
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China, ;
| | - Maohong Bian
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China, ;
| | - Peng Yang
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China, ;
| |
Collapse
|
28
|
TROY interacts with RKIP to promote glioma development. Oncogene 2018; 38:1544-1559. [PMID: 30337686 PMCID: PMC6372479 DOI: 10.1038/s41388-018-0503-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 08/16/2018] [Accepted: 08/29/2018] [Indexed: 11/19/2022]
Abstract
TROY is a component of the Nogo receptor complex and plays the key role in neuronal survival, migration, and differentiation. Here, we show the up-regulation of TROY in human glioma tissues and cells. Inhibition of TROY expression slowed glioma development in vivo and in vitro. Raf kinase inhibitor (RKIP) was found to interact with TROY. The physical interaction of TROY/RKIP was confirmed via co-immunoprecipitation (co-IP) assays. Furthermore, we found that the TROY/RKIP interaction was enhanced by fetal bovine serum (FBS) exposure, and TROY knockdown also led to down-regulation of NF-κB. Finally, disruption of the TROY/RKIP interaction using the TAT-TROY (234–371 aa) protein reduced the glioma development in xenografted mice. This suggests the TROY/RKIP interaction is a potential target for therapy of gliomas.
Collapse
|
29
|
Thioredoxin Confers Intrinsic Resistance to Cytostatic Drugs in Human Glioma Cells. Int J Mol Sci 2018; 19:ijms19102874. [PMID: 30248944 PMCID: PMC6212897 DOI: 10.3390/ijms19102874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 11/29/2022] Open
Abstract
Thioredoxin (Trx) overexpression is known to be a cause of chemotherapy resistance in various tumor entities. However, Trx effects on resistance are complex and depend strictly on tissue type. In the present study, we analyzed the impact of the Trx system on intrinsic chemoresistance of human glioblastoma multiforme (GBM) cells to cytostatic drugs. Resistance of GBM cell lines and primary cells to drugs and signaling inhibitors was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Impact of Trx inhibition on apoptosis was investigated by proteome profiling of a subset of proteins and annexin V apoptosis assays. Trx-interacting protein (TXNIP) was overexpressed by transfection and protein expression was determined by immunoblotting. Pharmacological inhibition of Trx by 1-methyl-2-imidazolyl-disulfide (PX-12) reduced viability of three GBM cell lines, induced expression of active caspase-3, and reduced phosphorylation of AKT-kinase and expression of β-catenin. Sensitivity to cisplatin could be restored by both PX-12 and recombinant expression of the upstream Trx inhibitor TXNIP, respectively. In addition, PX-12 also sensitized primary human GBM cells to temozolomide. Combined inhibition of Trx and the phosphatidylinositide 3-kinase (PI3K) pathway resulted in massive cell death. We conclude that the Trx system and the PI3K pathway act as a sequential cascade and could potentially present a new drug target.
Collapse
|
30
|
PDGFR and IGF-1R Inhibitors Induce a G2/M Arrest and Subsequent Cell Death in Human Glioblastoma Cell Lines. Cells 2018; 7:cells7090131. [PMID: 30200644 PMCID: PMC6162497 DOI: 10.3390/cells7090131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Glioblastomas are highly resistant to radiation and chemotherapy. Currently, there are no effective therapies for this type of tumor. Signaling mechanisms initiated by PDGFR and IGF-1R are important in glioblastoma, and inhibition of the signal transduction pathways initiated by these receptors could be a useful alternative strategy for glioblastoma treatment. We have studied the effects of the PDGFR inhibitor JNJ-10198409 (JNJ) and the IGF-1R inhibitor picropodophyllin (PPP) in glioblastoma cell lines as well as in primary cultures derived from patients affected by this type of tumor. JNJ and PPP treatment blocked PDGFR and IGF-1R signaling respectively and reduced Akt and Erk 1/2 phosphorylation. Both inhibitors diminished cell proliferation, inducing a G2/M block of the cell cycle. Cell death induced by JNJ was caspase-dependent, Annexin-V positive and caused PARP cleavage, especially in T98 cells, suggesting an apoptotic mechanism. However, cell death induced by PPP was not completely inhibited by caspase inhibitors in all cell lines apart from LN-229 cells, indicating a caspase-independent mechanism. Several inhibitors targeted against different cell death pathways could not block this caspase-independent component, which may be a non-programmed necrotic mechanism. Apoptotic arrays performed in T98 and LN-229 cells upon JNJ and PPP treatment revealed that procaspase 3 levels were augmented by both drugs in T98 cells and only by JNJ in LN229-cells. Furthermore, XIAP and survivin levels were much higher in LN-229 cells than in T98 cells, revealing that LN-229 cells are more susceptible to undergo caspase-independent cell death mechanisms. JNJ and PPP combination was more effective than each treatment alone.
