1
|
He Y, Zhang Y, Li J, Ren Z, Zhang W, Zuo X, Zhao W, Xing M, You J, Chen X. Transcriptome dynamics in Artemisia annua provides new insights into cold adaptation and de-adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1412416. [PMID: 39268001 PMCID: PMC11390472 DOI: 10.3389/fpls.2024.1412416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/04/2024] [Accepted: 07/25/2024] [Indexed: 09/15/2024]
Abstract
Plants adapt to cold stress through a tightly regulated process involving metabolic reprogramming and tissue remodeling to enhance tolerance within a short timeframe. However, the precise differences and interconnections among various organs during cold adaptation remain poorly understood. This study employed dynamic transcriptomic and metabolite quantitative analyses to investigate cold adaptation and subsequent de-adaptation in Artemisia annua, a species known for its robust resistance to abiotic stress. Our findings revealed distinct expression patterns in most differentially expressed genes (DEGs) encoding transcription factors and components of the calcium signal transduction pathway within the two organs under cold stress. Notably, the long-distance transport of carbon sources from source organs (leaves) to sink organs (roots) experienced disruption followed by resumption, while nitrogen transport from roots to leaves, primarily in the form of amino acids, exhibited acceleration. These contrasting transport patterns likely contribute to the observed differences in cold response between the two organs. The transcriptomic analysis further indicated that leaves exhibited increased respiration, accumulated anti-stress compounds, and initiated the ICE-CBF-COR signaling pathway earlier than roots. Differential expression of genes associated with cell wall biosynthesis suggests that leaves may undergo cell wall thickening while roots may experience thinning. Moreover, a marked difference was observed in phenylalanine metabolism between the two organs, with leaves favoring lignin production and roots favoring flavonoid synthesis. Additionally, our findings suggest that the circadian rhythm is crucial in integrating temperature fluctuations with the plant's internal rhythms during cold stress and subsequent recovery. Collectively, these results shed light on the coordinated response of different plant organs during cold adaptation, highlighting the importance of inter-organ communication for successful stress tolerance.
Collapse
Affiliation(s)
- Yunxiao He
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yujiao Zhang
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
- Yanbian Korean Autonomous Prefecture Academy of Agricultural Sciences, Yanbian, Jilin, China
| | - Jiangnan Li
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Zhiyi Ren
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wenjing Zhang
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xianghua Zuo
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Zhao
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Ming Xing
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jian You
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xia Chen
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Du G, Zhao Y, Xiao C, Ren D, Ding Y, Xu J, Jin H, Jiao H. Mechanism analysis of calcium nitrate application to induce gibberellin biosynthesis and signal transduction promoting stem elongation of Dendrobium officinale. INDUSTRIAL CROPS AND PRODUCTS 2023; 195:116495. [DOI: 10.1016/j.indcrop.2023.116495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/22/2025]
|
3
|
Gong X, Qi K, Chen J, Zhao L, Xie Z, Yan X, Khanizadeh S, Zhang S, Tao S. Multi-omics analyses reveal stone cell distribution pattern in pear fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:626-642. [PMID: 36546867 DOI: 10.1111/tpj.16073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/04/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Stone cells are the brachysclereid cells in pear (Pyrus) fruit, consisting almost entirely of lignified secondary cell walls. They are distributed mainly near the fruit core and spread radially in the whole fruit. However, the development of stone cells has not been comprehensively characterized, and little is known about the regulation of stone cell formation at the transcriptomic, proteomic, and metabolomic levels. In the present study, we performed phenomic analysis on the stone cells and their associated vascular bundles distributed near the fruit cores. Transcriptomic, proteomic, and metabolomic analyses revealed a significant positive regulation of biological processes which contribute to the lignification and lignin deposition in stone cells near the fruit core, including sucrose metabolism and phenylalanine, tyrosine, tryptophan, and phenylalanine biosynthesis. We found many metabolites generated from the phenylpropanoid pathway contributing to the cell wall formation of stone cells near the fruit core. Furthermore, we identified a key transcription factor, PbbZIP48, which was highly expressed near the fruit core and was shown to regulate lignin biosynthesis in stone cells. In conclusion, the present study provides insight into the mechanism of lignified stone cell formation near the pear fruit core at multiple levels.
