1
|
Muñoz-Moreno L, Gómez-Calcerrada MI, Arenas MI, Carmena MJ, Prieto JC, Schally AV, Bajo AM. Antagonist of Growth Hormone-Releasing Hormone Receptor MIA-690 Suppresses the Growth of Androgen-Independent Prostate Cancers. Int J Mol Sci 2024; 25:11200. [PMID: 39456984 PMCID: PMC11508372 DOI: 10.3390/ijms252011200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The development of resistance remains the primary challenge in treating castration-resistant prostate cancer (CRPC). GHRH receptors (GHRH-R), which are coupled to G-proteins (GPCRs), can mediate EGFR transactivation, offering an alternative pathway for tumour survival. This study aimed to evaluate the effects of the GHRH-R antagonist MIA-690, in combination with the EGFR inhibitor Gefitinib, on cell viability, adhesion, gelatinolytic activity, and the cell cycle in advanced prostate cancer PC-3 cells. The findings demonstrate a synergistic effect between MIA-690 and Gefitinib, leading to the inhibition of cell viability, adhesion, and metalloprotease activity. Cell cycle analysis suggests that both compounds induce cell cycle arrest, both individually and in combination. Furthermore, similar effects of the GHRH-R antagonist MIA-690 combined with Gefitinib were observed in PC-3 tumours developed by subcutaneous injection in athymic nude mice 36 days post-inoculation. These results indicate that combined therapy with a GHRH-R antagonist and an EGFR inhibitor exerts a stronger antitumor effect compared to monotherapy by preventing transactivation between EGFR and GHRH-R in CRPC.
Collapse
Affiliation(s)
- Laura Muñoz-Moreno
- Grupo de Investigación Cánceres de Origen Epitelial, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Madrid, Spain; (M.I.G.-C.); (M.J.C.); (A.M.B.)
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Madrid, Spain
| | - M. Isabel Gómez-Calcerrada
- Grupo de Investigación Cánceres de Origen Epitelial, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Madrid, Spain; (M.I.G.-C.); (M.J.C.); (A.M.B.)
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Madrid, Spain
| | - M. Isabel Arenas
- Grupo de Investigación Cánceres de Origen Epitelial, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Madrid, Spain; (M.I.G.-C.); (M.J.C.); (A.M.B.)
- Unidad de Biología Celular, Departamento de Biomedicina y Biotecnología, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Madrid, Spain
| | - M. José Carmena
- Grupo de Investigación Cánceres de Origen Epitelial, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Madrid, Spain; (M.I.G.-C.); (M.J.C.); (A.M.B.)
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Madrid, Spain
| | - Juan C. Prieto
- Grupo de Investigación Cánceres de Origen Epitelial, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Madrid, Spain; (M.I.G.-C.); (M.J.C.); (A.M.B.)
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Madrid, Spain
| | - Andrew V. Schally
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125, USA
- Department of Pathology and Medicine, Division of Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ana M. Bajo
- Grupo de Investigación Cánceres de Origen Epitelial, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Madrid, Spain; (M.I.G.-C.); (M.J.C.); (A.M.B.)
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Madrid, Spain
| |
Collapse
|
2
|
Bunsick DA, Matsukubo J, Aldbai R, Baghaie L, Szewczuk MR. Functional Selectivity of Cannabinoid Type 1 G Protein-Coupled Receptor Agonists in Transactivating Glycosylated Receptors on Cancer Cells to Induce Epithelial-Mesenchymal Transition Metastatic Phenotype. Cells 2024; 13:480. [PMID: 38534324 DOI: 10.3390/cells13060480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Understanding the role of biased G protein-coupled receptor (GPCR) agonism in receptor signaling may provide novel insights into the opposing effects mediated by cannabinoids, particularly in cancer and cancer metastasis. GPCRs can have more than one active state, a phenomenon called either 'biased agonism', 'functional selectivity', or 'ligand-directed signaling'. However, there are increasing arrays of cannabinoid allosteric ligands with different degrees of modulation, called 'biased modulation', that can vary dramatically in a probe- and pathway-specific manner, not from simple differences in orthosteric ligand efficacy or stimulus-response coupling. Here, emerging evidence proposes the involvement of CB1 GPCRs in a novel biased GPCR signaling paradigm involving the crosstalk between neuraminidase-1 (Neu-1) and matrix metalloproteinase-9 (MMP-9) in the activation of glycosylated receptors through the modification of the receptor glycosylation state. The study findings highlighted the role of CB1 agonists AM-404, Aravnil, and Olvanil in significantly inducing Neu-1 sialidase activity in a dose-dependent fashion in RAW-Blue, PANC-1, and SW-620 cells. This approach was further substantiated by findings that the neuromedin B receptor inhibitor, BIM-23127, MMP-9 inhibitor, MMP9i, and Neu-1 inhibitor, oseltamivir phosphate, could specifically block CB1 agonist-induced Neu-1 sialidase activity. Additionally, we found that CB1 receptors exist in a multimeric receptor complex with Neu-1 in naïve, unstimulated RAW-Blue, PANC-1, and SW-620 cells. This complex implies a molecular link that regulates the interaction and signaling mechanism among these molecules present on the cell surface. Moreover, the study results demonstrate that CB1 agonists induce NFκB-dependent secretory alkaline phosphatase (SEAP) activity in influencing the expression of epithelial-mesenchymal markers, E-cadherin, and vimentin in SW-620 cells, albeit the impact on E-cadherin expression is less pronounced compared to vimentin. In essence, this innovative research begins to elucidate an entirely new molecular mechanism involving a GPCR signaling paradigm in which cannabinoids, as epigenetic stimuli, may traverse to influence gene expression and contribute to cancer and cancer metastasis.