Collapse
|
31
|
Haas B, Klinger V, Keksel C, Bonigut V, Kiefer D, Caspers J, Walther J, Wos-Maganga M, Weickhardt S, Röhn G, Timmer M, Frötschl R, Eckstein N. Inhibition of the PI3K but not the MEK/ERK pathway sensitizes human glioma cells to alkylating drugs. Cancer Cell Int 2018; 18:69. [PMID: 29755294 PMCID: PMC5935937 DOI: 10.1186/s12935-018-0565-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background Intrinsic chemoresistance of glioblastoma (GBM) is frequently owed to activation of the PI3K and MEK/ERK pathways. These signaling cascades are tightly interconnected however the quantitative contribution of both to intrinsic resistance is still not clear. Here, we aimed at determining the activation status of these pathways in human GBM biopsies and cells and investigating the quantitative impact of both pathways to chemoresistance. Methods Receptor tyrosine kinase (RTK) pathways in temozolomide (TMZ) treatment naive or TMZ resistant human GBM biopsies and GBM cells were investigated by proteome profiling and immunoblotting of a subset of proteins. Resistance to drugs and RTK pathway inhibitors was assessed by MTT assays. Apoptotic rates were determined by Annexin V staining and DNA damage with comet assays and immunoblotting. Results We analyzed activation of RTK pathways by proteome profiling of tumor samples of patients which were diagnosed a secondary GBM and underwent surgery and patients which underwent a second surgery after TMZ treatment due to recurrence of the tumor. We observed substantial activation of the PI3K and MEK/ERK pathways in both groups. However, AKT and CREB phosphorylation was reduced in biopsies of resistant tumors while ERK phosphorylation remained unchanged. Subsequent proteome profiling revealed that multiple RTKs and downstream targets are also activated in three GBM cell lines. We then systematically describe a mechanism of resistance of GBM cell lines and human primary GBM cells to the alkylating drugs TMZ and cisplatin. No specific inhibitor of the upstream RTKs sensitized cells to drug treatment. In contrast, we were able to restore sensitivity to TMZ and cisplatin by inhibiting PI3K in all cell lines and in human primary GBM cells. Interestingly, an opposite effect was observed when we inhibited the MEK/ERK signaling cascade with two different inhibitors. Conclusions Temozolomide treatment naive and TMZ resistant GBM biopsies show a distinct activation pattern of the MEK/ERK and PI3K signaling cascades indicating a role of these pathways in resistance development. Both pathways are also activated in GBM cell lines, however, only the PI3K pathway seems to play a crucial role in resistance to alkylating agents and might serve as drug target for chemosensitization.
Collapse
Affiliation(s)
- Bodo Haas
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Veronika Klinger
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,2Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany
| | - Christina Keksel
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| | - Verena Bonigut
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| | - Daniela Kiefer
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| | - Julia Caspers
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,4Faculty of Applied Natural Sciences, Cologne University of Applied Sciences, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany
| | - Julia Walther
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.,2Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany
| | - Maria Wos-Maganga
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Sandra Weickhardt
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Gabriele Röhn
- 5Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Marco Timmer
- 5Department of General Neurosurgery, Center for Neurosurgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Roland Frötschl
- 1Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Niels Eckstein
- 3Applied Pharmacy, University of Applied Sciences Kaiserslautern, Campus Pirmasens, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| |
Collapse
|
32
|
Song K, Yuan Y, Lin Y, Wang YX, Zhou J, Gai QJ, Zhang L, Mao M, Yao XX, Qin Y, Lu HM, Zhang X, Cui YH, Bian XW, Zhang X, Wang Y. ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells. Am J Cancer Res 2018; 8:792-809. [PMID: 29888103 PMCID: PMC5992513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023] Open
Abstract
Glioma, the most prevalent malignancy in brain, is classified into four grades (I, II, III, and IV), and grade IV glioma is also known as glioblastoma multiforme (GBM). Aberrant activation of receptor tyrosine kinases (RTKs), including platelet-derived growth factor receptor (PDGFR), are frequently observed in glioma. Accumulating evidence suggests that PDGFR plays critical roles during glioma development and progression and is a promising drug target for GBM therapy. However, PDGFR inhibitor (PDGFRi) has failed in clinical trials, at least partially, due to the activation of other RTKs, which compensates for PDGFR inhibition and renders tumor cells resistance to PDGFRi. Therefore, identifying the RTKs responsible for PDGFRi resistance might provide new therapeutic targets to synergetically enhance the efficacy of PDGFRi. In this study, we analyzed the TCGA glioma database and found that the mRNA expressions of three RTKs, i.e. ERBB3, IGF1R, and TGFBR2, were positively correlated with that of PDGFR. Co-immunoprecipitation assay indicated novel interactions between the three RTKs and PDGFR in GBM cells. Moreover, concurrent expression of PDGFR with ERBB3, IGF1R, or TGFBR2 in GBM cells attenuated the toxicity of PDGFRi and maintained the activation of PDGFR downstream targets under the existence of PDGFRi. Thus, ERBB3, IGF1R, and TGFBR2 might participate in PDGFRi resistance of GBM cells. Consistent with this notion, combination of PDGFRi with inhibitor targeting either ERBB3 or IGF1R more potently suppressed the growth of GBM cells than each inhibitor alone. The positive correlations of PDGFR with ERBB3, IGF1R, and TGFBR2 were further confirmed in 66 GBM patient samples. Intriguingly, survival analysis showed that ERBB3 predicted poor prognosis in GBM patients with high PDGFRA expression. Altogether, our work herein suggested that ERBB3, IGF1R, and TGFBR2 were responsible for PDGFRi resistance and revealed that ERBB3 acted as potential prognostic marker and therapeutic target for GBM with high PDGFRA expression.