Collapse
Affiliation(s)
- Xin Gong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kaijie Qi
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Juanli Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liangyi Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhihua Xie
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin Yan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shahrokh Khanizadeh
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shutian Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Huang Y, Ren A, Wan Y, Liu Y. Effect of the pectin contents and nanostructure on the stem straightness of two Paeonia lactiflora cultivars. PeerJ 2023; 11:e15166. [PMID: 37073273 PMCID: PMC10106084 DOI: 10.7717/peerj.15166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 04/20/2023] Open
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is an ancient ornamental crop and, in recent decades, an emerging popular cut flower. Straight stems are a vital criterion for cut herbaceous peony selection, while many cultivars bend as the plant develops. Pectin helps maintain the mechanical strength of the cell wall. However, little is known about its role in the stem bending of herbaceous peony. Two herbaceous peony cultivars with contrasting stem morphologies ('Dong Fang Shao Nv', upright; 'Lan Tian Piao Xiang', bending gradually) at five developmental stages were used as materials to investigate the effects of pectin content and nanostructure on straightness using the carbazole colorimetric method and atomic force microscopy observations. The contents of water-soluble pectin (WSP), CDTA-soluble pectin (CSP), and sodium carbonate-soluble pectin (SSP) differed significantly between the two cultivars, and the contents and angle of the flower and branch showed correlations. For the pectin nanostructure, WSP showed agglomerates and long chains, with a higher proportion of broad agglomerates at the later stages of the bending cultivar than the upright cultivar. CSP showed branched chains, and the proportion of broad chains was higher in the upright cultivar at later stages, while CSP shape changed from agglomerates to chains in the bending cultivar. SSP mainly consisted of short linear main chains, and side chains in the upright stem were stacked, and the bent cultivar had more broad and short chains. It can be concluded that the contents, nanometric shape, and size of the three kinds of pectin are highly likely to affect herbaceous peony stem straightness. This study provides a theoretical basis for the role of pectin in the production and breeding of herbaceous peony cut flowers.
Collapse
Affiliation(s)
- Yiran Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Anqi Ren
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yingling Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yan Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Liu L, Liu S, Lu H, Tian Z, Zhao H, Wei D, Wang S, Huang Z. Integration of transcriptome and metabolome analyses reveals key lodging-resistance-related genes and metabolic pathways in maize. Front Genet 2022; 13:1001195. [PMID: 36299597 PMCID: PMC9588961 DOI: 10.3389/fgene.2022.1001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Stalk lodging, or breakage of the stalk at or below the ear, is one of the vital factors causing substantial yield losses in maize (Zea mays. L). Lodging affects maize plants’ physiological and molecular processes, eventually impacting plant growth and productivity. Despite this known fact, few researchers have investigated the genetic architecture underlying lodging in maize. Herein, through integrated transcriptome, metabolome, and phenotypic analyses of stalks of three diverse hybrid cultivars (highly resistant JNK738, mildly resistant JNK728, and lowly resistant XY335) at the tasseling (10 days to silking, 10 DTS) stage, we identified key genes and metabolic pathways modulating lodging resistance in maize. Based on the RNA-Seq analysis, a total of 10093 differentially expressed genes (DEGs) were identified from the comparison of the three varieties in pairs. Additionally, key lodging resistance–related metabolic pathways were obtained by KEGG enrichment analysis, and the DEGs were found predominantly enriched in phenylpropanoid and secondary metabolites biosynthesis pathways in the L_vs._H and M_vs._H comparison groups. Moreover, K-means analysis clustered the DEGs into clear and distinct expression profiles for each cultivar, with several functional and regulatory genes involved in the cell wall assembly, lignin biosynthetic process and hormone metabolic process being identified in the special clusters related to lodging resistance. Subsequently, integrating metabolome and transcriptome analyses revealed nine key lignin-associated metabolites that showed different expression trends in the three hybrid cultivars, among which L-phenylalanine and p-coumaric acid were regarded as differentially changed metabolites (DCMs). These two DCMs belonged to phenylalanine metabolism and biosynthesis pathways and were also supported by the RNA-Seq data. Furthermore, plant hormone signal transduction pathway–related genes encoding auxin, abscisic acid, jasmonates, and salicylic acid were differentially expressed in the three comparisons of lodging resistance, indicating these DEGs were valuable potential targets for improving maize lodging resistance. Finally, comparative physiological and qRT-PCR analyses results supported our transcriptome-based findings. Our research not only provides a preliminary theoretical basis and experimental ideas for an in-depth study of the regulatory networks involved in maize lodging resistance regulation but also opens up new avenues for molecular maize stalk lodging resistance breeding.
