1
|
García-Carrillo R, Molina-Pelayo FA, Zarate-Lopez D, Cabrera-Aguilar A, Ortega-Domínguez B, Domínguez-López M, Chiquete-Félix N, Dagnino-Acosta A, Velasco-Loyden G, Chávez E, Castro-Sánchez L, de Sánchez VC. An adenosine derivative promotes mitochondrial supercomplexes reorganization and restoration of mitochondria structure and bioenergetics in a diethylnitrosamine-induced hepatocellular carcinoma model. Sci Rep 2024; 14:6348. [PMID: 38491051 PMCID: PMC10943223 DOI: 10.1038/s41598-024-56306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) progression is associated with dysfunctional mitochondria and bioenergetics impairment. However, no data about the relationship between mitochondrial supercomplexes (hmwSC) formation and ATP production rates in HCC are available. Our group has developed an adenosine derivative, IFC-305, which improves mitochondrial function, and it has been proposed as a therapeutic candidate for HCC. We aimed to determine the role of IFC-305 on both mitochondrial structure and bioenergetics in a sequential cirrhosis-HCC model in rats. Our results showed that IFC-305 administration decreased the number and size of liver tumors, reduced the expression of tumoral markers, and reestablished the typical architecture of the hepatic parenchyma. The livers of treated rats showed a reduction of mitochondria number, recovery of the mtDNA/nDNA ratio, and mitochondrial length. Also, IFC-305 increased cardiolipin and phosphatidylcholine levels and promoted hmwSC reorganization with changes in the expression levels of hmwSC assembly-related genes. IFC-305 in HCC modified the expression of several genes encoding elements of electron transport chain complexes and increased the ATP levels by recovering the complex I, III, and V activity. We propose that IFC-305 restores the mitochondrial bioenergetics in HCC by normalizing the quantity, morphology, and function of mitochondria, possibly as part of its hepatic restorative effect.
Collapse
Grants
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- FOP02-2022-02 project 321696 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- Ciencia de Frontera-2019 project 501204 Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)
- PAPIIT-UNAM project IN214419 Universidad Nacional Autónoma de México
- PAPIIT-UNAM project IN214419 Universidad Nacional Autónoma de México
- PAPIIT-UNAM project IN214419 Universidad Nacional Autónoma de México
- PAPIIT-UNAM project IN214419 Universidad Nacional Autónoma de México
- PAPIIT-UNAM project IN214419 Universidad Nacional Autónoma de México
- PAPIIT-UNAM project IN214419 Universidad Nacional Autónoma de México
Collapse
Affiliation(s)
- Rosendo García-Carrillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045, Colima, México
| | | | - David Zarate-Lopez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045, Colima, México
| | - Alejandro Cabrera-Aguilar
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Bibiana Ortega-Domínguez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Mariana Domínguez-López
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Natalia Chiquete-Félix
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Adan Dagnino-Acosta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045, Colima, México
- CONAHCYT-Universidad de Colima, 28045, Colima, México
| | - Gabriela Velasco-Loyden
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Enrique Chávez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045, Colima, México.
- CONAHCYT-Universidad de Colima, 28045, Colima, México.
| | - Victoria Chagoya de Sánchez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México.
| |
Collapse
|
2
|
Fan M, Shi Y, Zhao J, Li L. Cancer stem cell fate determination: mito-nuclear communication. Cell Commun Signal 2023; 21:159. [PMID: 37370081 DOI: 10.1186/s12964-023-01160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be responsible for tumor recurrence and metastasis. Therefore, clarification of the mechanisms involved in CSC stemness maintenance and cell fate determination would provide a new strategy for cancer therapy. Unregulated cellular energetics has been accepted as one of the hallmarks of cancer cells, but recent studies have revealed that mitochondrial metabolism can also actively determine CSC fate by affecting nuclear stemness gene expression. Herein, from the perspective of mito-nuclear communication, we review recent progress on the influence of mitochondria on CSC potential from four aspects: metabolism, dynamics, mitochondrial homeostasis, and reactive oxygen species (ROS). Video Abstract.
