1
|
Li Z, Bi R, Sun S, Chen S, Chen J, Hu B, Jin H. The Role of Oxidative Stress in Acute Ischemic Stroke-Related Thrombosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8418820. [PMID: 36439687 PMCID: PMC9683973 DOI: 10.1155/2022/8418820] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 09/22/2023]
Abstract
Acute ischemic stroke is a serious life-threatening disease that affects almost 600 million people each year throughout the world with a mortality of more than 10%, while two-thirds of survivors remain disabled. However, the available treatments for ischemic stroke are still limited to thrombolysis and/or mechanical thrombectomy, and there is an urgent need for developing new therapeutic target. Recently, intravascular oxidative stress, derived from endothelial cells, platelets, and leukocytes, has been found to be tightly associated with stroke-related thrombosis. It not only promotes primary thrombus formation by damaging endothelial cells and platelets but also affects thrombus maturation and stability by modifying fibrin components. Thus, oxidative stress is expected to be a novel target for the prevention and treatment of ischemic stroke. In this review, we first discuss the mechanisms by which oxidative stress promotes stroke-related thrombosis, then summarize the oxidative stress biomarkers of stroke-related thrombosis, and finally put forward an antithrombotic therapy targeting oxidative stress in ischemic stroke.
Collapse
Affiliation(s)
- Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Goncharov NV, Vasilyev KA, Kudryavtsev IV, Avdonin PP, Belinskaia DA, Stukova MA, Shamova OV, Avdonin PV. Experimental Search for New Means of Pathogenetic Therapy COVID-19: Inhibitor of H2-Receptors Famotidine Increases the Effect of Oseltamivir on Survival and Immune Status of Mice Infected by A/PR/8/34 (H1N1). J EVOL BIOCHEM PHYS+ 2022; 58:230-246. [PMID: 35283537 PMCID: PMC8897615 DOI: 10.1134/s0022093022010203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023]
Abstract
The development of drugs for the therapy of COVID-19 is one
of the main problems of modern physiology, biochemistry and pharmacology.
Taking into account the available information on the participation
of mast cells and the role of histamine in the pathogenesis of COVID-19,
as well as information on the positive role of famotidine in the
prevention and treatment of coronavirus infection, an experiment
was carried out using famotidine in a mouse model. We used a type
A/PR/8/34 (H1N1) virus adapted to mice. The antiviral drug oseltamivir
(Tamiflu), which belongs to the group of neuraminidase inhibitors,
was used as a reference drug. The use of famotidine in combination
with oseltamivir can increase survival, improve the dynamics of
animal weight, reduce the level of NKT cells and increase the level
of naive T-helpers. Further studies of famotidine in vivo should
be aimed at optimizing the regimen of drug use at a higher viral
load, as well as with a longer use of famotidine.
Collapse
Affiliation(s)
- N. V. Goncharov
- Sechenov Institute of Evolutionary
Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Research Institute of Hygiene,
Occupational Pathology and Human Ecology, p/o Kuzmolovsky, Vsevolozhsky District, Leningrad
Region, Russia
| | - K. A. Vasilyev
- Smorodintsev Research Institute
of Influenza of the Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | | | - P. P. Avdonin
- Koltsov Institute of Development
Biology, Russian Academy of Sciences, Moscow, Russia
| | - D. A. Belinskaia
- Sechenov Institute of Evolutionary
Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - M. A. Stukova
- Smorodintsev Research Institute
of Influenza of the Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - O. V. Shamova
- Institute of Experimental
Medicine, St. Petersburg, Russia
| | - P. V. Avdonin
- Koltsov Institute of Development
Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Jeong HS, Lee DH, Kim SH, Lee CH, Shin HM, Kim HR, Cho CH. Hyperglycemia-induced oxidative stress promotes tumor metastasis by upregulating vWF expression in endothelial cells through the transcription factor GATA1. Oncogene 2022; 41:1634-1646. [DOI: 10.1038/s41388-022-02207-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 01/16/2023]
|
4
|
Negri S, Faris P, Moccia F. Reactive Oxygen Species and Endothelial Ca 2+ Signaling: Brothers in Arms or Partners in Crime? Int J Mol Sci 2021; 22:ijms22189821. [PMID: 34575985 PMCID: PMC8465413 DOI: 10.3390/ijms22189821] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) controls virtually all endothelial cell functions and is, therefore, crucial to maintain cardiovascular homeostasis. An aberrant elevation in endothelial can indeed lead to severe cardiovascular disorders. Likewise, moderate amounts of reactive oxygen species (ROS) induce intracellular Ca2+ signals to regulate vascular functions, while excessive ROS production may exploit dysregulated Ca2+ dynamics to induce endothelial injury. Herein, we survey how ROS induce endothelial Ca2+ signals to regulate vascular functions and, vice versa, how aberrant ROS generation may exploit the Ca2+ handling machinery to promote endothelial dysfunction. ROS elicit endothelial Ca2+ signals by regulating inositol-1,4,5-trisphosphate receptors, sarco-endoplasmic reticulum Ca2+-ATPase 2B, two-pore channels, store-operated Ca2+ entry (SOCE), and multiple isoforms of transient receptor potential (TRP) channels. ROS-induced endothelial Ca2+ signals regulate endothelial permeability, angiogenesis, and generation of vasorelaxing mediators and can be exploited to induce therapeutic angiogenesis, rescue neurovascular coupling, and induce cancer regression. However, an increase in endothelial [Ca2+]i induced by aberrant ROS formation may result in endothelial dysfunction, inflammatory diseases, metabolic disorders, and pulmonary artery hypertension. This information could pave the way to design alternative treatments to interfere with the life-threatening interconnection between endothelial ROS and Ca2+ signaling under multiple pathological conditions.