Collapse
Affiliation(s)
- Lei Liu
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Songtao Liu
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Haibo Lu
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Haichao Zhao
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Dong Wei
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Shuo Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
- *Correspondence: Zhihong Huang,
| |
Collapse
|
6
|
Zhao D, Luan Y, Shi W, Tang Y, Huang X, Tao J. Melatonin enhances stem strength by increasing lignin content and secondary cell wall thickness in herbaceous peony. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5974-5991. [PMID: 35436332 DOI: 10.1093/jxb/erac165] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/16/2021] [Accepted: 04/16/2022] [Indexed: 05/15/2023]
Abstract
Cut flower quality is severely restrained by stem bending due to low stem strength. Melatonin has been shown to function in many aspects of plant growth and development, yet whether it can enhance stem strength, and the corresponding underlying mechanisms remain unclear. We investigated the role of melatonin in enhancement of stem strength in herbaceous peony (Paeonia lactiflora Pall.) by applying exogenous melatonin and changing endogenous melatonin biosynthesis. Endogenous melatonin content positively correlated with lignin content and stem strength in various P. lactiflora cultivars. Supplementation with exogenous melatonin significantly enhanced stem strength by increasing lignin content and the S/G lignin compositional ratio, up-regulating lignin biosynthetic gene expression. Moreover, overexpression of TRYPTOPHAN DECARBOXYLASE GENE (TDC) responsible for the first committed step of melatonin biosynthesis in tobacco, significantly increased endogenous melatonin, which further increased the S/G ratio and stem strength. In contrast, silencing PlTDC in P. lactiflora decreased endogenous melatonin, the S/G ratio and stem strength. Finally, manipulating the expression of CAFFEIC ACID O-METHYLTRANSFERASE GENE (COMT1), which is involved in both melatonin and lignin biosynthesis, showed even greater effects on melatonin, the S/G ratio and stem strength. Our results suggest that melatonin has a positive regulatory effect on P. lactiflora stem strength.
Collapse
Affiliation(s)
- Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wenbo Shi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xingqi Huang
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Zhao D, Tang Y, Xia X, Sun J, Meng J, Shang J, Tao J. Correction: Zhao et al. Integration of Transcriptome, Proteome, and Metabolome Provides Insights into How Calcium Enhances the Mechanical Strength of Herbaceous Peony Inflorescence Stems. Cells 2019, 8, 102. Cells 2022; 11:cells11131994. [PMID: 35805210 PMCID: PMC9265769 DOI: 10.3390/cells11131994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/10/2022] Open
Affiliation(s)
- Daqiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (D.Z.); (Y.T.); (X.X.); (J.S.); (J.M.)
- Institute of Flowers and Trees Industry, Yangzhou University-Rugao City, Rugao 226500, China
| | - Yuhan Tang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (D.Z.); (Y.T.); (X.X.); (J.S.); (J.M.)
| | - Xing Xia
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (D.Z.); (Y.T.); (X.X.); (J.S.); (J.M.)
| | - Jing Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (D.Z.); (Y.T.); (X.X.); (J.S.); (J.M.)
- Institute of Flowers and Trees Industry, Yangzhou University-Rugao City, Rugao 226500, China
| | - Jiasong Meng
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (D.Z.); (Y.T.); (X.X.); (J.S.); (J.M.)
- Institute of Flowers and Trees Industry, Yangzhou University-Rugao City, Rugao 226500, China
| | - Jiali Shang
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0A1, Canada;
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (D.Z.); (Y.T.); (X.X.); (J.S.); (J.M.)
- Institute of Flowers and Trees Industry, Yangzhou University-Rugao City, Rugao 226500, China
- Correspondence: ; Tel.: +86-514-879-97219
| |
Collapse
|
8
|
Zhang J, Liang L, Xie Y, Zhao Z, Su L, Tang Y, Sun B, Lai Y, Li H. Transcriptome and Metabolome Analyses Reveal Molecular Responses of Two Pepper ( Capsicum annuum L.) Cultivars to Cold Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:819630. [PMID: 35392507 PMCID: PMC8981722 DOI: 10.3389/fpls.2022.819630] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Low temperature is a significant factor affecting field-grown pepper. The molecular mechanisms behind peppers' response to cold stress remain unknown. Transcriptomic and metabolomic analyses were used to investigate the responses of two pepper cultivars, XS (cold-sensitive) and GZ (cold-resistant), to cold stress; these were screened from 45 pepper materials. In this study, compared with the control group (0 h), we identified 10,931 differentially expressed genes (DEGs) in XS and GZ, 657 differentially expressed metabolites (DEMs) in the positive ion mode, and 390 DEMs in the negative ion mode. Most DEGs were involved in amino acid biosynthesis, plant hormone signal transduction, and the mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, metabolomic analysis revealed that the content of free polyamines (PAs), plant hormones, and osmolytes, mainly contained increased putrescine, spermine, spermidine, abscisic acid (ABA), jasmonic acid (JA), raffinose, and proline, in response to cold stress. Importantly, the regulation of the ICE (inducer of CBF expression)-CBF (C repeat binding factors)-COR (cold regulated) pathway by Ca2+ signaling, MAPK signaling, and reactive oxygen species (ROS) signaling plays a key role in regulating responses of peppers to cold stress. Above all, the results of the present study provide important insights into the response of peppers to cold stress, which will reveal the potential molecular mechanisms and contribute to pepper screening and breeding in the future.