Collapse
Affiliation(s)
- David A Bunsick
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jenna Matsukubo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
- Faculty of Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd #2044, Ottawa, ON K1H 8M5, Canada
| | - Rashelle Aldbai
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
3
|
Polz A, Morshed K, Drop B, Polz-Dacewicz M. Could MMP3 and MMP9 Serve as Biomarkers in EBV-Related Oropharyngeal Cancer. Int J Mol Sci 2024; 25:2561. [PMID: 38473807 DOI: 10.3390/ijms25052561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The high incidence of, and mortality from, head and neck cancers (HNCs), including those related to Epstein-Barr virus (EBV), constitute a major challenge for modern medicine, both in terms of diagnosis and treatment. Therefore, many researchers have made efforts to identify diagnostic and prognostic factors. The aim of this study was to evaluate the diagnostic usefulness of matrix metalloproteinase 3 (MMP 3) and matrix metalloproteinase 9 (MMP 9) in EBV positive oropharyngeal squamous cell carcinoma (OPSCC) patients. For this purpose, the level of these MMPs in the serum of patients with EBV-positive OPSCC was analyzed in relation to the degree of histological differentiation and TNM classification. Our research team's results indicate that the level of both MMPs is much higher in the EBV positive OPSCC patients compared to the EBV negative and control groups. Moreover, their levels were higher in more advanced clinical stages. Considering the possible correlation between the level of MMP 3, MMP 9 and anti-EBV antibodies, and also viral load, after statistical analysis using multiple linear regression, their high correlation was demonstrated. The obtained results confirm the diagnostic accuracy for MMP 3 and MMP 9. Both MMPs may be useful in the diagnosis of EBV positive OPSCC patients.
Collapse
Affiliation(s)
| | - Kamal Morshed
- Department of Otolaryngology Head and Neck Cancer, University of Technology and Humanities in Radom, 26-600 Radom, Poland
| | - Bartłomiej Drop
- Department of Computer Science and Medical Statistics with e-health Laboratory, Medical University of Lublin, 20-090 Lublin, Poland
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Zhao T, Li X, Li M, Jamil M, Zhang J. Characterization and verification of MMP family members as potential biomarkers in kidney clear cell renal carcinoma. Am J Cancer Res 2023; 13:3941-3962. [PMID: 37818055 PMCID: PMC10560920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/13/2023] [Indexed: 10/12/2023] Open
Abstract
Renal cell carcinoma can arise from lesions in the renal epithelium. This particular type of cancer is prevalent in the realm of renal cancers and is associated with an unfavorable prognosis. Among these cases, over 70% are classified as kidney renal clear cell carcinoma (KIRC). Since the underlying causes of KIRC haven't been fully understood, there is an urgent need for deeper investigation into its pathogenesis. Various tools, software, and molecular analysis was used, including Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Cytoscape, University of ALabama at Birmingham CANcer data analysis Portal (UALCAN), muTarget, Gene Expression Profiling Interactive Analysis (GEPIA), OncoDB, Human Protein Atlas (HPA), cBioPortal, Kaplan-Meier (KM) plotter, Gene Set Enrichment Analysis (GSEA), Tumor IMmune Estimation Resource (TIMER), Encyclopedia of RNA Interactomes (ENCORI), DrugBank, Encyclopedia of RNA Interactomes (RT-qPCR), targeted bisulfide sequencing (bisulfide-seq), and receiver operating curve (ROC) to matrix metallopeptidase (MMP) gene family constituents, with the precise objective of identifying a small set of hub genes. These hub genes hold the potential to be harnessed as molecular biomarkers for KIRC. By performing STRING and CytoHubba analyses of the 24 MMP gene family members, MMP2 (matrix metallopeptidase 2), MMP9 (matrix metallopeptidase 9), MMP14 (matrix metallopeptidase 14), and MMP16 (matrix metallopeptidase 16) were recognized as hub genes having highest degree scores. After conducting an in-depth expression analysis of MMP2, MMP9, MMP14, and MMP16 using various The Cancer Genome Atlas (TCGA) databases and RT-qPCR techniques, these displayed a significant increase in expression at both the mRNA and protein levels within KIRC samples when compared to control samples. The impact of the over expression of MMP2, MMP9, MMP14, and MMP16 also left a distinct mark on the worst overall survival (OS) rates of KIRC patients. Furthermore, a targeted bisulfide-seq investigation unveiled a correlation between promoter hypomethylation patterns and the up-regulation of these key genes in KIRC patients. Additionally, hub genes were involved in various diverse oncogenic pathways. In conclusion, four MMP gene family members, including MMP2, MMP9, MMP14, and MMP16 may serve as therapeutic target and molecular biomarker in KIRC.
Collapse
Affiliation(s)
- Tianyu Zhao
- Central People’s Hospital of ZhanjiangZhanjiang 524000, Guangdong, China
| | - Xue Li
- Central People’s Hospital of ZhanjiangZhanjiang 524000, Guangdong, China
| | - Mingfeng Li
- Central People’s Hospital of ZhanjiangZhanjiang 524000, Guangdong, China
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| | - Jingyu Zhang
- Central People’s Hospital of ZhanjiangZhanjiang 524000, Guangdong, China
| |
Collapse
|
5
|
Hope S, Nærland T, Olav Kolset S, Ueland T, Andreassen OA, Nordstrøm M. Systemic immune profile in Prader-Willi syndrome: elevated matrix metalloproteinase and myeloperoxidase and reduced macrophage inhibitory factor. Orphanet J Rare Dis 2023; 18:185. [PMID: 37430349 DOI: 10.1186/s13023-023-02730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/14/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental syndrome with highly increased risk of obesity and cardiovascular disease (CVD). Recent evidence suggests that inflammation is implicated in the pathogenesis. Here we investigated CVD related immune markers to shed light on pathogenetic mechanisms. METHODS We performed a cross-sectional study with 22 participants with PWS and 22 healthy controls (HC), and compared levels of 21 inflammatory markers that reflect activity in different aspects of CVD related immune pathways and analyzed their association with clinical CVD risk factors. RESULTS Serum levels of matrix metalloproteinase 9 (MMP-9) was (median (range)) 121 (182) ng/ml in PWS versus 44 (51) ng/ml in HC, p = 1 × 10-9), myeloperoxidase (MPO) was 183 (696) ng/ml versus 65 (180) ng/ml, p = 1 × 10-5) and macrophage inhibitory factor (MIF) was 46 (150) ng/ml versus 121 (163) ng/ml (p = 1 × 10-3), after adjusting for age and sex. Also other markers tended to be elevated (OPG, sIL2RA, CHI3L1, VEGF) but not significantly after Bonferroni correction (p > 0.002). As expected PWS had higher body mass index, waist circumference, leptin, C-reactive protein, glycosylated hemoglobin (HbA1c), VAI and cholesterol, but MMP-9, MPO and MIF remained significantly different in PWS after adjustment for these clinical CVD risk factors. CONCLUSION PWS had elevated levels of MMP-9 and MPO and of reduced levels of MIF, which were not secondary to comorbid CVD risk factors. This immune profile suggests enhanced monocyte/neutrophil activation, impaired macrophage inhibition with enhanced extracellular matrix remodeling. These findings warrant further studies targeting these immune pathways in PWS.