Collapse
Affiliation(s)
- Mengchen Fan
- School of Basic Medical Sciences, Medical College of Yan'an University, Yanan, 716000, China
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Shi
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jumei Zhao
- School of Basic Medical Sciences, Medical College of Yan'an University, Yanan, 716000, China.
| | - Ling Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Deng H, Zhang J, Zheng Y, Li J, Xiao Q, Wei F, Han W, Xu X, Zhang Y. CCDC25 may be a potential diagnostic and prognostic marker of hepatocellular carcinoma: Results from microarray analysis. Front Surg 2022; 9:878648. [PMID: 36211267 PMCID: PMC9537757 DOI: 10.3389/fsurg.2022.878648] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHepatocellular carcinoma (HCC) is a tumor with a high recurrence rate, poor prognosis, and rapid progression. Therefore, it is necessary to find a novel biomarker for HCC. Coiled-coil domain containing 25 (CCDC25) has been identified as a target molecule that mediates liver metastasis in colon cancer. However, the molecular mechanisms of CCDC25 in HCC are unknown. This study aimed to explore the role of CCDC25 in HCC.MethodsThe expression of CCDC25 in HCC was identified through The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Receiver operating characteristic curve (ROC) curves were drawn to evaluate the diagnostic value of CCDC25 for HCC. The effect of CCDC25 on the prognosis of HCC was analyzed by using the Kaplan–Meier plotter. Co-expressed genes and Gene Set Enrichment Analysis (GSEA) were used to explore the related functions and regulatory signaling pathways of CCDC25. Moreover, we employed the Tumor Immune Estimation Resource (TIMER) database and CIBERSORT algorithm to investigate the relationship between CCDC25 and the tumor immune microenvironment (TME) in HCC. Meanwhile, the effect of CCDC25 on the sensitivity of HCC patients to chemotherapy drugs was evaluated. Finally, we explored the prognostic methylation sites of CCDC25 using the MethSurv database.ResultsCCDC25 expression was low in HCC. Low CCDC25 expression was significantly associated with poor overall survival of HCC and may be comparable to the ability of AFP to diagnose HCC. Dysregulation of glucose metabolism, fatty acid metabolism, amino acid metabolism, ubiquitination modification, and apoptosis inhibition caused by CCDC25 downregulation may be the causes and results of HCC. In addition, CCDC25 was positively correlated with the infiltration level of various adaptive antitumor immune cells. The levels of immune cell infiltration and immune checkpoint expression were lower in the samples with high CCDC25 expression. What is more, we found that downregulated CCDC25 may increase the sensitivity or resistance of HCC patients to multiple drugs, including sorafenib. We also identified a methylation site for CCDC25, which may be responsible for poor prognosis and low CCDC25 expression in HCC patients. Finally, CCDC25 may be associated with HCC ferroptosis.ConclusionsCCDC25 may be a potential diagnostic and prognostic marker for HCC and is associated with immune infiltration and ferroptosis.
Collapse
Affiliation(s)
- Hongyang Deng
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiaxing Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yijun Zheng
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Jipin Li
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Qi Xiao
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Fengxian Wei
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Wei Han
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaodong Xu
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Youcheng Zhang
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
- Correspondence: Youcheng Zhang
| |
Collapse
|
4
|
Kit O, Frantsiyants E, Neskubina I, Shikhlyarova A, Kaplieva I. Mitochondrial therapy: a vision of the outlooks for treatment of main twenty-first-century diseases. CARDIOMETRY 2022. [DOI: 10.18137/cardiometry.2022.22.1827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are dynamic organelles which constantly change their shape, size, and location within the cells. Mitochondrial dynamics is associated with mesenchymal metabolism or epithelial-mesenchymal transition to regulate the stem cell differentiation, proliferation, migration, and apoptosis. The transfer of mitochondria from one cell to another is necessary to improve and maintain homeostasis in an organism. Mitochondrial transplantation is a therapeutic approach that involves an introduction of healthy mitochondria into damaged organs. Recent evidence data have shown that the physiological properties of healthy mitochondria provide their ability to replace damaged mitochondria, with suggesting that replacing damaged mitochondria with healthy mitochondria may protect cells from further damage. Moreover, mitochondria can also be actively released into the extracellular space and potentially be transferred between the cells in the central nervous system. This increased interest in mitochondrial therapy calls for a deeper understanding of the mechanisms, which build the basis for mitochondrial transfer, uptake, and cellular defense. In this review, questions related to the involvement of mitochondria in the pathogenesis of cancer will be discussed. Particular attention will be paid to mitochondrial transplantation as a therapeutic approach to treat the mitochondrial dysfunction under some pathological conditions.