Collapse
Affiliation(s)
- Jianwei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yongdong Xie
- Institute for Processing and Storage of Agricultural Products, Chengdu Academy of Agricultural and Forest Sciences, Chengdu, China
| | - Zhao Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lihong Su
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Gondal MN, Chaudhary SU. Navigating Multi-Scale Cancer Systems Biology Towards Model-Driven Clinical Oncology and Its Applications in Personalized Therapeutics. Front Oncol 2021; 11:712505. [PMID: 34900668 PMCID: PMC8652070 DOI: 10.3389/fonc.2021.712505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Rapid advancements in high-throughput omics technologies and experimental protocols have led to the generation of vast amounts of scale-specific biomolecular data on cancer that now populates several online databases and resources. Cancer systems biology models built using this data have the potential to provide specific insights into complex multifactorial aberrations underpinning tumor initiation, development, and metastasis. Furthermore, the annotation of these single- and multi-scale models with patient data can additionally assist in designing personalized therapeutic interventions as well as aid in clinical decision-making. Here, we have systematically reviewed the emergence and evolution of (i) repositories with scale-specific and multi-scale biomolecular cancer data, (ii) systems biology models developed using this data, (iii) associated simulation software for the development of personalized cancer therapeutics, and (iv) translational attempts to pipeline multi-scale panomics data for data-driven in silico clinical oncology. The review concludes that the absence of a generic, zero-code, panomics-based multi-scale modeling pipeline and associated software framework, impedes the development and seamless deployment of personalized in silico multi-scale models in clinical settings.
Collapse
Affiliation(s)
- Mahnoor Naseer Gondal
- Biomedical Informatics Research Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
10
|
Tao X, Liu M, Yuan Y, Liu R, Qi K, Xie Z, Bao J, Zhang S, Shiratake K, Tao S. Transcriptome provides potential insights into how calcium affects the formation of stone cell in Pyrus. BMC Genomics 2021; 22:831. [PMID: 34789145 PMCID: PMC8600858 DOI: 10.1186/s12864-021-08161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background The content of stone cells in pears has a great influence on taste. Stone cells are formed by the accumulation of lignin. The treatment of exogenous calcium can affect the lignin synthesis, but this Ca-mediated mechanism is still unclear. In this study, the author performed a comparative transcriptomic analysis of callus of pears (Pyrus x bretschneideri) treated with calcium nitrate Ca (NO3)2 to investigate the role of calcium in lignin synthesis. Results There were 2889 differentially expressed genes (DEGs) detected between the Control and Ca (NO3)2 treatment in total. Among these 2889 DEGs, not only a large number of genes related to Ca single were found, but also many genes were enriched in secondary metabolic pathway, especially in lignin synthesis. Most of them were up-regulated during the development of callus after Ca (NO3)2 treatment. In order to further explore how calcium nitrate treatment affects lignin synthesis, the author screened genes associated with transduction of calcium signal in DEGs, and finally found CAM, CML, CDPK, CBL and CIPK. Then the author identified the PbCML3 in pears and conducted relevant experiments finding the overexpression of PbCML3 would increase the content of pear stone cells, providing potential insights into how Ca treatment enhances the stone cell in pears. Conclusions Our deep analysis reveals the effects of exogenous calcium on calcium signal and lignin biosynthesis pathway. The function of PbCML3 on stone cells formation was verified in pear. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08161-5.
Collapse
Affiliation(s)
- Xingyu Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yazhou Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Bao
- College of Plant Science, Tarim University, Ala'er, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Shutian Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Zhao D, Xu C, Luan Y, Shi W, Tang Y, Tao J. Silicon enhances stem strength by promoting lignin accumulation in herbaceous peony (Paeonia lactiflora Pall.). Int J Biol Macromol 2021; 190:769-779. [PMID: 34520779 DOI: 10.1016/j.ijbiomac.2021.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is a popular high-end cut flower, but stem bending caused by low stem strength severely decreases its quality. To enhance stem strength, the regulatory effects of exogenous silicon were investigated in P. lactiflora. The results showed that silicon application enhanced stem strength by increasing the thickness of secondary cell walls and the layers of thickened secondary cells. Moreover, more lignin accumulated, particularly G-lignin and S-lignin, and the activities of lignin biosynthetic enzymes increased with silicon application. In addition, based on transcriptome analysis, silicon application induced the expression of genes participating in lignin biosynthesis pathway. Among them, hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase gene (HCT1) was isolated from P. lactiflora and found to be mainly localized in the cytoplasm of cells. Overexpression of PlHCT1 increased the layers of thickened secondary cells and lignin accumulation in tobacco, resulting in enhanced stem strength and demonstrably straight stems. Finally, silicon content, lignin content and PlHCT1 expression in P. lactiflora cultivars with high stem strengths were totally higher than those in cultivars with low stem strengths. These results indicated that silicon application enhanced stem strength by promoting lignin accumulation in P. lactiflora, which has prospects for stem quality improvement in general.