Collapse
Affiliation(s)
- Kang Song
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - Ye Yuan
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - Yong Lin
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - Yan-Xia Wang
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - Jie Zhou
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - Qu-Jing Gai
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - Lin Zhang
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - Min Mao
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - Xiao-Xue Yao
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - Yan Qin
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - Hui-Min Lu
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - Xiang Zhang
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - You-Hong Cui
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - Xiu-Wu Bian
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - Xia Zhang
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| | - Yan Wang
- Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Key Laboratory of Tumor Immunology and Pathology of Ministry of EducationChongqing 400038, China
| |
Collapse
|
33
|
Jamwal G, Singh G, Dar MS, Singh P, Bano N, Syed SH, Sandhu P, Akhter Y, Monga SP, Dar MJ. Identification of a unique loss-of-function mutation in IGF1R and a crosstalk between IGF1R and Wnt/β-catenin signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:920-931. [PMID: 29621572 DOI: 10.1016/j.bbamcr.2018.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 01/08/2023]
Abstract
IGF1R is a ubiquitous receptor tyrosine kinase that plays critical roles in cell proliferation, growth and survival. Clinical studies have demonstrated upregulation of IGF1R mediated signaling in a number of malignancies including colon, breast, and lung cancers. Overexpression of the IGF1R in these malignancies is associated with a poor prognosis and overall survival. IGF1R specific kinase inhibitors have failed in multiple clinical trials partly because of the complex nature of IGF1R signaling. Thus identifying new binding partners and allosteric sites on IGF1R are emerging areas of research. More recently, IGF1R has been shown to translocate into the nucleus and perform many functions. In this study, we generated a library of IGF1R deletion and point mutants to examine IGF1R subcellular localization and activation of downstream signaling pathways. We show that the nuclear localization of IGF1R is primarily defined by its cytoplasmic domain. We identified a cross-talk between IGF1R and Wnt/β-catenin signaling pathways and showed, for the first time, that IGF1R is associated with upregulation of TCF-mediated β-catenin transcriptional activity. Using loss-of-function mutants, deletion analysis and IGF1R specific inhibitor(s), we show that cytoplasmic and nuclear activities are two independent functions of IGF1R. Furthermore, we identified a unique loss-of-function mutation in IGF1R. This unique loss-of-function mutant retains only nuclear functions and sits in a pocket, outside ATP and substrate binding region, that is suited for designing allosteric inhibitors of IGF1R.
Collapse
Affiliation(s)
- Gayatri Jamwal
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Gurjinder Singh
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Mohd Saleem Dar
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Paramjeet Singh
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Nasima Bano
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Sajad Hussain Syed
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Padmani Sandhu
- School of Life Sciences, Central University of Himachal Pradesh, Kangra-176206, Himachal Pradesh, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, USA
| | - Mohd Jamal Dar
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India.
| |
Collapse
|
34
|
Nasser MM, Mehdipour P. Exploration of Involved Key Genes and Signaling Diversity in Brain Tumors. Cell Mol Neurobiol 2018; 38:393-419. [PMID: 28493234 DOI: 10.1007/s10571-017-0498-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/02/2017] [Indexed: 02/05/2023]
Abstract
Brain tumors are becoming a major cause of death. The classification of brain tumors has gone through restructuring with regard to some criteria such as the presence or absence of a specific genetic alteration in the 2016 central nervous system World Health Organization update. Two categories of genes with a leading role in tumorigenesis and cancer induction include tumor suppressor genes and oncogenes; tumor suppressor genes are inactivated through a variety of mechanisms that result in their loss of function. As for the oncogenes, overexpression and amplification are the most common mechanisms of alteration. Important cell cycle genes such as p53, ATM, cyclin D2, and Rb have shown altered expression patterns in different brain tumors such as meningioma and astrocytoma. Some genes in signaling pathways have a role in brain tumorigenesis. These pathways include hedgehog, EGFR, Notch, hippo, MAPK, PI3K/Akt, and WNT signaling. It has been shown that telomere length in some brain tumor samples is shortened compared to that in normal cells. As the shortening of telomere length triggers chromosome instability early in brain tumors, it could lead to initiation of cancer. On the other hand, telomerase activity was positive in some brain tumors. It is suggestive that telomere length and telomerase activity are important diagnostic markers in brain tumors. This review focuses on brain tumors with regard to the status of oncogenes, tumor suppressors, cell cycle genes, and genes in signaling pathways as well as the role of telomere length and telomerase in brain tumors.
Collapse
Affiliation(s)
- Mojdeh Mahdian Nasser
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mehdipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Ferrer VP, Moura Neto V, Mentlein R. Glioma infiltration and extracellular matrix: key players and modulators. Glia 2018; 66:1542-1565. [DOI: 10.1002/glia.23309] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Rolf Mentlein
- Department of Anatomy; University of Kiel; Kiel Germany
| |
Collapse
|
36
|
Nilewski LG, Singh M, Baskin DS, Tour JM, Sharpe MA. Transfer of Dyes and Drugs into Cells Using EGFR-Targeted Nanosyringes. ACS Chem Neurosci 2018; 9:107-117. [PMID: 28753296 DOI: 10.1021/acschemneuro.7b00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Selective targeting of drug loaded nanovectors to specific epitopes highly expressed on the surface of cancer cells is a goal for nanotechnologists. We have modified our previously described PEGylated-hydrophilic carbon clusters (PEG-HCCs) so that the epidermal growth factor receptor (EGFR) binding peptide, GE11, is attached using click chemistry at the end of each PEG. The resulting nanosyringe, PepEGFR-PEG-HCC, can be loaded with a wide range of hydrophobic drugs and dyes. We show that, both in vitro and in vivo, this payload can be delivered to cancer cells expressing EGFR. We can observe the activation of EGFR and track the normal physiological internalization and recycling/signaling pathways of this tyrosine kinase following binding of PepEGFR-PEG-HCC. We also demonstrate the competitive binding of the nanosyringe to EGFR with its normal activator, EGF, as well as observing the colocalization of the nanosyringe with clathrin, the coated pit integral protein. The internalization of the drug/dye loaded nanosyringe can be inhibited by using anti-EGFR antibodies, the drug erlotinib, or Pitstop-1, the clathrin coated pit formation specific inhibitor. To further demonstrate the specificity of the drug loaded nanovectors, we demonstrated that, in both flank and intracranial xenograft mouse models, dye delivery is highly specific to tumors and no other tissues. Finally, using nanosyringes loaded with esterase sensitive fluorescein diacetate, we demonstrated that the drug payloads can be in vivo delivered to the cytosol of cancer cells within the mouse brain.