Collapse
|
5
|
Hemojuvelin deficiency promotes liver mitochondrial dysfunction and predisposes mice to hepatocellular carcinoma. Commun Biol 2022; 5:153. [PMID: 35194137 PMCID: PMC8863832 DOI: 10.1038/s42003-022-03108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/01/2022] [Indexed: 11/11/2022] Open
Abstract
Hemojuvelin (HJV) enhances signaling to the iron hormone hepcidin and its deficiency causes iron overload, a risk factor for hepatocellular carcinoma (HCC). We utilized Hjv−/− mice to dissect mechanisms for hepatocarcinogenesis. We show that suboptimal treatment with diethylnitrosamine (DEN) triggers HCC only in Hjv−/− but not wt mice. Liver proteomics data were obtained by mass spectrometry. Hierarchical clustering analysis revealed that Hjv deficiency and DEN elicit similar liver proteomic responses, including induction of mitochondrial proteins. Dietary iron overload of wt mice does not recapitulate the liver proteomic phenotype of Hjv−/− animals, which is only partially corrected by iron depletion. Consistent with these data, primary Hjv−/− hepatocytes exhibit mitochondrial hyperactivity, while aged Hjv−/− mice develop spontaneous HCC. Moreover, low expression of HJV or hepcidin (HAMP) mRNAs predicts poor prognosis in HCC patients. We conclude that Hjv has a hepatoprotective function and its deficiency in mice promotes mitochondrial dysfunction and hepatocarcinogenesis. Hemojuvelin (HJV), a BMP co-receptor promoting hepcidin expression in the liver, has a hepatoprotective function and its deficiency in mice triggers mitochondrial dysfunction and hepatocarcinogenesis.
Collapse
|
6
|
Alterations of non-coding RNA expression and mitochondrial biogenesis in colorectal cancer tissue: Possible crosstalk with macrophage polarization. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Gamboa CM, Wang Y, Xu H, Kalemba K, Wondisford FE, Sabaawy HE. Optimized 3D Culture of Hepatic Cells for Liver Organoid Metabolic Assays. Cells 2021; 10:cells10123280. [PMID: 34943788 PMCID: PMC8699701 DOI: 10.3390/cells10123280] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022] Open
Abstract
The liver is among the principal organs for glucose homeostasis and metabolism. Studies of liver metabolism are limited by the inability to expand primary hepatocytes in vitro while maintaining their metabolic functions. Human hepatic three-dimensional (3D) organoids have been established using defined factors, yet hepatic organoids from adult donors showed impaired expansion. We examined conditions to facilitate the expansion of adult donor-derived hepatic organoids (HepAOs) and HepG2 cells in organoid cultures (HepGOs) using combinations of growth factors and small molecules. The expansion dynamics, gluconeogenic and HNF4α expression, and albumin secretion are assessed. The conditions tested allow the generation of HepAOs and HepGOs in 3D cultures. Nevertheless, gluconeogenic gene expression varies greatly between conditions. The organoid expansion rates are limited when including the TGFβ inhibitor A8301, while are relatively higher with Forskolin (FSK) and Oncostatin M (OSM). Notably, expanded HepGOs grown in the optimized condition maintain detectable gluconeogenic expression in a spatiotemporal distribution at 8 weeks. We present optimized conditions by limiting A8301 and incorporating FSK and OSM to allow the expansion of HepAOs from adult donors and HepGOs with gluconeogenic competence. These models increase the repertoire of human hepatic cellular tools available for use in liver metabolic assays.
Collapse
Affiliation(s)
- Christian Moya Gamboa
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Yujue Wang
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
| | - Huiting Xu
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
| | - Katarzyna Kalemba
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
| | - Fredric E. Wondisford
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA;
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
- Correspondence: (F.E.W.); (H.E.S.); Tel.: +1-732-235-9838 (F.E.W.); +1-732-235-8081 (H.E.S.)
| | - Hatem E. Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA;
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
- Department of Pathology and Laboratory Medicine, RBHS-Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (F.E.W.); (H.E.S.); Tel.: +1-732-235-9838 (F.E.W.); +1-732-235-8081 (H.E.S.)