Collapse
Affiliation(s)
- Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Cong Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Wenbo Shi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
12
|
Tong NN, Peng LP, Liu ZA, Li Y, Zhou XY, Wang XR, Shu QY. Comparative transcriptomic analysis of genes involved in stem lignin biosynthesis in woody and herbaceous Paeonia species. PHYSIOLOGIA PLANTARUM 2021; 173:961-977. [PMID: 34237150 DOI: 10.1111/ppl.13495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/16/2021] [Revised: 06/12/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Paeonia is recognized globally due to its ornamental value. However, the mechanisms behind the formation of distinct levels of lignification in Paeonia stems remain largely unknown. In this study, we selected three representative Paeonia species, namely P. ostii (shrub), P. lactiflora (herb), and P. × 'Hexie' (semi-shrub), to evaluate and contrast their respective anatomical structure, phytochemical composition and transcriptomic profile. Our results showed that the degree of lignin deposition on the cell wall, along with the total amount of lignin and its monomers (especially G-lignin) were higher in P. ostii stems compared to the other two species at almost all development stages except 80 days after flowering. Furthermore, we estimated a total number of unigenes of 60,238 in P. ostii, 43,563 in P. × 'Hexie', and 40,212 in P. lactiflora from stem transcriptome. We then built a co-expression network of 25 transcription factors and 21 enzyme genes involved in lignin biosynthesis and identified nine key candidate genes. The expression patterns of these genes were positively correlated with the transcription levels of PAL, C4H, 4CL2, CCR, and COMT, as well as lignin content. Moreover, the highest relative expression levels of CCR, 4CL2, and C4H were found in P. ostii. This study provides an explanation for the observed differences in lignification between woody and herbaceous Paeonia stems, and constitutes a novel reference for molecular studies of stem-specific lignification process and lignin biosynthesis that can impact the ornamental industry.
Collapse
Affiliation(s)
- Ning-Ning Tong
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Ping Peng
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yang Zhou
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xi-Ruo Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Chilling Requirement Validation and Physiological and Molecular Responses of the Bud Endodormancy Release in Paeonia lactiflora 'Meiju'. Int J Mol Sci 2021; 22:ijms22168382. [PMID: 34445086 PMCID: PMC8395073 DOI: 10.3390/ijms22168382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
The introduction of herbaceous peony (Paeonia lactiflora Pall.) in low-latitude areas is of great significance to expand the landscape application of this world-famous ornamental. With the hazards of climate warming, warm winters occurs frequently, which makes many excellent northern herbaceous peony cultivars unable to meet their chilling requirements (CR) and leads to their poor growth and flowering in southern China. Exploring the endodormancy release mechanism of underground buds is crucial for improving low-CR cultivar screening and breeding. A systematic study was conducted on P. lactiflora 'Meiju', a screened cultivar with a typical low-CR trait introduced from northern China, at the morphological, physiological and molecular levels. The CR value of 'Meiju' was further verified as 677.5 CUs based on the UT model and morphological observation. As a kind of signal transducer, reactive oxygen species (ROS) released a signal to enter dormancy, which led to corresponding changes in carbohydrate and hormone metabolism in buds, thus promoting underground buds to acquire strong cold resistance and enter endodormancy. The expression of important genes related to ABA metabolism, such as NCED3, PP2C, CBF4 and ABF2, reached peaks at the critical stage of endodormancy release (9 January) and then decreased rapidly; the expression of the GA2ox8 gene related to GA synthesis increased significantly in the early stage of endodormancy release and decreased rapidly after the release of ecodormancy (23 January). Cytological observation showed that the period when the sugar and starch contents decreased and the ABA/GA ratio decreased was when 'Meiju' bud endodormancy was released. This study reveals the endodormancy regulation mechanism of 'Meiju' buds with the low-CR trait, which lays a theoretical foundation for breeding new herbaceous peony cultivars with the low-CR trait.