Collapse
Affiliation(s)
| | - Melissa Singh
- Fannin Innovation Studio, 3900
Essex Lane, Suite 575, Houston, Texas 77027, United States
| | - David S. Baskin
- Kenneth
R. Peak Brain and Pituitary Tumor Center, Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas 77030, United States
| | | | - Martyn A. Sharpe
- Kenneth
R. Peak Brain and Pituitary Tumor Center, Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas 77030, United States
| |
Collapse
|
37
|
Chen L, Ma C, Bian Y, Shao C, Wang T, Li J, Chong X, Su L, Lu J. Aberrant expression of STYK1 and E-cadherin confer a poor prognosis for pancreatic cancer patients. Oncotarget 2017; 8:111333-111345. [PMID: 29340057 PMCID: PMC5762325 DOI: 10.18632/oncotarget.22794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Previous studies showed that aberrant Serine/threonine/tyrosine kinase 1 (STYK1, also known as NOK) or/and E-cadherin were involved in the progression of some types of human cancers. However, whether they contributed to the development of pancreatic cancer was unknown. Here, we investigated the prognostic significance of aberrant STYK1 and E-cadherin in pancreatic cancer. Our results showed that STYK1 expression increased while E-cadherin decreased in pancreatic cancer tissues compared with normal pancreas tissues. STYK1 level was positively correlated with lymph node metastasis and clinical stage in pancreatic cancer patients. E-cadherin expression was inversely correlated with STYK1 expression in pancreatic cancer tissue samples. Patients with high STYK1 and low E-cadherin expression had the worst prognosis. In addition, STYK1 knockdown in pancreatic cancer cell lines inhibited cell proliferation, enhanced cell apoptosis, induced cell cycle arrest, and prohibited cell migration, while STYK1 over-expression showed the opposite effects. Silencing STYK1 also increased E-cadherin expression and inhibited epithelial-to-mesenchymal transition (EMT) and p-p38 expression in vitro. Over-expression had showed the opposite trends, and treatment with p38 inhibitor, SB203580, could reverse the trends. Thus, STYK1 repressed E-cadherin expression and promoted EMT, mediated by p38 MAPK signaling pathway, which was the possible mechanism for STYK1-mediated pancreatic cancer cell proliferation and migration. In summary, our results showed that STYK1 might be a prognostic marker for pancreatic cancer patients and might be a novel strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Luguang Chen
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Tiegong Wang
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Jing Li
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Xiaodan Chong
- Cancer Institute, Institute of Translational Medicine, Second Military Medical University, Shanghai, China
| | - Li Su
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| |
Collapse
|
38
|
Oh J, Kim Y, Che L, Kim JB, Chang GE, Cheong E, Kang SG, Ha Y. Regulation of cAMP and GSK3 signaling pathways contributes to the neuronal conversion of glioma. PLoS One 2017; 12:e0178881. [PMID: 29161257 PMCID: PMC5697826 DOI: 10.1371/journal.pone.0178881] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most malignant type of primary central nervous system tumors, and has an extremely poor prognosis. One potential therapeutic approach is to induce the terminal differentiation of glioma through the forced expression of pro-neural factors. Our goal is to show the proof of concept of the neuronal conversion of C6 glioma through the combined action of small molecules. We investigated the various changes in gene expression, cell-specific marker expression, signaling pathways, physiological characteristics, and morphology in glioma after combination treatment with two small molecules (CHIR99021, a glycogen synthase kinase 3 [GSK3] inhibitor and forskolin, a cyclic adenosine monophosphate [cAMP] activator). Here, we show that the combined action of CHIR99021 and forskolin converted malignant glioma into fully differentiated neurons with no malignant characteristics; inhibited the proliferation of malignant glioma; and significantly down-regulated gene ontology and gene expression profiles related to cell division, gliogenesis, and angiogenesis in small molecule–induced neurons. In vivo, the combined action of CHIR99021 and forskolin markedly delayed neurological deficits and significantly reduced the tumor volume. We suggest that reprogramming technology may be a potential treatment strategy replacing the therapeutic paradigm of traditional treatment of malignant glioma, and a combination molecule comprising a GSK3 inhibitor and a cAMP inducer could be the next generation of anticancer drugs.
Collapse
Affiliation(s)
- Jinsoo Oh
- Department of Neurosurgery, Spine & Spinal Cord Institute, College of Medicine, Yonsei University, Seoul, South Korea
| | - Yongbo Kim
- Department of Neurosurgery, Spine & Spinal Cord Institute, College of Medicine, Yonsei University, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Lihua Che
- Department of Neurosurgery, Spine & Spinal Cord Institute, College of Medicine, Yonsei University, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Beom Kim
- Hans Schöler Stem Cell Research Center (HSSCRC), School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
- Max Planck Partner Group-Molecular Biomedicine Laboratory (MPPG-MBL), UNIST, Ulsan, South Korea
| | - Gyeong Eon Chang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Spine & Spinal Cord Institute, College of Medicine, Yonsei University, Seoul, South Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine & Spinal Cord Institute, College of Medicine, Yonsei University, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
39
|
Arun S, Ravisankar S, Vanisree AJ. Implication of connexin30 on the stemness of glioma: connexin30 reverses the malignant phenotype of glioma by modulating IGF-1R, CD133 and cMyc. J Neurooncol 2017; 135:473-485. [PMID: 28875331 DOI: 10.1007/s11060-017-2608-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/20/2017] [Indexed: 01/24/2023]
Abstract
Gap-junctional intercellular communication (GJIC) plays a major role in the malignant growth of glioma. Although the mechanistic aspects of GJIC have been extensively studied, the role of connexins in the regulation of the malignant behavior of glioma stem cells (GSCs) remains unclear. In our previous studies, we have shown that connexin30 can interfere with the insulin-like growth factor 1 receptor (IGF-1R), which is known for self-renewal and pluripotency. Following our earlier in vitro observation, in this work, we aimed to study the consequence of this influence of Cx30 on IGF-1R by evaluating the marker of GSCs, CD133 and oncoprotein, cMyc. We strengthened our basis by examining human glioma samples of different grades as well as rat C6 xenografts (Cx30-transfected and -non-transfected C6 cells) along with the sphere formation assays in vitro. Investigation of stemness-related CD133 and cMyc in human samples and rat xenografts exhibited a reciprocal relationship between Cx30 and IGF-1R in the low and high grades (HG) of glioma. Cx30 was completely abolished in HG; levels of IGF-1R, CD133 and cMyc expression were positively correlated with HG. Cx30 transfection could attenuate the malignant burden of glioma in rat xenografts. Cx30 transfection also altered the tumor sphere formation of C6 glioma cells in vitro, an important property of GSCs, and there was a significant reduction of CD133 and cMyc expression by Cx30 both in vitro and in vivo. These factors indicate that dysfunction of Cx30 plays a crucial role in the prevention of the stemness of glioma, and the exploitation of this feature will help in the management of glioma.