| |
Collapse
|
8
|
Eisenberg-Bord M, Zung N, Collado J, Drwesh L, Fenech EJ, Fadel A, Dezorella N, Bykov YS, Rapaport D, Fernandez-Busnadiego R, Schuldiner M. Cnm1 mediates nucleus-mitochondria contact site formation in response to phospholipid levels. J Cell Biol 2021; 220:212719. [PMID: 34694322 PMCID: PMC8548916 DOI: 10.1083/jcb.202104100] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial functions are tightly regulated by nuclear activity, requiring extensive communication between these organelles. One way by which organelles can communicate is through contact sites, areas of close apposition held together by tethering molecules. While many contacts have been characterized in yeast, the contact between the nucleus and mitochondria was not previously identified. Using fluorescence and electron microscopy in S. cerevisiae, we demonstrate specific areas of contact between the two organelles. Using a high-throughput screen, we uncover a role for the uncharacterized protein Ybr063c, which we have named Cnm1 (contact nucleus mitochondria 1), as a molecular tether on the nuclear membrane. We show that Cnm1 mediates contact by interacting with Tom70 on mitochondria. Moreover, Cnm1 abundance is regulated by phosphatidylcholine, enabling the coupling of phospholipid homeostasis with contact extent. The discovery of a molecular mechanism that allows mitochondrial crosstalk with the nucleus sets the ground for better understanding of mitochondrial functions in health and disease.
Collapse
Affiliation(s)
| | - Naama Zung
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Javier Collado
- Institute for Neuropathology, Georg August Universität Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Layla Drwesh
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Emma J Fenech
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Fadel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nili Dezorella
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Yury S Bykov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Ruben Fernandez-Busnadiego
- Institute for Neuropathology, Georg August Universität Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Bian J, Zhang D, Wang Y, Qin H, Yang W, Cui R, Sheng J. Mitochondrial Quality Control in Hepatocellular Carcinoma. Front Oncol 2021; 11:713721. [PMID: 34589426 PMCID: PMC8473831 DOI: 10.3389/fonc.2021.713721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria participate in the progression of hepatocellular carcinoma (HCC) by modifying processes including but not limited to redox homeostasis, metabolism, and the cell death pathway. These processes depend on the health status of the mitochondria. Quality control processes in mitochondria can repair or eliminate “unhealthy mitochondria” at the molecular, organelle, or cellular level and form an efficient integrated network that plays an important role in HCC tumorigenesis, patient survival, and tumor progression. Here, we review the influence of mitochondria on the biological behavior of HCC. Based on this information, we further highlight the need for determining the role and mechanism of interaction between different levels of mitochondrial quality control in regulating HCC occurrence and progression as well as resistance development. This information may lead to the development of precision medicine approaches against targets involved in various mitochondrial quality control-related pathways.
Collapse
Affiliation(s)
- Jinda Bian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Li Y, Li W, Hoffman AR, Cui J, Hu JF. The Nucleus/Mitochondria-Shuttling LncRNAs Function as New Epigenetic Regulators of Mitophagy in Cancer. Front Cell Dev Biol 2021; 9:699621. [PMID: 34568319 PMCID: PMC8455849 DOI: 10.3389/fcell.2021.699621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
Mitophagy is a specialized autophagic pathway responsible for the selective removal of damaged or dysfunctional mitochondria by targeting them to the autophagosome in order to maintain mitochondria quality. The role of mitophagy in tumorigenesis has been conflicting, with the process both supporting tumor cell survival and promoting cell death. Cancer cells may utilize the mitophagy pathway to augment their metabolic requirements and resistance to cell death, thereby leading to increased cell proliferation and invasiveness. This review highlights major regulatory pathways of mitophagy involved in cancer. In particular, we summarize recent progress regarding how nuclear-encoded long non-coding RNAs (lncRNAs) function as novel epigenetic players in the mitochondria of cancer cells, affecting the malignant behavior of tumors by regulating mitophagy. Finally, we discuss the potential application of regulating mitophagy as a new target for cancer therapy.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
11
|
Li YQ, Jiao Y, Liu YN, Fu JY, Sun LK, Su J. PGC-1α protects from myocardial ischaemia-reperfusion injury by regulating mitonuclear communication. J Cell Mol Med 2021; 26:593-600. [PMID: 33470050 PMCID: PMC8817131 DOI: 10.1111/jcmm.16236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/25/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
The recovery of blood supply after a period of myocardial ischaemia does not restore the heart function and instead results in a serious dysfunction called myocardial ischaemia‐reperfusion injury (IRI), which involves several complex pathophysiological processes. Mitochondria have a wide range of functions in maintaining the cellular energy supply, cell signalling and programmed cell death. When mitochondrial function is insufficient or disordered, it may have adverse effects on myocardial ischaemia‐reperfusion and therefore mitochondrial dysfunction caused by oxidative stress a core molecular mechanism of IRI. Peroxisome proliferator‐activated receptor gamma co‐activator 1α (PGC‐1α) is an important antioxidant molecule found in mitochondria. However, its role in IRI has not yet been systematically summarized. In this review, we speculate the role of PGC‐1α as a key regulator of mitonuclear communication, which may interacts with nuclear factor, erythroid 2 like ‐1 and ‐2 (NRF‐1/2) to inhibit mitochondrial oxidative stress, promote the clearance of damaged mitochondria, enhance mitochondrial biogenesis, and reduce the burden of IRI.