Collapse
|
14
|
Meng JS, Tang YH, Sun J, Zhao DQ, Zhang KL, Tao J. Identification of genes associated with the biosynthesis of unsaturated fatty acid and oil accumulation in herbaceous peony 'Hangshao' (Paeonia lactiflora 'Hangshao') seeds based on transcriptome analysis. BMC Genomics 2021; 22:94. [PMID: 33522906 PMCID: PMC7849092 DOI: 10.1186/s12864-020-07339-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2020] [Accepted: 12/22/2020] [Indexed: 01/06/2023] Open
Abstract
Background Paeonia lactiflora ‘Hangshao’ is widely cultivated in China as a traditional Chinese medicine ‘Radix Paeoniae Alba’. Due to the abundant unsaturated fatty acids in its seed, it can also be regarded as a new oilseed plant. However, the process of the biosynthesis of unsaturated fatty acids in it has remained unknown. Therefore, transcriptome analysis is helpful to better understand the underlying molecular mechanisms. Results Five main fatty acids were detected, including stearic acid, palmitic acid, oleic acid, linoleic acid and α-linolenic acid, and their absolute contents first increased and then decreased during seed development. A total of 150,156 unigenes were obtained by transcriptome sequencing. There were 15,005 unigenes annotated in the seven functional databases, including NR, NT, GO, KOG, KEGG, Swiss-Prot and InterPro. Based on the KEGG database, 1766 unigenes were annotated in the lipid metabolism. There were 4635, 12,304, and 18,291 DEGs in Group I (60 vs 30 DAF), Group II (90 vs 60 DAF) and Group III (90 vs 30 DAF), respectively. A total of 1480 DEGs were detected in the intersection of the three groups. In 14 KEGG pathways of lipid metabolism, 503 DEGs were found, belonging to 111 enzymes. We screened out 123 DEGs involved in fatty acid biosynthesis (39 DEGs), fatty acid elongation (33 DEGs), biosynthesis of unsaturated fatty acid (24 DEGs), TAG assembly (17 DEGs) and lipid storage (10 DEGs). Furthermore, qRT-PCR was used to analyze the expression patterns of 16 genes, including BBCP, BC, MCAT, KASIII, KASII, FATA, FATB, KCR, SAD, FAD2, FAD3, FAD7, GPAT, DGAT, OLE and CLO, most of which showed the highest expression at 45 DAF, except for DGAT, OLE and CLO, which showed the highest expression at 75 DAF. Conclusions We predicted that MCAT, KASIII, FATA, SAD, FAD2, FAD3, DGAT and OLE were the key genes in the unsaturated fatty acid biosynthesis and oil accumulation in herbaceous peony seed. This study provides the first comprehensive genomic resources characterizing herbaceous peony seed gene expression at the transcriptional level. These data lay the foundation for elucidating the molecular mechanisms of fatty acid biosynthesis and oil accumulation for herbaceous peony. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07339-7.
Collapse
Affiliation(s)
- Jia-Song Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yu-Han Tang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jing Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Da-Qiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ke-Liang Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
15
|
Zhao D, Luan Y, Xia X, Shi W, Tang Y, Tao J. Lignin provides mechanical support to herbaceous peony (Paeonia lactiflora Pall.) stems. HORTICULTURE RESEARCH 2020; 7:213. [PMID: 33372177 PMCID: PMC7769982 DOI: 10.1038/s41438-020-00451-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/13/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 05/23/2023]
Abstract
Stem bending caused by mechanical failure is a major constraint for high-quality herbaceous peony (Paeonia lactiflora Pall.) cut flowers, but little is known about the underlying factors. In this study, two P. lactiflora cultivars, Xixia Yingxue (bending) and Hong Feng (upright), were used to investigate differences in stem bending. The results showed that the stem mechanical strength of Hong Feng was significantly higher than that of Xixia Yingxue, and the thickening of the secondary cell wall and the number of thickened secondary cell wall layers in Hong Feng were significantly higher than those in Xixia Yingxue. Moreover, compared with Xixia Yingxue, Hong Feng showed greater lignification of the cell wall and lignin deposition in the cell walls of the sclerenchyma, vascular bundle sheath and duct. All three types of lignin monomers were detected. The S-lignin, G-lignin, and total lignin contents and the activities of several lignin biosynthesis-related enzymes were higher in Hong Feng than in the other cultivar, and the S-lignin content was closely correlated with stem mechanical strength. In addition, 113,974 full-length isoforms with an average read length of 2106 bp were obtained from the full-length transcriptome of P. lactiflora stems, and differential expression analysis was performed based on the comparative transcriptomes of these two cultivars. Ten lignin biosynthesis-related genes, including 26 members that were closely associated with lignin content, were identified, and multiple upregulated and downregulated transcription factors were found to positively or negatively regulate lignin biosynthesis. Consequently, lignin was shown to provide mechanical support to P. lactiflora stems, providing useful information for understanding the formation of P. lactiflora stem strength.
Collapse
Affiliation(s)
- Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Xing Xia
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Wenbo Shi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, P.R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P.R. China.
| |
Collapse
|
16
|
Liu L, Wu Y, Zhao D, Tao J. Integrated mRNA and microRNA transcriptome analyses provide insights into paclobutrazol inhibition of lateral branching in herbaceous peony. 3 Biotech 2020; 10:496. [PMID: 33150122 DOI: 10.1007/s13205-020-02489-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022] Open
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is a new high-end cut flower, but a large number of lateral branches often appear in some excellent cultivars, which is inconvenient for cut flower production. In the present study, we analyzed the effects of paclobutrazol (PBZ) on the lateral branches of P. lactiflora and adopted a next-generation sequencing approach to identify miRNAs and mRNAs that were differentially expressed involved in the PBZ response. Our results indicate that PBZ may inhibit the production of lateral branches on P. lactiflora. There were 827 differentially expressed genes (DEGs) and 104 differentially expressed miRNAs (DEMs). Integrative analysis revealed 29 miRNA-mRNA interactions related to PBZ stress. Our results provided a wealth of genetic information and data on metabolic pathways for revealing the regulatory mechanism of PBZ inhibition of the development of lateral branches in P. lactiflora and provided a new possibility for reducing lateral branch formation in the production of herbaceous peony cut flowers.