Collapse
Affiliation(s)
- Sigrun Hope
- K.G. Jebsen Centre for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Neurohabilitation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway.
- Nevsom, Department of Rare Diagnoses and Disabilities, Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
| | - Terje Nærland
- K.G. Jebsen Centre for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Nevsom, Department of Rare Diagnoses and Disabilities, Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Svein Olav Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Rikshospitalet, Oslo, Norway
- K.G. Jebsen, TREC, University of Tromsø, Tromsø, Norway
| | - Ole A Andreassen
- K.G. Jebsen Centre for Neurodevelopmental disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT: Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Marianne Nordstrøm
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Frambu Resource Centre for Rare Disorders, Siggerud, Norway
- Unit for Rare Neuromuscular Disorders, Movement, Muscle and Neurodegeneration, Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Khoury W, Trus R, Chen X, Baghaie L, Clark M, Szewczuk MR, El-Diasty M. Parsimonious Effect of Pentoxifylline on Angiogenesis: A Novel Pentoxifylline-Biased Adenosine G Protein-Coupled Receptor Signaling Platform. Cells 2023; 12:cells12081199. [PMID: 37190108 DOI: 10.3390/cells12081199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Angiogenesis is the physiological process of developing new blood vessels to facilitate the delivery of oxygen and nutrients to meet the functional demands of growing tissues. It also plays a vital role in the development of neoplastic disorders. Pentoxifylline (PTX) is a vasoactive synthetic methyl xanthine derivative used for decades to manage chronic occlusive vascular disorders. Recently, it has been proposed that PTX might have an inhibitory effect on the angiogenesis process. Here, we reviewed the modulatory effects of PTX on angiogenesis and its potential benefits in the clinical setting. Twenty-two studies met the inclusion and exclusion criteria. While sixteen studies demonstrated that pentoxifylline had an antiangiogenic effect, four suggested it had a proangiogenic effect, and two other studies showed it did not affect angiogenesis. All studies were either in vivo animal studies or in vitro animal and human cell models. Our findings suggest that pentoxifylline may affect the angiogenic process in experimental models. However, there is insufficient evidence to establish its role as an anti-angiogenesis agent in the clinical setting. These gaps in our knowledge regarding how pentoxifylline is implicated in host-biased metabolically taxing angiogenic switch may be via its adenosine A2BAR G protein-coupled receptor (GPCR) mechanism. GPCR receptors reinforce the importance of research to understand the mechanistic action of these drugs on the body as promising metabolic candidates. The specific mechanisms and details of the effects of pentoxifylline on host metabolism and energy homeostasis remain to be elucidated.
Collapse
Affiliation(s)
- William Khoury
- School of Medicine, Queen's University, Kingston, ON K7L 3L4, Canada
| | - Ryan Trus
- Faculty of Arts and Science, Queen's University, Kingston, ON K7L 3N9, Canada
- School of Medicine, The Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Xingyu Chen
- School of Medicine, Queen's University, Kingston, ON K7L 3L4, Canada
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Mira Clark
- Faculty of Arts and Science, Queen's University, Kingston, ON K7L 3N9, Canada
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Myron R Szewczuk
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Mohammad El-Diasty
- Division of Cardiac Surgery, Queen's University, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
7
|
Binaymotlagh R, Chronopoulou L, Palocci C. Peptide-Based Hydrogels: Template Materials for Tissue Engineering. J Funct Biomater 2023; 14:jfb14040233. [PMID: 37103323 PMCID: PMC10145623 DOI: 10.3390/jfb14040233] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Tissue and organ regeneration are challenging issues, yet they represent the frontier of current research in the biomedical field. Currently, a major problem is the lack of ideal scaffold materials' definition. As well known, peptide hydrogels have attracted increasing attention in recent years thanks to significant properties such as biocompatibility, biodegradability, good mechanical stability, and tissue-like elasticity. Such properties make them excellent candidates for 3D scaffold materials. In this review, the first aim is to describe the main features of a peptide hydrogel in order to be considered as a 3D scaffold, focusing in particular on mechanical properties, as well as on biodegradability and bioactivity. Then, some recent applications of peptide hydrogels in tissue engineering, including soft and hard tissues, will be discussed to analyze the most relevant research trends in this field.