Collapse
Affiliation(s)
- Yan-Qing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ya-Nan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jia-Ying Fu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lian-Kun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
12
|
Zhou H, Yuan D, Gao W, Tian J, Sun H, Yu S, Wang J, Sun L. Loss of high-temperature requirement protein A2 protease activity induces mitonuclear imbalance via differential regulation of mitochondrial biogenesis in sarcopenia. IUBMB Life 2020; 72:1659-1679. [PMID: 32353215 DOI: 10.1002/iub.2289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/06/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
Abstract
Cellular homeostasis requires tight coordination between nucleus and mitochondria, organelles that each possesses their own genomes. Disrupted mitonuclear communication has been found to be implicated in many aging processes. However, little is known about mitonuclear signaling regulator in sarcopenia which is a major contributor to the risk of poor health-related quality of life, disability, and premature death in older people. High-temperature requirement protein A2 (HtrA2/Omi) is a mitochondrial protease and plays an important role in mitochondrial proteostasis. HtrA2mnd2(-/-) mice harboring protease-deficient HtrA2/Omi Ser276Cys missense mutants exhibit premature aging phenotype. Additionally, HtrA2/Omi has been established as a signaling regulator in nervous system and tumors. We therefore asked whether HtrA2/Omi participates in mitonuclear signaling regulation in muscle degeneration. Using motor functional, histological, and molecular biological methods, we characterized the phenotype of HtrA2mnd2(-/-) muscle. Furthermore, we isolated the gastrocnemius muscle of HtrA2mnd2(-/-) mice and determined expression of genes in mitochondrial unfolded protein response (UPRmt ), mitohormesis, electron transport chain (ETC), and mitochondrial biogenesis. Here, we showed that HtrA2/Omi protease deficiency induced denervation-independent skeletal muscle degeneration with sarcopenia phenotypes. Despite mitochondrial hypofunction, upregulation of UPRmt and mitohormesis-related genes and elevated total reactive oxygen species (ROS) production were not observed in HtrA2mnd2(-/-) mice, contrary to previous assumptions that loss of protease activity of HtrA2/Omi would lead to mitochondrial dysfunction as a result of proteostasis disturbance and ROS burst. Instead, we showed that HtrA2/Omi protease deficiency results in different changes between the expression of nuclear DNA- and mitochondrial DNA-encoded ETC subunits, which is in consistent with their transcription factors, nuclear respiratory factors 1 and 2, and coactivator peroxisome proliferator-activated receptor γ coactivator 1α. These results reveal that loss of HtrA2/Omi protease activity induces mitonuclear imbalance via differential regulation of mitochondrial biogenesis in sarcopenia. The novel mechanistic insights may be of importance in developing new therapeutic strategies for sarcopenia.