Collapse
Affiliation(s)
- Lei Liu
- College of Horticulture, Xinyang College of Agriculture and Forestry, Xinyang, 464000 China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Yanqing Wu
- Institutes of Agricultural Science and Technology Development, Yangzhou University/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009 China
| | - Daqiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Jun Tao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
17
|
Tang Y, Fang Z, Liu M, Zhao D, Tao J. Color characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony ( Paeonia lactiflora Pall.). 3 Biotech 2020; 10:76. [PMID: 32051809 PMCID: PMC6987280 DOI: 10.1007/s13205-020-2063-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2019] [Accepted: 01/08/2020] [Indexed: 01/26/2023] Open
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is one of the color-leaved ornamental spring plants, with graceful appearance and splendid color. However, the underlying mechanism of this coloration variation from purple to green has not been studied in P. lactiflora. In th study, the leaves in purple, purple-green, and green stages were compared in terms of anatomical, physiological, and molecular. We found that the variation of leaf color from purple to green was mainly determined by the change in pigments distributed in the leaf surface. Physiological experiments showed a significant increase in chlorophyll contents and a notable reduction in anthocyanin contents in leaves from the purple to green stages. We further found that the anthocyanin biosynthesis-related dihydroflavonol 4-reductase (DFR) gene and anthocyanin synthase (ANS) gene as well as chlorophyll biosynthesis-related glutamyl-tRNA reductase (HEMA) gene showed a decreased trend in leaves from purple to green stages, whereas the chlorophyll degradation-related chlorophyll b reductase (NYC) gene showed a rising trend. Alteration of DFR and ANS gene expression might reduce anthocyanin accumulation, whereas increased HEMA gene expression would enhance chlorophyll biosynthesis and reduced NYC gene expression would inhibit chlorophyll degradation. Consequently, reduction in anthocyanins and enhanced deposition of chlorophylls resulted in leaf coloration variation from purple to green in P. lactiflora, which could improve our understanding of its mechanism for further studies.
Collapse
Affiliation(s)
- Yuhan Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 People’s Republic of China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Ziwen Fang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Mi Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Daqiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Jun Tao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 People’s Republic of China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| |
Collapse
|
18
|
Wan Y, Zhang M, Hong A, Lan X, Yang H, Liu Y. Transcriptome and weighted correlation network analyses provide insights into inflorescence stem straightness in Paeonia lactiflora. PLANT MOLECULAR BIOLOGY 2020; 102:239-252. [PMID: 31832900 DOI: 10.1007/s11103-019-00945-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/04/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Lack of structural components results in inflorescence stem bending. Differentially expressed genes involved in lignin and hemicellulose biosynthesis are vital; genes involved in cellulose and glycan biosynthesis are also relevant. An erect inflorescence stem is essential for high-quality cut herbaceous peony flowers. To explore the factors underlying inflorescence stem bending, major cell walls contents were measured, and stem structure was observed in two herbaceous peony varieties with contrasting stem straightness traits ('Da Fugui', upright; 'Chui Touhong', bending). In addition, Illumina sequencing was performed and weighted correlation network analysis (WGCNA) was used to analyze the results. The results showed significant differences in lignin, hemicellulose and soluble sugar contents, sclerenchyma and xylem areas and thickening in cell walls in pith at stage S3, when bending begins. In addition, 44,182 significantly differentially expressed genes (DEGs) were found, and these DEGs were mainly enriched in 36 pathways. Among the DEGs, hub genes involved in lignin, cellulose, and xylan biosynthesis and transcription factors that regulated these process were identified by WGCNA. These results suggested that the contents of compounds that provided cell wall rigidity were vital factors affecting inflorescence stem straightness in herbaceous peony. Genes involved in or regulating the biosynthesis of these compounds are thus important; lignin and hemicellulose are of great interest, and cellulose and glycan should not be ignored. This paper lays a foundation for developing new herbaceous peony varieties suitable for cut flowers by molecular-assisted breeding.