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Liu M, Shang Y, Liu N, Zhen Y, Chen Y, An Y. Strategies to Improve AFT Volume Retention After Fat Grafting. Aesthetic Plast Surg 2023; 47:808-824. [PMID: 36316460 DOI: 10.1007/s00266-022-03088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/28/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Autologous fat grafting has gained increasing popularity used in plastic surgery as a strategy to improve functional and aesthetic outcome. However, variable augmentation results have concerned surgeons in that volume loss of grafted fat reported fluctuates unsteadily. AIM An optimal technique that clinically maximizes the long-term survival rate of transplantation is in urgent need to be identified. METHOD The PubMed/MEDLINE database was queried to search for animal and human studies published through March of 2022 with search terms related to adipose grafting encompassing liposuction, adipose graft viability, processing technique, adipose-derived stem cell, SVF and others. RESULTS 45 in vivo studies met inclusion criteria. The principal of ideal processing technique is effective purification of fat and protection of tissue viability, such as gauze rolling and washing-filtration devices. Cell-assisted lipotransfer including SVF, SVF-gel and ADSCs significantly promotes graft retention via differentiation potential and paracrine manner. ADSCs induce polarization of macrophages to regulate inflammatory response, mediate extracellular matrix remodeling and promote endothelial cell migration and sprouting, and differentiate into adipocytes to replace necrotic cells, providing powerful evidence for the benefits and efficacy of cell-assisted lipotransfer. CONCLUSION Based on the current evidence, the best strategy can not be decided. Cell-assisted lipotransfer has great potential for use in regenerative medicine. But so far mechanically prepared SVF-gel is conducive to clinical promotion. PRP as endogenous growth factor sustained-release material shows great feasibility. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Meiling Liu
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yujia Shang
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- College of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Na Liu
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- College of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
9
|
Liu J, Zhu KC, Pan JM, Guo HY, Liu BS, Zhang N, Yang JW, Zhang DC. Characterization of the MMP9 Gene and Its Association with Cryptocaryon irritans Resistance Traits in Trachinotus ovatus (Linnaeus, 1758). Genes (Basel) 2023; 14:475. [PMID: 36833402 PMCID: PMC9956963 DOI: 10.3390/genes14020475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/14/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
The MMPs are endogenous proteolytic enzymes that require zinc and calcium as cofactors. MMP9 is one of the most complex matrix metalloproteinases in the gelatinase family and has many biological functions. In mammals, mmp9 is thought to be closely associated with cancer. However, studies in fish have rarely been reported. In this study, to understand the expression pattern of the ToMMP9 gene and its association with the resistance of Trachinotus ovatus to Cryptocaryon irritans, the sequence of the MMP9 gene was obtained from the genome database. The expression profiles were measured by qRT-PCR, the SNPs were screened by direct sequencing, and genotyping was performed. The ToMMP9 gene contained a 2058 bp ORF encoding a putative amino acid sequence of 685 residues. The homology of the ToMMP9 in teleosts was more than 85%, and the genome structure of ToMMP9 was conserved in chordates. The ToMMP9 gene was expressed in different tissues of healthy individuals and was highly expressed in the fin, the gill, the liver and the skin tissues. The ToMMP9 expression in the skin of the infected site and its adjacent sites increased significantly after C. irritans infection. Two SNPs were identified in the ToMMP9 gene, and the SNP (+400A/G) located in the first intron was found to be significantly associated with the susceptibility/resistance to C. irritans. These findings suggest that ToMMP9 may play an important role in the immune response of T. ovatus against C. irritans.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Jin-Min Pan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Jing-Wen Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| |
Collapse
|
10
|
Cannabinoids Transmogrify Cancer Metabolic Phenotype via Epigenetic Reprogramming and a Novel CBD Biased G Protein-Coupled Receptor Signaling Platform. Cancers (Basel) 2023; 15:cancers15041030. [PMID: 36831374 PMCID: PMC9954791 DOI: 10.3390/cancers15041030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The concept of epigenetic reprogramming predicts long-term functional health effects. This reprogramming can be activated by exogenous or endogenous insults, leading to altered healthy and different disease states. The exogenous or endogenous changes that involve developing a roadmap of epigenetic networking, such as drug components on epigenetic imprinting and restoring epigenome patterns laid down during embryonic development, are paramount to establishing youthful cell type and health. This epigenetic landscape is considered one of the hallmarks of cancer. The initiation and progression of cancer are considered to involve epigenetic abnormalities and genetic alterations. Cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer development, including DNA methylation, histone modifications, nucleosome positioning, non-coding RNAs, and microRNA expression. Endocannabinoids are natural lipid molecules whose levels are regulated by specific biosynthetic and degradative enzymes. They bind to and activate two primary cannabinoid receptors, type 1 (CB1) and type 2 (CB2), and together with their metabolizing enzymes, form the endocannabinoid system. This review focuses on the role of cannabinoid receptors CB1 and CB2 signaling in activating numerous receptor tyrosine kinases and Toll-like receptors in the induction of epigenetic landscape alterations in cancer cells, which might transmogrify cancer metabolism and epigenetic reprogramming to a metastatic phenotype. Strategies applied from conception could represent an innovative epigenetic target for preventing and treating human cancer. Here, we describe novel cannabinoid-biased G protein-coupled receptor signaling platforms (GPCR), highlighting putative future perspectives in this field.