Collapse
|
5
|
Avdonin PP, Trufanov SK, Rybakova EY, Tsitrina AA, Goncharov NV, Avdonin PV. The Use of Fluorescently Labeled ARC1779 Aptamer for Assessing the Effect of H2O2 on von Willebrand Factor Exocytosis. BIOCHEMISTRY (MOSCOW) 2021; 86:123-131. [PMID: 33832411 DOI: 10.1134/s0006297921020012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, we propose a new approach for quantitative estimation of von Willebrand factor (vWF) exposed on the surface of endothelial cells (ECs) using the ARC1779 aptamer that interacts with the vWF A1 domain. To visualize complex formation between vWF and the aptamer, the latter was conjugated with the Cy5 fluorescent label. Cultured human umbilical vein endothelial cells (HUVEC) were stained with the ARC1779-Cy5 conjugate and imaged with a fluorescence microscope. The images were analyzed with the CellProfiler software. vWF released from the Weibel-Palade bodies was observed as bright dot-like structures of round and irregular shape, the number of which increased several times after HUVEC exposure to histamine or thrombin. Staining with ARC1779-Cy5 also revealed long filamentous vWF structures on the surface of activated HUVEC. vWF secretion by ECs is activated by the second messengers cAMP and Ca2+. There is evidence that hydrogen peroxide also acts as a second messenger in ECs. In addition, exogenous H2O2 formed in leukocytes can enter ECs. The aim of our study was to determine the effect of H2O2 on the vWF exposure at the surface of HUVEC using the proposed method. It was shown that hydrogen peroxide at concentration 100 µM, which is lower than the cytotoxicity threshold of H2O2 for cultured HUVEC, increased several times the number of dot-like structures and total amount of vWF exposed on plasma membrane of HUVEC, which suggest that H2O2 acts as a mediator that activates exocytosis of Weibel-Palade bodies and vWF secretion in the vascular endothelium during inflammation and upon elevated generation of endogenous reactive oxygen species in ECs.
Collapse
Affiliation(s)
- Piotr P Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Sergey K Trufanov
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elena Yu Rybakova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Aleksandra A Tsitrina
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Nikolay V Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia.,Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical-Biological Agency, Kuzmolovsky, Leningrad Region, 188663, Russia
| | - Pavel V Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
6
|
Zarkovic N. Roles and Functions of ROS and RNS in Cellular Physiology and Pathology. Cells 2020; 9:cells9030767. [PMID: 32245147 PMCID: PMC7140712 DOI: 10.3390/cells9030767] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Our common knowledge on oxidative stress has evolved substantially over the years, being focused mostly on the fundamental chemical reactions and the most relevant chemical species involved in human pathophysiology of oxidative stress-associated diseases. Thus, reactive oxygen species and reactive nitrogen species (ROS and RNS) were identified as key players in initiating, mediating, and regulating the cellular and biochemical complexity of oxidative stress either as physiological (acting pro-hormetic) or as pathogenic (causing destructive vicious circles) processes. The papers published in this particular Special Issue of Cells show an impressive range on the pathophysiological relevance of ROS and RNS, including the relevance of second messengers of free radicals like 4-hydroxynonenal, allowing us to assume that the future will reveal even more detailed mechanisms of their positive and negative effects that might improve the monitoring of major modern diseases, and aid the development of advanced integrative biomedical treatments.