Collapse
Affiliation(s)
- Yingling Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Min Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Aiying Hong
- Management Office of Caozhou Peony Garden, Heze, 274000, Shandong, People's Republic of China
| | - Xinyu Lan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Huiyan Yang
- Management Office of Caozhou Peony Garden, Heze, 274000, Shandong, People's Republic of China
| | - Yan Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
19
|
Fan Y, Wang Q, Dong Z, Yin Y, Teixeira da Silva JA, Yu X. Advances in molecular biology of Paeonia L. PLANTA 2019; 251:23. [PMID: 31784828 DOI: 10.1007/s00425-019-03299-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Molecular biology can serve as a tool to solve the limitations of traditional breeding and cultivation techniques related to flower patterns, the improvement of flower color, and the regulation of flowering and stress resistance. These characteristics of molecular biology ensured its significant role in improving the efficiency of breeding and germplasm amelioration of Paeonia. This review describes the advances in molecular biology of Paeonia, including: (1) the application of molecular markers; (2) genomics, transcriptomics, proteomics, metabolomics, and microRNA studies; (3) studies of functional genes; and (4) molecular biology techniques. This review also points out select limitations in current molecular biology, analyzes the direction of Paeonia molecular biology research, and provides advice for future research objectives.
Collapse
Affiliation(s)
- Yongming Fan
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Qi Wang
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Zhijun Dong
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Yijia Yin
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | | | - Xiaonan Yu
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China.
| |
Collapse
|
20
|
Zhang J, Wang X, Zhang D, Qiu S, Wei J, Guo J, Li D, Xia Y. Evaluating the Comprehensive Performance of Herbaceous Peonies at low latitudes by the Integration of Long-running Quantitative Observation and Multi-Criteria Decision Making Approach. Sci Rep 2019; 9:15079. [PMID: 31636314 PMCID: PMC6803760 DOI: 10.1038/s41598-019-51425-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Enlarging the planting area of economic plants, such as the "Southward Planting of Herbaceous Peony" (Paeonia lactiflora. Pall), is significant for improving people's lives. Peony is globally known as an ornamental because of gorgeous flowers and is mainly cultivated in the temperate regions with relatively cool and dry climates in the Northern Hemisphere. Promoting the landscape application of peony to the lower latitude regions is difficult because of the hot-humid climate. In this study, 29 northern peony cultivars and a unique Chinese southern peony, 'Hang Baishao', were introduced to Hangzhou, located in the central subtropics. Annual growth cycles, resistances and dormancy durations were measured, and crossbreeding between the southern and northern peonies was performed for six years, from 2012 to 2017. Based on data collected from the long-running quantitative observation (LQO), a multi-criteria decision making (MCDM) system was established to evaluate the comprehensive planting performance of these 30 cultivars in the central subtropics. 'Qihua Lushuang', 'Hang Baishao' and 'Meiju' were highly recommended, while 'Zhuguang' and 'Qiaoling' were scarcely recommended for the Hangzhou landscape. This study highlights the dependability and comprehensiveness of integrating the LQO and MCDM approaches for evaluating the introduction performance of ornamental plants.
Collapse
Affiliation(s)
- Jiaping Zhang
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaobin Wang
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dong Zhang
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shuai Qiu
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020, China
| | - Jianfen Wei
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020, China
| | - Juan Guo
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020, China
| | - Danqing Li
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Yiping Xia
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Li T, Fan P, Yun Z, Jiang G, Zhang Z, Jiang Y. β-Aminobutyric Acid Priming Acquisition and Defense Response of Mango Fruit to Colletotrichum gloeosporioides Infection Based on Quantitative Proteomics. Cells 2019; 8:E1029. [PMID: 31487826 PMCID: PMC6770319 DOI: 10.3390/cells8091029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 01/12/2023] Open
Abstract
β-aminobutyric acid (BABA) is a new environmentally friendly agent to induce disease resistance by priming of defense in plants. However, molecular mechanisms underlying BABA-induced priming defense are not fully understood. Here, comprehensive analysis of priming mechanism of BABA-induced resistance was investigated based on mango-Colletotrichum gloeosporioides interaction system using iTRAQ-based proteome approach. Results showed that BABA treatments effectively inhibited the expansion of anthracnose caused by C. gleosporioides in mango fruit. Proteomic results revealed that stronger response to pathogen in BABA-primed mango fruit after C. gleosporioides inoculation might be attributed to differentially accumulated proteins involved in secondary metabolism, defense signaling and response, transcriptional regulation, protein post-translational modification, etc. Additionally, we testified the involvement of non-specific lipid-transfer protein (nsLTP) in the priming acquisition at early priming stage and memory in BABA-primed mango fruit. Meanwhile, spring effect was found in the primed mango fruit, indicated by inhibition of defense-related proteins at priming phase but stronger activation of defense response when exposure to pathogen compared with non-primed fruit. As an energy-saving strategy, BABA-induced priming might also alter sugar metabolism to provide more backbone for secondary metabolites biosynthesis. In sum, this study provided new clues to elucidate the mechanism of BABA-induced priming defense in harvested fruit.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Panhui Fan
- College of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Ze Yun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Guoxiang Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Zhengke Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- College of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|