Collapse
|
11
|
Sonkodi B, Pállinger É, Radovits T, Csulak E, Shenker-Horváth K, Kopper B, Buzás EI, Sydó N, Merkely B. CD3+/CD56+ NKT-like Cells Show Imbalanced Control Immediately after Exercise in Delayed-Onset Muscle Soreness. Int J Mol Sci 2022; 23:ijms231911117. [PMID: 36232420 PMCID: PMC9569472 DOI: 10.3390/ijms231911117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of the study was to carry out an immunophenotypical characterization with a special focus on natural killer cells of junior swimmers from the Hungarian National Swim Team before and after an intensive acute exercise. Nineteen swimmers, ten females and nine males, completed the exercise protocol. Sixteen swimmers experienced delayed-onset muscle soreness. Most of our findings substantiated earlier results, such as the increase in the percentage of the CD3−/CD56+ natural killer cells and the CD3−/CD56dim+ NK cells, and the decrease in the percentage of CD3+ T cells among lymphocytes after the exercise protocol. The drop of natural killer cell activity back to the pre-exercise level was in line with earlier findings. Interestingly, the percentage of CD3+/CD56+ NKT-like cells did not change significantly in those three swimmers who did not report delayed-onset muscle soreness. On the contrary, the percentage of CD3+/CD56+ NKT-like cells among lymphocytes increased in fourteen and decreased in two swimmers reporting delayed-onset muscle soreness. This study for the first time demonstrated a link between the delayed-onset muscle soreness and the imbalanced control of CD3+/CD56+ NKT-like cells among lymphocytes. However, validation of this association in a larger sample size study will be necessary.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Correspondence:
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Emese Csulak
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | | | - Bence Kopper
- Faculty of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Edit I. Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, 1089 Budapest, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, 1089 Budapest, Hungary
| | - Nóra Sydó
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
12
|
Wang S, Yuan Q, Zhao W, Zhou W. Circular RNA RBM33 contributes to extracellular matrix degradation via miR-4268/EPHB2 axis in abdominal aortic aneurysm. PeerJ 2021; 9:e12232. [PMID: 34820156 PMCID: PMC8603816 DOI: 10.7717/peerj.12232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a complex vascular disease involving expansion of the abdominal aorta. Extracellular matrix (ECM) degradation is crucial to AAA pathogenesis, however, the specific molecular mechanism remains unclear. This study aimed to investigate differentially expressed circular RNAs (DEcircRNAs) involved in ECM degradation of AAA. Methods Transcriptome sequencing was used to analyze the DEcircRNAs between the AAA tissues and normal tissues. The expression of circRNAs in tissues and cells was validated using quantitative reverse transcription PCR (RT-qPCR). Overexpression of circRNAs in vascular smooth muscle cells (VSMCs) treated with angiotensin II (Ang II) was employed to explore its effect on ECM degradation of AAA. Bioinformatic technology, luciferase reporter gene assay, RT-qPCR, and rescue experiment were employed to evaluate the regulatory mechanism of circRNA. Results We identified 65 DEcircRNAs in AAA tissues compared with normal abdominal aortic tissues, including 30 up-regulated and 35 down-regulated circRNAs, which were mainly involved in inflammation and ECM-related functions and pathways. Moreover, circRBM33 was significantly increased in AAA tissues and Ang II-induced VSMCs compared with control samples. Overexpression of circRBM33 increased the expression of ECM-related molecule matrix metalloproteinase-2 and reduced the tissue inhibitor of matrix metalloproteinases-1 expression. Mechanistically, miR-4268 targeted binding to circRBM33 and inhibited the luciferase activity of circRBM33. Overexpression of circRBM33 induced the expression of EPH receptor B2 (EPHB2), and this effect was countered by miR-4268 mimics. Conclusions Overall, our data suggest that circRBM33 might be involved in AAA progression by regulating ECM degradation via the miR-4268/EPHB2 axis.
Collapse
Affiliation(s)
- Shizhi Wang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingwen Yuan
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenpeng Zhao
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Jin YB, Cao X, Shi CW, Feng B, Huang HB, Jiang YL, Wang JZ, Yang GL, Yang WT, Wang CF. Lactobacillus rhamnosus GG Promotes Early B Lineage Development and IgA Production in the Lamina Propria in Piglets. THE JOURNAL OF IMMUNOLOGY 2021; 207:2179-2191. [PMID: 34497150 DOI: 10.4049/jimmunol.2100102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023]
Abstract
Gut microbes play an important role in the development of host B cells. It has been controversial whether GALT is the development site of B cells in pigs. By investigating the relationship between gut microbes and the development of B cells in the GALT of piglets, we found, to our knowledge for the first time, that early B cells exist in the gut lamina propria (LP) in pigs at different ages. We further used Lactobacillus rhamnosus GG (LGG) to treat piglets. The results showed that LGG promotes the development of the early B lineage, affects the composition of the Ig CDR3 repertoires of B cells, and promotes the production of IgA in the intestinal LP. Additionally, we found that the p40 protein derived from LGG can activate the EGFR/AKT and NF-κB signaling pathways, inducing porcine intestinal epithelial cells (IPEC-J2) to secrete a proliferation-inducing ligand (APRIL), which promotes IgA production in B cells. Finally, we identified ARF4 and DIF3 as candidates for p40 receptors on IPEC-J2 by GST pull-down, liquid chromatography-mass spectrometry/mass spectrometry analysis, and coimmunoprecipitation. In conclusion, LGG could promote early B cell differentiation and development in the intestinal LP in piglets and might contribute to promoting IgA production via secretion of p40, which interacts with the membrane receptors on IPEC-J2 and induces them to secrete APRIL. Our study will provide insight to aid in better utilization of probiotics to increase human health.
Collapse
Affiliation(s)
- Yu-Bei Jin
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and.,Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xin Cao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Chun-Wei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Bo Feng
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Hai-Bin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Yan-Long Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Jian-Zhong Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Wen-Tao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| |
Collapse
|
14
|
Rao RM, Wong H, Dauchez M, Baud S. Effects of changes in glycan composition on glycoprotein dynamics: example of N-glycans on insulin receptor. Glycobiology 2021; 31:1121-1133. [PMID: 34343291 DOI: 10.1093/glycob/cwab049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
Glycosylation is among the most common post-translational modifications in proteins, although it is observed in only about 10% of all the protein structures in protein data bank (PDB). Modifications of sugar composition in glycoproteins profoundly impact the overall physiology of the organism. One such example is the development of insulin resistance, which has been attributed to the removal of sialic acid residues from N-glycans of insulin receptor (IR) from various experimental studies. How such modifications affect the glycan-glycoprotein dynamics, and ultimately their function is not clearly understood to date. In this study, we performed molecular dynamics simulations of glycans in different environments. We studied the effects of removal of sialic acid on the glycan, as well as on the dynamics of leucine-rich repeat L1 domain of the IR ectodomain. We observed perturbations in L1 domain dynamics as a result of the removal of sialic acid. The perturbations include an increase in the flexibility of insulin-binding residues, which may affect insulin binding with IR. These changes are accompanied by perturbations in glycan-protein interactions and perturbation of long-range allosteric dynamics. Our observations will further aid in understanding the role of sugars in maintaining homeostasis and how changes in glycan composition may lead to perturbations in homeostasis, ultimately leading to conditions such as insulin resistance.