Collapse
Affiliation(s)
- Sankaradoss Arun
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India
| | - Shantha Ravisankar
- Department of Neuropathology, Tamil Nadu Multi-Specialty Hospital, Chennai, Tamil Nadu, 600 003, India
| | | |
Collapse
|
40
|
Solingapuram Sai KK, Prabhakaran J, Sattiraju A, Mann JJ, Mintz A, Kumar JD. Radiosynthesis and evaluation of IGF1R PET ligand [ 11 C]GSK1838705A. Bioorg Med Chem Lett 2017; 27:2895-2897. [DOI: 10.1016/j.bmcl.2017.04.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
|
41
|
Anti-Proliferative Effects of Human Anti-FZD7 Single Chain Antibodies on Colorectal Cancer Cells. ACTA ACUST UNITED AC 2017. [DOI: 10.5812/semj.45219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Almiron Bonnin DA, Ran C, Havrda MC, Liu H, Hitoshi Y, Zhang Z, Cheng C, Ung M, Israel MA. Insulin-Mediated Signaling Facilitates Resistance to PDGFR Inhibition in Proneural hPDGFB-Driven Gliomas. Mol Cancer Ther 2017; 16:705-716. [PMID: 28138037 DOI: 10.1158/1535-7163.mct-16-0616] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/06/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022]
Abstract
Despite abundant evidence implicating receptor tyrosine kinases (RTK), including the platelet-derived growth factor receptor (PDGFR), in the pathogenesis of glioblastoma (GBM), the clinical use of RTK inhibitors in this disease has been greatly compromised by the rapid emergence of therapeutic resistance. To study the resistance of proneural gliomas that are driven by a PDGFR-regulated pathway to targeted tyrosine kinase inhibitors, we utilized a mouse model of proneural glioma in which mice develop tumors that become resistant to PDGFR inhibition. We found that tumors resistant to PDGFR inhibition required the expression and activation of the insulin receptor (IR)/insulin growth-like factor receptor (IGF1R) for tumor cell proliferation and survival. Cotargeting IR/IGF1R and PDGFR decreased the emergence of resistant clones in vitro Our findings characterize a novel model of glioma recurrence that implicates the IR/IGF1R signaling axis in mediating the development of resistance to PDGFR inhibition and provide evidence that IR/IGF1R signaling is important in the recurrence of the proneural subtype of glioma in which PDGF/PDGFR is most commonly expressed at a high level. Mol Cancer Ther; 16(4); 705-16. ©2017 AACR.
Collapse
Affiliation(s)
- Damian A Almiron Bonnin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Cong Ran
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Huan Liu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Yasuyuki Hitoshi
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,Department of Neurosurgery, Rosai Hospital, Kumamoto, Japan
| | - Zhonghua Zhang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Chao Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Matthew Ung
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Mark A Israel
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,Departments of Medicine and Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
43
|
Wang K, Kievit FM, Erickson AE, Silber JR, Ellenbogen RG, Zhang M. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells. Adv Healthc Mater 2016; 5:3173-3181. [PMID: 27805789 PMCID: PMC5253135 DOI: 10.1002/adhm.201600684] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/04/2016] [Indexed: 12/20/2022]
Abstract
The lack of in vitro models that support the growth of glioblastoma (GBM) stem cells (GSCs) that underlie clinical aggressiveness hinders developing new, effective therapies for GBM. While orthotopic patient-derived xenograft models of GBM best reflect in vivo tumor behavior, establishing xenografts is a time consuming, costly, and frequently unsuccessful endeavor. To address these limitations, a 3D porous scaffold composed of chitosan and hyaluronic acid (CHA) is synthesized. Growth and expression of the cancer stem cell (CSC) phenotype of the GSC GBM6 taken directly from fresh xenogratfs grown on scaffolds or as adherent monolayers is compared. While 2D adherent cultures grow as monolayers of flat epitheliod cells, GBM6 cells proliferate within pores of CHA scaffolds as clusters of self-adherent ovoid cells. Growth on scaffolds is accompanied by greater expression of genes that mediate epithelial-mesenchymal transition and maintain a primitive, undifferentiated phenotype, hallmarks of CSCs. Scaffold-grown cells also display higher expression of genes that promote resistance to hypoxia-induced oxidative stress. In accord, scaffold-grown cells show markedly greater resistance to clinically utilized alkylating agents compared to adherent cells. These findings suggest that our CHA scaffolds better mimic in vivo biological and clinical behavior and provide insights for developing novel individualized treatments.