Collapse
Affiliation(s)
- Haohan Zhou
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Danni Yuan
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Weinan Gao
- Department of Orthopedics, Second Hospital, Jilin University, Changchun, China
| | - Jiayi Tian
- Department of Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Hongyu Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shuang Yu
- Department of Reproductive Medicine, Second Hospital, Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, Second Hospital, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
13
|
Mechanistic understanding of β-cryptoxanthin and lycopene in cancer prevention in animal models. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158652. [PMID: 32035228 DOI: 10.1016/j.bbalip.2020.158652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
To better understand the potential function of carotenoids in the chemoprevention of cancers, mechanistic understanding of carotenoid action on genetic and epigenetic signaling pathways is critically needed for human studies. The use of appropriate animal models is the most justifiable approach to resolve mechanistic issues regarding protective effects of carotenoids at specific organs and tissue sites. While the initial impetus for studying the benefits of carotenoids in cancer prevention was their antioxidant capacity and pro-vitamin A activity, significant advances have been made in the understanding of the action of carotenoids with regards to other mechanisms. This review will focus on two common carotenoids, provitamin A carotenoid β-cryptoxanthin and non-provitamin A carotenoid lycopene, as promising chemopreventive agents or chemotherapeutic compounds against cancer development and progression. We reviewed animal studies demonstrating that β-cryptoxanthin and lycopene effectively prevent the development or progression of various cancers and the potential mechanisms involved. We highlight recent research that the biological functions of β-cryptoxanthin and lycopene are mediated, partially via their oxidative metabolites, through their effects on key molecular targeting events, such as NF-κB signaling pathway, RAR/PPARs signaling, SIRT1 signaling pathway, and p53 tumor suppressor pathways. The molecular targets by β-cryptoxanthin and lycopene, offer new opportunities to further our understanding of common and distinct mechanisms that involve carotenoids in cancer prevention. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
|
14
|
The Tumor Suppressor Roles of MYBBP1A, a Major Contributor to Metabolism Plasticity and Stemness. Cancers (Basel) 2020; 12:cancers12010254. [PMID: 31968688 PMCID: PMC7017249 DOI: 10.3390/cancers12010254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
The MYB binding protein 1A (MYBBP1A, also known as p160) acts as a co-repressor of multiple transcription factors involved in many physiological processes. Therefore, MYBBP1A acts as a tumor suppressor in multiple aspects related to cell physiology, most of them very relevant for tumorigenesis. We explored the different roles of MYBBP1A in different aspects of cancer, such as mitosis, cellular senescence, epigenetic regulation, cell cycle, metabolism plasticity and stemness. We especially reviewed the relationships between MYBBP1A, the inhibitory role it plays by binding and inactivating c-MYB and its regulation of PGC-1α, leading to an increase in the stemness and the tumor stem cell population. In addition, MYBBP1A causes the activation of PGC-1α directly and indirectly through c-MYB, inducing the metabolic change from glycolysis to oxidative phosphorylation (OXPHOS). Therefore, the combination of these two effects caused by the decreased expression of MYBBP1A provides a selective advantage to tumor cells. Interestingly, this only occurs in cells lacking pVHL. Finally, the loss of MYBBP1A occurs in 8%–9% of renal tumors. tumors, and this subpopulation could be studied as a possible target of therapies using inhibitors of mitochondrial respiration.
Collapse
|
15
|
Lim JY, Liu C, Hu KQ, Smith DE, Wu D, Lamon-Fava S, Ausman LM, Wang XD. Xanthophyll β-Cryptoxanthin Inhibits Highly Refined Carbohydrate Diet-Promoted Hepatocellular Carcinoma Progression in Mice. Mol Nutr Food Res 2020; 64:e1900949. [PMID: 31891208 DOI: 10.1002/mnfr.201900949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/21/2019] [Indexed: 12/24/2022]
Abstract
SCOPE β-Cryptoxanthin (BCX) can be cleaved by both β-carotene 15,15'-oxygenase (BCO1) and β-carotene 9',10'-oxygenase (BCO2), generating biological active vitamin A and apocarotenoids. We examined whether BCX feeding could inhibit diethylnitrosamine (DEN)-initiated, highly refined carbohydrate diet (HRCD)-promoted hepatocellular carcinoma (HCC) development, dependent or independent of BCO1/BCO2 activity. METHODS AND RESULTS Two-week-old male wild-type (WT) and BCO1-/- /BCO2-/- double knockout (DKO) mice are given a single intraperitoneal injection of DEN (25 mg kg-1 body weight) to initiate hepatic carcinogenesis. At 6 weeks of age, all animals are fed HRCD (66.5% of energy from carbohydrate) with or without BCX for 24 weeks. BCX feeding increases hepatic vitamin A levels in WT mice, but not in DKO mice that shows a significant accumulation of hepatic BCX. Compared to their respective HRCD littermates, both WT and DKO fed BCX have significantly lower HCC multiplicity, average tumor size, and total tumor volume, and the steatosis scores. The chemopreventive effects of BCX are associated with increased p53 protein acetylation and decreased protein levels of lactate dehydrogenase and hypoxia-inducible factor-1α in tumors. CONCLUSION This study suggests that BCX feeding may alleviate HRCD-promoted HCC progression by modulating the acetylation of p53, hypoxic tumor microenvironment, and glucose metabolism, independent of BCO1/BCO2.