Collapse
Affiliation(s)
- Rajas M Rao
- Université de Reims Champagne Ardenne, CNRS UMR 7369, MEDyC, Reims 51687, France
| | - Hua Wong
- Université de Reims Champagne Ardenne, CNRS UMR 7369, MEDyC, Reims 51687, France
| | - Manuel Dauchez
- Université de Reims Champagne Ardenne, CNRS UMR 7369, MEDyC, Reims 51687, France.,Université de Reims Champagne Ardenne, P3M, Multi-scale Molecular Modeling Plateform, Reims 51687, France
| | - Stéphanie Baud
- Université de Reims Champagne Ardenne, CNRS UMR 7369, MEDyC, Reims 51687, France.,Université de Reims Champagne Ardenne, P3M, Multi-scale Molecular Modeling Plateform, Reims 51687, France
| |
Collapse
|
15
|
Antibacterial Biopolymer Gel Coating on Meshes Used for Abdominal Hernia Repair Promotes Effective Wound Repair in the Presence of Infection. Polymers (Basel) 2021; 13:polym13142371. [PMID: 34301128 PMCID: PMC8309493 DOI: 10.3390/polym13142371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Prosthetic mesh infection is a devastating complication of abdominal hernia repair which impairs natural healing in the implant area, leading to increased rates of patient morbidity, mortality, and prolonged hospitalization. This preclinical study was designed to assess the effects on abdominal wall tissue repair of coating meshes with a chlorhexidine or rifampicin-carboxymethylcellulose biopolymer gel in a Staphylococcus aureus (S. aureus) infection model. Partial abdominal wall defects were created in New Zealand white rabbits (n = 20). Four study groups were established according to whether the meshes were coated or not with each of the antibacterial gels. Three groups were inoculated with S. aureus and finally repaired with lightweight polypropylene mesh. Fourteen days after surgery, implanted meshes were recovered for analysis of the gene and protein expression of collagens, macrophage phenotypes, and mRNA expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Compared to uncoated meshes, those coated with either biopolymer gel showed higher collagen 1/3 messenger RNA and collagen I protein expression, relatively increased VEGF mRNA expression, a significantly reduced macrophage response, and lower relative amounts of MMPs mRNAs. Our findings suggest that following mesh implant these coatings may help improving abdominal wall tissue repair in the presence of infection.
Collapse
|
16
|
1α, 25-dihydroxyvitamin D3 inhibits transforming growth factor β1-induced epithelial-mesenchymal transition via β-catenin pathway. Chin Med J (Engl) 2021; 133:1298-1303. [PMID: 32452895 PMCID: PMC7289296 DOI: 10.1097/cm9.0000000000000830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: The transforming growth factor β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) has been proven associated with the pathogenesis of asthmatic airway remodeling, in which the Wnt/β-catenin pathway plays an important role, notably with regard to TGF-β1. Recent studies have shown that 1α, 25-dihydroxyvitamin D3(1α, 25(OH)2D3) inhibits TGF-β1-induced EMT, although the underlying mechanism have not yet been fully elucidated. Methods: Alveolar epithelial cells were exposed to 1α, 25(OH)2D3, ICG-001, or a combination of both, followed by stimulation with TGF-β1. The protein expression of E-cadherin, α-smooth muscle actin, fibronectin, and β-catenin was analyzed by western blotting and immunofluorescence analysis. The mRNA transcript of Snail was analyzed using RT-qPCR, and matrix metalloproteinase 9 (MMP-9) activity was analyzed by gelatin zymogram. The activity of the Wnt/β-catenin signaling pathway was analyzed using the Top/Fop flash reporters. Results: Both 1α, 25(OH)2D3 and ICG-001 blocked TGF-β1-induced EMT in alveolar epithelial cells. In addition, the Top/Fop Flash reporters showed that 1α, 25(OH)2D3 suppressed the activity of the Wnt/β-catenin pathway and reduced the expression of target genes, including MMP-9 and Snail, in synergy with ICG-001. Conclusion: 1α, 25(OH)2D3 synergizes with ICG-001 and inhibits TGF-β1-induced EMT in alveolar epithelial cells by negatively regulating the Wnt/β-catenin signaling pathway.
Collapse
|
17
|
Zhang Y, Zhao Z, Chen H, Fu Y, Wang W, Li Q, Li X, Wang X, Fan G, Zhang Y. The Underlying Molecular Mechanisms Involved in Traditional Chinese Medicine Smilax china L. for the Treatment of Pelvic Inflammatory Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5552532. [PMID: 33927774 PMCID: PMC8052137 DOI: 10.1155/2021/5552532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/04/2021] [Accepted: 03/21/2021] [Indexed: 02/07/2023]
Abstract
Smilax china L. (SCL) is extensively used in the treatment of pelvic inflammatory disease (PID). This study aimed to clarify the potential active ingredients of SCL and mechanisms on PID. SCL was widely distributed in Japan, South Korea, and China, which was traditionally considered heat-clearing, detoxicating, and dampness-eliminating medicine. Systems pharmacology revealed that 32 compounds in SCL may interact with 19 targets for immunoenhancement, antiapoptosis, anti-inflammation, and antioxidant activity of the PID model. Molecular docking revealed that isorhamnetin, moracin M, rutin, and oxyresveratrol may have higher binding potential with prostaglandin-endoperoxide synthase 2 (PTGS2), mitogen-activated protein kinase 1 (MAPK1), siderocalin (LCN2), tumor necrosis factor (TNF), and matrix metalloprotein-9 (MMP9), respectively. Molecular dynamics simulation showed that the binding modes of moracin M-MAPK1, rutin-TNF, and oxyresveratrol-MMP9 complexes were more stable, evidenced by relatively smaller fluctuations in root mean square deviation values. Conclusively, SCL may treat PID by inhibiting inflammatory factors, antitissue fibrosis, and microbial growth.