Collapse
Affiliation(s)
- Kui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Forrest M Kievit
- Department of Neurological Surgery, University of Washington, Seattle, WA, 98195, USA
| | - Ariane E Erickson
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - John R Silber
- Department of Neurological Surgery, University of Washington, Seattle, WA, 98195, USA
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
44
|
A combination of tyrosine kinase inhibitors, crizotinib and dasatinib for the treatment of glioblastoma multiforme. Oncotarget 2016; 6:37948-64. [PMID: 26517812 PMCID: PMC4741976 DOI: 10.18632/oncotarget.5698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/06/2015] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. Despite the advances in surgery, radiotherapy and chemotherapy, patient survival averages only 14.6 months. In most GBM tumors, tyrosine kinases show increased activity and/or expression and actively contribute to the development, recurrence and onset of treatment resistance; making their inhibition an appealing therapeutic strategy. We compared the cytotoxicity of 12 tyrosine kinase inhibitors in vitro. A combination of crizotinib and dasatinib emerged as the most cytotoxic across established and primary human GBM cell lines. The combination treatment induced apoptotic cell death and polyploidy. Furthermore, the combination treatment led to the altered expression and localization of several tyrosine kinase receptors such as Met and EGFR and downstream effectors as such as SRC. Furthermore, the combination treatment reduced the migration and invasion of GBM cells and prevented endothelial cell tube formation in vitro. Overall, our study demonstrated the broad specificity of a combination of crizotinib and dasatinib across multiple GBM cell lines. These findings provide insight into the development of alternative therapy for the treatment of GBM.
Collapse
|
45
|
Suman S, Kumar S, Fornace AJ, Datta K. Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine. Sci Rep 2016; 6:31853. [PMID: 27558773 PMCID: PMC4997262 DOI: 10.1038/srep31853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/28/2016] [Indexed: 12/21/2022] Open
Abstract
Travel into outer space is fraught with risk of exposure to energetic heavy ion radiation such as 56Fe ions, which due to its high linear energy transfer (high-LET) characteristics deposits higher energy per unit volume of tissue traversed and thus more damaging to cells relative to low-LET radiation such as γ rays. However, estimates of human health risk from energetic heavy ion exposure are hampered due to lack of tissue specific in vivo molecular data. We investigated long-term effects of 56Fe radiation on adipokines and insulin-like growth factor 1 (IGF1) signaling axis in mouse intestine and colon. Six- to eight-week-old C57BL/6J mice were exposed to 1.6 Gy of 56Fe ions. Serum and tissues were collected up to twelve months post-irradiation. Serum was analyzed for leptin, adiponectin, IGF1, and IGF binding protein 3. Receptor expressions and downstream signaling pathway alterations were studied in tissues. Irradiation increased leptin and IGF1 levels in serum, and IGF1R and leptin receptor expression in tissues. When considered along with upregulated Jak2/Stat3 pathways and cell proliferation, our data supports the notion that space radiation exposure is a risk to endocrine alterations with implications for chronic pathophysiologic changes in gastrointestinal tract.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamal Datta
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
46
|
Ni J, Xie S, Ramkissoon SH, Luu V, Sun Y, Bandopadhayay P, Beroukhim R, Roberts TM, Stiles CD, Segal RA, Ligon KL, Hahn WC, Zhao JJ. Tyrosine receptor kinase B is a drug target in astrocytomas. Neuro Oncol 2016; 19:22-30. [PMID: 27402815 DOI: 10.1093/neuonc/now139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Astrocytomas are the most common primary human brain tumors. Receptor tyrosine kinases (RTKs), including tyrosine receptor kinase B (TrkB, also known as tropomyosin-related kinase B; encoded by neurotrophic tyrosine kinase receptor type 2 [NTRK2]), are frequently mutated by rearrangement/fusion in high-grade and low-grade astrocytomas. We found that activated TrkB can contribute to the development of astrocytoma and might serve as a therapeutic target in this tumor type. METHODS To identify RTKs capable of inducing astrocytoma formation, a library of human tyrosine kinases was screened for the ability to transform murine Ink4a-/-/Arf-/- astrocytes. Orthotopic allograft studies were conducted to evaluate the effects of RTKs on the development of astrocytoma. Since TrkB was identified as a driver of astrocytoma formation, the effect of the Trk inhibitors AZD1480 and RXDX-101 was assessed in astrocytoma cells expressing activated TrkB. RNA sequencing, real-time PCR, western blotting, and enzyme-linked immunosorbent assays were conducted to characterize NTRK2 in astrocytomas. RESULTS Activated TrkB cooperated with Ink4a/Arf loss to induce the formation of astrocytomas through a mechanism mediated by activation of signal transducer and activator of transcription 3 (STAT3). TrkB activation positively correlated with Ccl2 expression. TrkB-induced astrocytomas remained dependent on TrkB signaling for survival, highlighting a role of NTRK2 as an addictive oncogene. Furthermore, the QKI-NTRK2 fusion associated with human astrocytoma transformed Ink4a-/-/Arf-/- astrocytes, and this process was also mediated via STAT3 signaling. CONCLUSIONS Our findings provide evidence that constitutively activated NTRK2 alleles, notably the human tumor-associated QKI-NTRK2 fusion, can cooperate with Ink4a/Arf loss to drive astrocytoma formation. Therefore, we propose NTRK2 as a potential therapeutic target in the subset of astrocytoma patients defined by QKI-NTRK2 fusion.