Collapse
Affiliation(s)
- Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Bijenička 54, HR-1000 Zagreb, Croatia
| |
Collapse
|
7
|
Dao VTV, Elbatreek MH, Altenhöfer S, Casas AI, Pachado MP, Neullens CT, Knaus UG, Schmidt HHHW. Isoform-selective NADPH oxidase inhibitor panel for pharmacological target validation. Free Radic Biol Med 2020; 148:60-69. [PMID: 31883469 DOI: 10.1016/j.freeradbiomed.2019.12.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
Dysfunctional reactive oxygen species (ROS) signaling is considered an important disease mechanism. Therapeutically, non-selective scavenging of ROS by antioxidants, however, has failed in multiple clinical trials to provide patient benefit. Instead, pharmacological modulation of disease-relevant, enzymatic sources of ROS appears to be an alternative, more promising and meanwhile successfully validated approach. With respect to targets, the family of NADPH oxidases (NOX) stands out as main and dedicated ROS sources. Validation of the different NOX isoforms has been mainly through genetically modified rodent models and is lagging behind in other species. It is unclear whether the different NOX isoforms are sufficiently distinct to allow selective pharmacological modulation. Here we show for five widely used NOX inhibitors that isoform selectivity can be achieved, although individual compound specificity is as yet insufficient. NOX1 was most potently (IC50) targeted by ML171 (0.1 μM); NOX2, by VAS2870 (0.7 μM); NOX4, by M13 (0.01 μM) and NOX5, by ML090 (0.01 μM). In addition, some non-specific antioxidant and assay artefacts may limit the interpretation of data, which included, surprisingly, the clinically advanced NOX inhibitor, GKT136901. In a human ischemic blood-brain barrier hyperpermeability model where genetic target validation is not an option, we provide proof-of-principle that pharmacological target validation for different NOX isoforms is possible by applying an inhibitor panel at IC50 concentrations. Moreover, our findings encourage further lead optimization and development efforts for isoform-selective NOX inhibitors in different indications.
Collapse
Affiliation(s)
- Vu Thao-Vi Dao
- Department for Pharmacology and Personalised Medicine, FHML, Maastricht University, Maastricht, the Netherlands; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Mahmoud H Elbatreek
- Department for Pharmacology and Personalised Medicine, FHML, Maastricht University, Maastricht, the Netherlands; Department for Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sebastian Altenhöfer
- Department for Pharmacology and Personalised Medicine, FHML, Maastricht University, Maastricht, the Netherlands
| | - Ana I Casas
- Department for Pharmacology and Personalised Medicine, FHML, Maastricht University, Maastricht, the Netherlands
| | - Mayra P Pachado
- Department for Pharmacology and Personalised Medicine, FHML, Maastricht University, Maastricht, the Netherlands
| | - Christopher T Neullens
- Department for Pharmacology and Personalised Medicine, FHML, Maastricht University, Maastricht, the Netherlands
| | - Ulla G Knaus
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Harald H H W Schmidt
- Department for Pharmacology and Personalised Medicine, FHML, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
8
|
Filippini A, D'Amore A, D'Alessio A. Calcium Mobilization in Endothelial Cell Functions. Int J Mol Sci 2019; 20:ijms20184525. [PMID: 31547344 PMCID: PMC6769945 DOI: 10.3390/ijms20184525] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells (ECs) constitute the innermost layer that lines all blood vessels from the larger arteries and veins to the smallest capillaries, including the lymphatic vessels. Despite the histological classification of endothelium of a simple epithelium and its homogeneous morphological appearance throughout the vascular system, ECs, instead, are extremely heterogeneous both structurally and functionally. The different arrangement of cell junctions between ECs and the local organization of the basal membrane generate different type of endothelium with different permeability features and functions. Continuous, fenestrated and discontinuous endothelia are distributed based on the specific function carried out by the organs. It is thought that a large number ECs functions and their responses to extracellular cues depend on changes in intracellular concentrations of calcium ion ([Ca2+]i). The extremely complex calcium machinery includes plasma membrane bound channels as well as intracellular receptors distributed in distinct cytosolic compartments that act jointly to maintain a physiological [Ca2+]i, which is crucial for triggering many cellular mechanisms. Here, we first survey the overall notions related to intracellular Ca2+ mobilization and later highlight the involvement of this second messenger in crucial ECs functions with the aim at stimulating further investigation that link Ca2+ mobilization to ECs in health and disease.
Collapse
Affiliation(s)
- Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Antonella D'Amore
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Alessio D'Alessio
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, 00168 Rome, Italy.
| |
Collapse
|