Collapse
Affiliation(s)
- Ji Ye Lim
- Nutrition and Cancer Biology Lab, JM USDA-HNRCA at Tufts University, Boston, MA, 02111, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, USA
| | - Chun Liu
- Nutrition and Cancer Biology Lab, JM USDA-HNRCA at Tufts University, Boston, MA, 02111, USA
| | - Kang-Quan Hu
- Nutrition and Cancer Biology Lab, JM USDA-HNRCA at Tufts University, Boston, MA, 02111, USA
| | - Donald E Smith
- Comparative Biology Unit, JM USDA-HNRCA at Tufts University, Boston, MA, 02111, USA
| | - Dayong Wu
- Nutritional Immunology Lab, JM USDA-HNRCA at Tufts University, Boston, MA, 02111, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Lab, JM USDA-HNRCA at Tufts University, Boston, MA, 02111, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, USA
| | - Lynne M Ausman
- Nutrition and Cancer Biology Lab, JM USDA-HNRCA at Tufts University, Boston, MA, 02111, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, USA
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, JM USDA-HNRCA at Tufts University, Boston, MA, 02111, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, USA
| |
Collapse
|
16
|
Jin T, Wang C, Tian Y, Dai C, Zhu Y, Xu F. Mitochondrial metabolic reprogramming: An important player in liver cancer progression. Cancer Lett 2019; 470:197-203. [PMID: 31783085 DOI: 10.1016/j.canlet.2019.11.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
Mitochondria are known as essential biosynthetic, bioenergetic and signaling organelles, and play a critical role in cell differentiation, proliferation, and death. Nowadays, cancer is emergingly considered as a mitochondrial metabolic disease. Mitochondria also play an essential role in liver carcinogenesis. Liver cells are highly regenerative and require high energy. For that reason, a large number of mitochondria are present and functional in liver cells. Abnormalities in mitochondrial metabolism in human liver are known to be one of the carcinogenic factors. Interestingly, immune checkpoints regulate mitochondrial metabolic energetics of the tumor, the tumor microenvironment, as well as the tumor-specific immune response. This regulation forms a positive loop between the metabolic reprogramming of both cancer cells and immune cells. In this review, we discuss the evidence and mechanisms that mitochondria interplay with immune checkpoints to influence different steps of oncogenesis, as well as the potential of mitochondria as therapeutic targets for liver cancer therapy.
Collapse
Affiliation(s)
- Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chao Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Surgery, Northeast International Hospital, Shenyang, 110623, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
17
|
Léveillé M, Estall JL. Mitochondrial Dysfunction in the Transition from NASH to HCC. Metabolites 2019; 9:E233. [PMID: 31623280 PMCID: PMC6836234 DOI: 10.3390/metabo9100233] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
The liver constantly adapts to meet energy requirements of the whole body. Despite its remarkable adaptative capacity, prolonged exposure of liver cells to harmful environmental cues (such as diets rich in fat, sugar, and cholesterol) results in the development of chronic liver diseases (including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)) that can progress to hepatocellular carcinoma (HCC). The pathogenesis of these diseases is extremely complex, multifactorial, and poorly understood. Emerging evidence suggests that mitochondrial dysfunction or maladaptation contributes to detrimental effects on hepatocyte bioenergetics, reactive oxygen species (ROS) homeostasis, endoplasmic reticulum (ER) stress, inflammation, and cell death leading to NASH and HCC. The present review highlights the potential contribution of altered mitochondria function to NASH-related HCC and discusses how agents targeting this organelle could provide interesting treatment strategies for these diseases.
Collapse
Affiliation(s)
- Mélissa Léveillé
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
| | - Jennifer L Estall
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, QC H4A 3J1, Canada.