Collapse
Affiliation(s)
- Jing Ni
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (J.N., S.X., V.L., Y.S., P.B., R.B., T.M.R., C.D.S., R.A.S., J.J.Z.); Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts (J.N., S.X., V.L., T.M.R., J.J.Z.); Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (S.H.R., R.B., K.L.L., W.C.H.); Broad Institute, Boston, Massachusetts (P.B., R.B., W.C.H.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (S.H.R., K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.)
| | - Shaozhen Xie
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (J.N., S.X., V.L., Y.S., P.B., R.B., T.M.R., C.D.S., R.A.S., J.J.Z.); Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts (J.N., S.X., V.L., T.M.R., J.J.Z.); Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (S.H.R., R.B., K.L.L., W.C.H.); Broad Institute, Boston, Massachusetts (P.B., R.B., W.C.H.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (S.H.R., K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.)
| | - Shakti H Ramkissoon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (J.N., S.X., V.L., Y.S., P.B., R.B., T.M.R., C.D.S., R.A.S., J.J.Z.); Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts (J.N., S.X., V.L., T.M.R., J.J.Z.); Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (S.H.R., R.B., K.L.L., W.C.H.); Broad Institute, Boston, Massachusetts (P.B., R.B., W.C.H.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (S.H.R., K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.)
| | - Victor Luu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (J.N., S.X., V.L., Y.S., P.B., R.B., T.M.R., C.D.S., R.A.S., J.J.Z.); Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts (J.N., S.X., V.L., T.M.R., J.J.Z.); Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (S.H.R., R.B., K.L.L., W.C.H.); Broad Institute, Boston, Massachusetts (P.B., R.B., W.C.H.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (S.H.R., K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.)
| | - Yu Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (J.N., S.X., V.L., Y.S., P.B., R.B., T.M.R., C.D.S., R.A.S., J.J.Z.); Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts (J.N., S.X., V.L., T.M.R., J.J.Z.); Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (S.H.R., R.B., K.L.L., W.C.H.); Broad Institute, Boston, Massachusetts (P.B., R.B., W.C.H.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (S.H.R., K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.)
| | - Pratiti Bandopadhayay
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (J.N., S.X., V.L., Y.S., P.B., R.B., T.M.R., C.D.S., R.A.S., J.J.Z.); Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts (J.N., S.X., V.L., T.M.R., J.J.Z.); Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (S.H.R., R.B., K.L.L., W.C.H.); Broad Institute, Boston, Massachusetts (P.B., R.B., W.C.H.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (S.H.R., K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.)
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (J.N., S.X., V.L., Y.S., P.B., R.B., T.M.R., C.D.S., R.A.S., J.J.Z.); Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts (J.N., S.X., V.L., T.M.R., J.J.Z.); Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (S.H.R., R.B., K.L.L., W.C.H.); Broad Institute, Boston, Massachusetts (P.B., R.B., W.C.H.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (S.H.R., K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.)
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (J.N., S.X., V.L., Y.S., P.B., R.B., T.M.R., C.D.S., R.A.S., J.J.Z.); Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts (J.N., S.X., V.L., T.M.R., J.J.Z.); Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (S.H.R., R.B., K.L.L., W.C.H.); Broad Institute, Boston, Massachusetts (P.B., R.B., W.C.H.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (S.H.R., K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.)
| | - Charles D Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (J.N., S.X., V.L., Y.S., P.B., R.B., T.M.R., C.D.S., R.A.S., J.J.Z.); Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts (J.N., S.X., V.L., T.M.R., J.J.Z.); Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (S.H.R., R.B., K.L.L., W.C.H.); Broad Institute, Boston, Massachusetts (P.B., R.B., W.C.H.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (S.H.R., K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.)
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (J.N., S.X., V.L., Y.S., P.B., R.B., T.M.R., C.D.S., R.A.S., J.J.Z.); Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts (J.N., S.X., V.L., T.M.R., J.J.Z.); Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (S.H.R., R.B., K.L.L., W.C.H.); Broad Institute, Boston, Massachusetts (P.B., R.B., W.C.H.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (S.H.R., K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.)
| | - Keith L Ligon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (J.N., S.X., V.L., Y.S., P.B., R.B., T.M.R., C.D.S., R.A.S., J.J.Z.); Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts (J.N., S.X., V.L., T.M.R., J.J.Z.); Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (S.H.R., R.B., K.L.L., W.C.H.); Broad Institute, Boston, Massachusetts (P.B., R.B., W.C.H.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (S.H.R., K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.)
| | - William C Hahn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (J.N., S.X., V.L., Y.S., P.B., R.B., T.M.R., C.D.S., R.A.S., J.J.Z.); Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts (J.N., S.X., V.L., T.M.R., J.J.Z.); Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (S.H.R., R.B., K.L.L., W.C.H.); Broad Institute, Boston, Massachusetts (P.B., R.B., W.C.H.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (S.H.R., K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.)
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (J.N., S.X., V.L., Y.S., P.B., R.B., T.M.R., C.D.S., R.A.S., J.J.Z.); Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts (J.N., S.X., V.L., T.M.R., J.J.Z.); Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (S.H.R., R.B., K.L.L., W.C.H.); Broad Institute, Boston, Massachusetts (P.B., R.B., W.C.H.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (S.H.R., K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.)
| |
Collapse
|
47
|
Abstract
INTRODUCTION Despite substantial improvements in standards of care, the most common aggressive pediatric and adult high-grade gliomas (HGG) carry uniformly fatal diagnoses due to unique treatment limitations, high recurrence rates and the absence of effective treatments following recurrence. Recent advancements in our understanding of the pathophysiology, genetics and epigenetics as well as mechanisms of immune surveillance during gliomagenesis have created new knowledge to design more effective and target-directed therapies to improve patient outcomes. AREAS COVERED In this review, the authors discuss the critical genetic, epigenetic and immunologic aberrations found in gliomas that appear rational and promising for therapeutic developments in the presence and future. The current state of the latest therapeutic developments including tumor-specific targeted drug therapies, metabolic targeting, epigenetic modulation and immunotherapy are summarized and suggestions for future directions are offered. Furthermore, they highlight contemporary issues related to the clinical development, such as challenges in clinical trials and toxicities. EXPERT OPINION The commitment to understanding the process of gliomagenesis has created a catalogue of aberrations that depict multiple mechanisms underlying this disease, many of which are suitable to therapeutic inhibition and are currently tested in clinical trials. Thus, future treatment endeavors will employ multiple treatment modalities that target disparate tumor characteristics personalized to the patient's individual tumor.