Collapse
Affiliation(s)
- Yunsen Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zikuang Zhao
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huimin Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yutong Fu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Wenxiang Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuanhao Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Ding X, Zhao H, Li Y, Lee AL, Li Z, Fu M, Li C, Yang YY, Yuan P. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering. Adv Drug Deliv Rev 2020; 160:78-104. [PMID: 33091503 DOI: 10.1016/j.addr.2020.10.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
The regeneration of tissues and organs poses an immense challenge due to the extreme complexity in the research work involved. Despite the tissue engineering approach being considered as a promising strategy for more than two decades, a key issue impeding its progress is the lack of ideal scaffold materials. Nature-inspired synthetic peptide hydrogels are inherently biocompatible, and its high resemblance to extracellular matrix makes peptide hydrogels suitable 3D scaffold materials. This review covers the important aspects of peptide hydrogels as 3D scaffolds, including mechanical properties, biodegradability and bioactivity, and the current approaches in creating matrices with optimized features. Many of these scaffolds contain peptide sequences that are widely reported for tissue repair and regeneration and these peptide sequences will also be discussed. Furthermore, 3D biofabrication strategies of synthetic peptide hydrogels and the recent advances of peptide hydrogels in tissue engineering will also be described to reflect the current trend in the field. In the final section, we will present the future outlook in the design and development of peptide-based hydrogels for translational tissue engineering applications.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Huimin Zhao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ashlynn Lingzhi Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Zongshao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mengjing Fu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Chengnan Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
19
|
Kollarova M, Puzserova A, Balis P, Radosinska D, Tothova L, Bartekova M, Barancik M, Radosinska J. Age- and Phenotype-Dependent Changes in Circulating MMP-2 and MMP-9 Activities in Normotensive and Hypertensive Rats. Int J Mol Sci 2020; 21:E7286. [PMID: 33023122 PMCID: PMC7582756 DOI: 10.3390/ijms21197286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are important in the pathogenesis of numerous diseases. The present study aimed to monitor the activation of MMP-2 and MMP-9 in spontaneously hypertensive rats (SHR) and their normotensive counterparts-Wistar-Kyoto rats (WKY). The animals were divided according to age (7, 20, and 52 weeks) and phenotype into: WKY-7, WKY-20, WKY-52, SHR-7, SHR-20 and SHR-52 groups. MMP plasma activities were determined by gelatine zymography. We monitored selected parameters of oxidative stress and antioxidant status. N-terminal pro-brain natriuretic peptide (NT-proBNP) was determined as a marker of heart function and neurohumoral activation. SHR-7 showed higher MMP-2 activity compared with WKY-7, while SHR-52 showed lower MMP-2 and MMP-9 activities compared with WKY-52. Examining age-dependent changes in MMP activities, we found a decrease in MMP-2 activity and increase in MMP-9 activity with increasing age in both phenotypes. Parameters of oxidative stress and antioxidant status as well as NT-proBNP levels were not significantly worsened due to aging in SHR. Our results suggest that hypertension is accompanied by varying MMP activation during aging. The results of our study may indicate that MMP-2 inhibition is therapeutically applicable during the development of hypertension, while in developed, stabilized and uncomplicated hypertension, systemic MMP-2 and MMP-9 inhibition may not be desirable.
Collapse
Affiliation(s)
- Marta Kollarova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (M.K.); (M.B.)
| | - Angelika Puzserova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia; (A.P.); (P.B.)
| | - Peter Balis
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 813 71 Bratislava, Slovakia; (A.P.); (P.B.)
| | - Dominika Radosinska
- Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia;
| | - Lubomira Tothova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia;
| | - Monika Bartekova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (M.K.); (M.B.)
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovakia;
| | - Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovakia;
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (M.K.); (M.B.)
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 841 04 Bratislava, Slovakia;
| |
Collapse
|
20
|
Qi Y, Liao D, Mei D, Zhang Y, Liu Y. Elevated Neutrophil-to-Lymphocyte Ratio Is Associated With Poor Outcomes for Melanoma Patients Treated With PD-1 Inhibitor or Chemotherapy in a Chinese Population. Front Oncol 2020; 10:1752. [PMID: 33042821 PMCID: PMC7518238 DOI: 10.3389/fonc.2020.01752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Previous studies have suggested that an elevated pre-treatment neutrophil-to-lymphocyte ratio (NLR) is associated with worse outcomes in patients with a variety of cancers. The purpose of this retrospective analysis is to investigate the prognostic value of the NLR in a Chinese melanoma population. Methods: Melanoma patients were divided into two groups based on pre-treatment NLR values (≥3 vs. <3). Cox proportional hazard regression analysis and the Kaplan-Meier method were employed to study the prognostic role of the NLR for overall survival (OS) and progression-free survival (PFS). Results: A total of 159 melanoma patients were included in this study, including 40 patients treated with PD-1 inhibitor and 119 patients treated with chemotherapy. In the PD-1 inhibitor group, the median OS was 18.0 months in the low NLR subgroup and 5.6 months in the high NLR subgroup; the median PFS was 7.0 and 2.2 months, respectively. In chemotherapy group, the median OS was 23.0 months in the low NLR group and 8.0 months in the high NLR group, and the median PFS was 9.0 and 4.0 months, respectively. Multivariate analysis showed that the NLR was significantly associated with OS and PFS in melanoma patients treated with either PD-1 inhibitor immunotherapy or chemotherapy. Conclusion: In the Chinese population, an elevated NLR was closely related to worse survival in patients with melanoma treated with either PD-1 inhibitor monotherapy or chemotherapy.