| |
Collapse
|
18
|
Mazzocca A. The Systemic-Evolutionary Theory of the Origin of Cancer (SETOC): A New Interpretative Model of Cancer as a Complex Biological System. Int J Mol Sci 2019; 20:ijms20194885. [PMID: 31581628 PMCID: PMC6801598 DOI: 10.3390/ijms20194885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
The Systemic–Evolutionary Theory of Cancer (SETOC) is a recently proposed theory based on two important concepts: (i) Evolution, understood as a process of cooperation and symbiosis (Margulian-like), and (ii) The system, in terms of the integration of the various cellular components, so that the whole is greater than the sum of the parts, as in any complex system. The SETOC posits that cancer is generated by the de-emergence of the “eukaryotic cell system” and by the re-emergence of cellular subsystems such as archaea-like (genetic information) and/or prokaryotic-like (mitochondria) subsystems, featuring uncoordinated behaviors. One of the consequences is a sort of “cellular regression” towards ancestral or atavistic biological functions or behaviors similar to those of protists or unicellular organisms in general. This de-emergence is caused by the progressive breakdown of the endosymbiotic cellular subsystem integration (mainly, information = nucleus and energy = mitochondria) as a consequence of long-term injuries. Known cancer-promoting factors, including inflammation, chronic fibrosis, and chronic degenerative processes, cause prolonged damage that leads to the breakdown or failure of this form of integration/endosymbiosis. In normal cells, the cellular “subsystems” must be fully integrated in order to maintain the differentiated state, and this integration is ensured by a constant energy intake. In contrast, when organ or tissue damage occurs, the constant energy intake declines, leading, over time, to energy shortage, failure of endosymbiosis, and the de-differentiated state observed in dysplasia and cancer.
Collapse
Affiliation(s)
- Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy.
| |
Collapse
|
19
|
MicroRNA Networks Modulate Oxidative Stress in Cancer. Int J Mol Sci 2019; 20:ijms20184497. [PMID: 31514389 PMCID: PMC6769781 DOI: 10.3390/ijms20184497] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Imbalanced regulation of reactive oxygen species (ROS) and antioxidant factors in cells is known as "oxidative stress (OS)". OS regulates key cellular physiological responses through signal transduction, transcription factors and noncoding RNAs (ncRNAs). Increasing evidence indicates that continued OS can cause chronic inflammation, which in turn contributes to cardiovascular and neurological diseases and cancer development. MicroRNAs (miRNAs) are small ncRNAs that produce functional 18-25-nucleotide RNA molecules that play critical roles in the regulation of target gene expression by binding to complementary regions of the mRNA and regulating mRNA degradation or inhibiting translation. Furthermore, miRNAs function as either tumor suppressors or oncogenes in cancer. Dysregulated miRNAs reportedly modulate cancer hallmarks such as metastasis, angiogenesis, apoptosis and tumor growth. Notably, miRNAs are involved in ROS production or ROS-mediated function. Accordingly, investigating the interaction between ROS and miRNAs has become an important endeavor that is expected to aid in the development of effective treatment/prevention strategies for cancer. This review provides a summary of the essential properties and functional roles of known miRNAs associated with OS in cancers.
Collapse
|
20
|
Zhao Y, Liu S, Zhou L, Li X, Meng Y, Li Y, Li L, Jiao B, Bai L, Yu Y, Zhang S, Li W, Hoffman AR, Hu JF, Cui J. Aberrant shuttling of long noncoding RNAs during the mitochondria-nuclear crosstalk in hepatocellular carcinoma cells. Am J Cancer Res 2019; 9:999-1008. [PMID: 31218107 PMCID: PMC6556595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023] Open
Abstract
There is intense crosstalk between mitochondria and the nucleus that is mediated by proteins and long noncoding RNAs (lncRNAs). Using a modified RNA fluorescent in situ hybridization (RNA-FISH) assay coupled with MitoTracker staining, we tracked the mitochondrial localization of lncRNAs, including lncND6 and lncCytB. The nuclear genome-transcribed lncRNA MALAT1 was enriched in the mitochondria of hepatocellular carcinoma cells. Knockdown of MALAT1 significantly impaired mitochondrial function and alter tumor phenotype in HepG2 cells. The localization of the mitochondria-encoded lncRNA lncCytB was also abnormal in HepG2 cells. In normal hepatic HL7702 cells, lncCytB was located in mitochondria, but in HepG2 cells, it was enriched considerably in the nucleus. These data suggest that aberrant shuttling of lncRNAs, whether nuclear genome-encoded or mitochondrial genome-transcribed, may play a critical role in abnormal mitochondrial metabolism in cancer cells. This data lays the foundation for further clarifying the roles of mitochondria-associated lncRNAs in cancers.
Collapse
Affiliation(s)
- Yijing Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Shanshan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Lei Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Xueli Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Ying Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Yan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Lingyu Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
| | - Benzheng Jiao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Ling Bai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
| | - Yu Yu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
| | - Songling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
- Stanford University Medical School, VA Palo Alto Health Care SystemPalo Alto, CA 94304, USA
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
| |
Collapse
|