Collapse
Affiliation(s)
- Verena Staedtke
- a Department of Neurology , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| | - Ren-Yuan Bai
- b Department of Neurosurgery , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| | - John Laterra
- a Department of Neurology , Johns Hopkins Medical Institutions , Baltimore , MD , USA.,c Department of Oncology , Johns Hopkins Medical Institutions , Baltimore , MD , USA.,d Department of Neuroscience , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| |
Collapse
|
48
|
Shi Z, Yu T, Sun R, Wang S, Chen XQ, Cheng LJ, Liu R. Discovery of Novel Human Epidermal Growth Factor Receptor-2 Inhibitors by Structure-based Virtual Screening. Pharmacogn Mag 2016; 12:139-44. [PMID: 27076751 PMCID: PMC4809169 DOI: 10.4103/0973-1296.177912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. OBJECTIVE Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. MATERIALS AND METHODS In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential "new use" drugs. RESULTS Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. CONCLUSION Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study. SUMMARY A series of elegant bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations were took advantage to identify human epidermal growth factor receptor-2 (HER2) inhibitors. Molecular docking recognized top 10 candidate compounds, which showed spectrum affinity to HER2. Further, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) in candidate compounds were identified as potential "new use" drugs against HER2-targeted anti-breast cancer therapeutics. Abbreviations used: HER2: Human epidermal growth factor receptor-2, FDA: Food and Drug Administration, PDB: Protein Database Bank, RMSDs: Root mean square deviations, SPC: Single point charge, PME: Particle mesh Ewald, NVT: Constant volume, NPT: Constant pressure, RMSF: Root-mean-square fluctuation.
Collapse
Affiliation(s)
- Zheng Shi
- Department of Basic Medicine, School of Medicine and Nursing, Sichuan Industrial Institute of Antibiotics, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610015, China
| | - Tian Yu
- Department of Basic Medicine, School of Medicine and Nursing, Sichuan Industrial Institute of Antibiotics, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610015, China
| | - Rong Sun
- Department of Bioinformatics, School of Life Sciences, Key Laboratory of Bio-resources, Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Shan Wang
- Department of Basic Medicine, School of Medicine and Nursing, Sichuan Industrial Institute of Antibiotics, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610015, China
| | - Xiao-Qian Chen
- Department of Basic Medicine, School of Medicine and Nursing, Sichuan Industrial Institute of Antibiotics, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610015, China
| | - Li-Jia Cheng
- Department of Basic Medicine, School of Medicine and Nursing, Sichuan Industrial Institute of Antibiotics, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610015, China
| | - Rong Liu
- Department of Basic Medicine, School of Medicine and Nursing, Sichuan Industrial Institute of Antibiotics, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610015, China
| |
Collapse
|
49
|
Li H, Zheng J, Guan R, Zhu Z, Yuan X. Tyrphostin AG 1296 induces glioblastoma cell apoptosis in vitro and in vivo. Oncol Lett 2015; 10:3429-3433. [PMID: 26788146 PMCID: PMC4665272 DOI: 10.3892/ol.2015.3781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 05/14/2015] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma is the most common type of malignant human brain tumor. Currently available chemotherapies for glioblastoma focus on targeting tyrosine kinases. However, the existing inhibitors of tyrosine kinases have not produced the therapeutic outcomes that were anticipated. In order to investigate the viability alternative chemotherapeutic agents in this disease, the present study examined the anticancer effects of tyrphostin AG 1296, focusing on its involvement in apoptosis in glioblastoma cells. The study aimed to identify whether tyrphostin AG 1296 affects glioblastoma cell growth by inducing cell apoptosis. To achieve this, cell viability, propidium iodide analysis and cell invasion assay were used to measure cell growth, cell apoptosis and cell migration of human glioblastoma cells. The results showed that tyrphostin AG 1296 treatment reduced cell viability and suppressed migration of human glioblastoma cells. It was also demonstrated that tyrphostin AG 1296 induced cell apoptosis in vitro. Finally, tyrphostin AG 1296 was also shown to significantly inhibit the growth of glioblastoma cells and to increase tumor cell apoptosis in vivo. These findings suggest that tyrphostin AG 1296 induces apoptosis, thereby reducing cell viability and capacity for migration of glioblastoma cells.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China; Department of Neurosurgery, The Eight People's Hospital of Shenzhen, Shenzhen, Guangdong 510000, P.R. China
| | - Junning Zheng
- Department of Neurosurgery, The Eight People's Hospital of Shenzhen, Shenzhen, Guangdong 510000, P.R. China
| | - Ruiyun Guan
- Department of Neurosurgery, The Eight People's Hospital of Shenzhen, Shenzhen, Guangdong 510000, P.R. China
| | - Zifeng Zhu
- Department of Neurosurgery, The Eight People's Hospital of Shenzhen, Shenzhen, Guangdong 510000, P.R. China
| | - Xianhou Yuan
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
50
|
Xu YY, Gao P, Sun Y, Duan YR. Development of targeted therapies in treatment of glioblastoma. Cancer Biol Med 2015; 12:223-37. [PMID: 26487967 PMCID: PMC4607828 DOI: 10.7497/j.issn.2095-3941.2015.0020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a type of tumor that is highly lethal despite maximal therapy. Standard therapeutic approaches provide modest improvement in progression-free and overall survival, necessitating the investigation of novel therapies. Oncologic therapy has recently experienced a rapid evolution toward "targeted therapy", with drugs directed against specific targets which play essential roles in the proliferation, survival, and invasiveness of GBM cells, including numerous molecules involved in signal transduction pathways. Inhibitors of these molecules have already entered or are undergoing clinical trials. However, significant challenges in their development remain because several preclinical and clinical studies present conflicting results. In this article, we will provide an up-to-date review of the current targeted therapies in GBM.
Collapse
Affiliation(s)
- Yuan-Yuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Pei Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - You-Rong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|