Collapse
Affiliation(s)
- Yalong Qi
- Department of Oncology, Beijing Mentougou District Hospital, Beijing, China
| | - Daixiang Liao
- Department of Oncology, Beijing Mentougou District Hospital, Beijing, China
| | - Dinglian Mei
- Department of Oncology, Beijing Mentougou District Hospital, Beijing, China
| | - Yong Zhang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
21
|
Li X, Sun S, Chen D, Yuan T, Chen Y, Wang D, Fang L, Lu Y, Du G. Puerarin attenuates the endothelial-mesenchymal transition induced by oxidative stress in human coronary artery endothelial cells through PI3K/AKT pathway. Eur J Pharmacol 2020; 886:173472. [PMID: 32860809 DOI: 10.1016/j.ejphar.2020.173472] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Endothelial-mesenchymal transition (EndMT) is a process in which endothelial cells lose their specific morphology/markers and undergo a dramatic remodeling of the cytoskeleton. It has been implicated in the progression of cardiovascular diseases such as cardiac fibrosis and cardiac dysfunction. Recent study indicated that puerarin could inhibit EndMT against cardiac fibrosis. However, the precise role of puerarin in EndMT and the underlying molecular mechanisms remain unclear. EndMT was induced by H2O2 (150 μM) in human coronary artery endothelial cells (HCAECs). HCAECs were exposed to H2O2 for six days with or without puerarin pretreated 2 h. The protein changes of EndMT markers (CD31, VE-cadherin, FSP1 and α-SMA) in HCAECs were detected. The levels of phosphoinositide-3-kinase (PI3K) and protein kinase B (AKT) proteins were analyzed by Western Blot. Wound healing and transwell assay were carried out to examine cell chemotaxis. Puerarin mitigated H2O2-induced EndMT as indicated by alleviating the reduced expression of CD31 and VE-cadherin and inhibiting the upregulation of α-SMA and FSP1. Furthermore, the mechanisms study showed that puerarin activated the PI3K/AKT pathway by inhibiting reactive oxygen species and further attenuated EndMT. On the other hand, PI3K inhibitor LY294002 reversed this effect imposed by puerarin. Puerarin alleviated the migration of mesenchymal-like cells through reducing MMPs protein expression. These results implicated that puerarin exhibited cytoprotective effects against H2O2-induced EndMT in HCAECs through alleviating oxidative stress, activating the PI3K/AKT pathway and limiting cell migration.
Collapse
Affiliation(s)
- Xuguang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuchan Sun
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Di Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yucai Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Danshu Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lianhua Fang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Lu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
22
|
Dileepan M, Ge XN, Bastan I, Greenberg YG, Liang Y, Sriramarao P, Rao SP. Regulation of Eosinophil Recruitment and Allergic Airway Inflammation by Tropomyosin Receptor Kinase A. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:682-693. [PMID: 31871023 PMCID: PMC7058110 DOI: 10.4049/jimmunol.1900786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022]
Abstract
Eosinophilia is a hallmark of allergic airway inflammation (AAI). Identifying key molecules and specific signaling pathways that regulate eosinophilic inflammation is critical for development of novel therapeutics. Tropomycin receptor kinase A (TrkA) is the high-affinity receptor for nerve growth factor. AAI is associated with increased expression of TrkA by eosinophils; however, the functional role of TrkA in regulating eosinophil recruitment and contributing to AAI is poorly understood. This study identifies, to our knowledge, a novel mechanism of eotaxin-mediated activation of TrkA and its role in regulating eosinophil recruitment by using a chemical-genetic approach to specifically inhibit TrkA kinase activity with 1-NM-PP1 in TrkAF592A-knock-in (TrkA-KI) eosinophils. Blockade of TrkA by 1-NM-PP1 enhanced eosinophil spreading on VCAM-1 but inhibited eotaxin-1 (CCL11)-mediated eosinophil migration, calcium flux, cell polarization, and ERK1/2 activation, suggesting that TrkA is an important player in the signaling pathway activated by eotaxin-1 during eosinophil migration. Further, blockade of matrix metalloprotease with BB-94 inhibited eotaxin-1-induced TrkA activation and eosinophil migration, additively with 1-NM-PP1, indicating a role for matrix metalloproteases in TrkA activation. TrkA inhibition in Alternaria alternata-challenged TrkA-KI mice markedly inhibited eosinophilia and attenuated various features of AAI. These findings are indicative of a distinctive eotaxin-mediated TrkA-dependent signaling pathway, which, in addition to other TrkA-activating mediators, contributes to eosinophil recruitment during AAI and suggests that targeting the TrkA signaling pathway to inhibit eosinophil recruitment may serve as a therapeutic strategy for management of eosinophilic inflammation in allergic airway disease, including asthma.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | | | | | - Yana G. Greenberg
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - P. Sriramarao
- Corresponding authors: P. Srirama Rao (), University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, Phone: 612-626-6989; Yuying Liang (), University of Minnesota, 1988 Fitch Ave., 295 AS/VM Bldg, St. Paul, MN 55108, Phone: 612-625-3376
| | - Savita P. Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| |
Collapse
|
23
|
Berg G, Barchuk M, Miksztowicz V. Behavior of Metalloproteinases in Adipose Tissue, Liver and Arterial Wall: An Update of Extracellular Matrix Remodeling. Cells 2019; 8:cells8020158. [PMID: 30769840 PMCID: PMC6406870 DOI: 10.3390/cells8020158] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix (ECM) remodeling is required for many physiological and pathological processes. Metalloproteinases (MMPs) are endopeptidases which are able to degrade different components of the ECM and nucleus matrix and to cleave numerous non-ECM proteins. Among pathological processes, MMPs are involved in adipose tissue expansion, liver fibrosis, and atherosclerotic plaque development and vulnerability. The expression and the activity of these enzymes are regulated by different hormones and growth factors, such as insulin, leptin, and adiponectin. The controversial results reported up to this moment regarding MMPs behavior in ECM biology could be consequence of the different expression patterns among species and the stage of the studied pathology. The aim of the present review was to update the knowledge of the role of MMPs and its inhibitors in ECM remodeling in high incidence pathologies such as obesity, liver fibrosis, and cardiovascular disease.
Collapse
Affiliation(s)
- Gabriela Berg
- Laboratorio de Lípidos y Aterosclerosis, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina.
- Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires 1113, Argentina.
- Facultad de Farmacia y Bioquímica, CONICET, Universidad de Buenos Aires, Buenos Aires C1425FQB, Argentina.
| | - Magalí Barchuk
- Laboratorio de Lípidos y Aterosclerosis, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina.
- Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires 1113, Argentina.
| | - Verónica Miksztowicz
- Laboratorio de Lípidos y Aterosclerosis, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina.
- Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires 1113, Argentina.
- Facultad de Farmacia y Bioquímica, CONICET, Universidad de Buenos Aires, Buenos Aires C1425FQB, Argentina.
| |
Collapse
|