1
|
Zhang M, Zhang Y, Peng J, Huang Y, Gong Z, Lu H, Han L, Wang D. Gastrodin against oxidative stress-inflammation crosstalk via inhibiting mtDNA/TLR9 and JAK2/STAT3 signaling to ameliorate ischemic stroke injury. Int Immunopharmacol 2024; 141:113012. [PMID: 39182268 DOI: 10.1016/j.intimp.2024.113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The pathway of Janus-activated kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) (termed as JAK2/STAT3) plays an active role in stroke-related inflammation induced by ischemic stress. Gastrodin, the primary compound in Gastrodia elata Bl, has been identified for its notable neuroprotective effects and demonstrated to ameliorate cerebral ischemia-reperfusion but its exact mechanisms governing this defense are still unclear. This study aims to investigate whether gastrodin can regulate mitochondrial function via the JAK2/STAT3 pathway to limit cerebral ischemia-reperfusion. In vivo, gastrodin significantly reduced infarct volume, improved neurobiological function, attenuated neuronal apoptosis, oxidative stress, mitochondrial impairment, mtDNA leakage, and inflammatory responses. At the cellular level, gastrodin administration rescued OGD/R-induced cell apoptosis, oxidative stress, and mitochondrial dysfunction. Mechanistically, gastrodin notably suppressed Toll-like receptor 9 (TLR9) expression, important for the recognition of disrupted endogenous DNA to produce inflammatory reactions. Furthermore, gastrodin mitigated inflammation by inhibiting JAK2/STAT3 signaling, influencing inflammatory factors to aggravate inflammation. Notably, the effects of gastrodin were abolished by Coumermycin A1 (C-A1), a JAK2 agonist, validating the role of JAK2/STAT3 signaling. In summary, gastrodin enhances the protective effect against mitochondrial damage in ischemic stroke by inhibiting JAK2/STAT3 signaling. Gastrodin is a possible therapy for cerebral ischemia.
Collapse
Affiliation(s)
- Menglian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| | - Yaowen Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| | - Jinyong Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| | - Yingying Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Huixin Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China.
| | - Dandan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Institute for the Evaluation of the Efficacy and Safety of Chinese Medicines, Anhui Academy of Chinese Medicine, Hefei 230011, China.
| |
Collapse
|
2
|
Alkhaldy HY, Yahya AO, Algarni AM, Bakheet OSE, Assiri M, Saboor M. JAK2 Mutation Assessment in Thrombotic Events at Unusual Anatomical Sites: Insights from a High-Altitude Cohort. Int J Gen Med 2024; 17:4551-4558. [PMID: 39398483 PMCID: PMC11470770 DOI: 10.2147/ijgm.s480705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Thrombosis stands as a significant contributor to both morbidity and mortality in individuals afflicted with myeloproliferative neoplasms. This retrospective study investigated the association between JAK2 mutations and venous thrombosis at unusual sites, and in young individuals with ischemic stroke, residing at high altitudes in the Aseer region, Saudi Arabia. Patients and Methods Data were collected from two high-altitude referral hospitals over three years (2020-2022). Records of all JAK2 mutation tests were reviewed. Those requested as part of evaluation of thrombosis events, without known myeloproliferative neoplasms (MPNs) were analysed. Results Among the 208 JAK2 tests, 40 (19.2%) were linked to thrombotic event evaluations. The cohort, with a median age of 41, included 17 (42.7%) males and 23 females, with 57.5% having completely normal complete blood counts (CBC). Thrombotic events were divided between splanchnic vein thrombosis (36.6%) and cerebral thrombosis (34.1%), while the remaining cases involved unprovoked deep vein thromboses/pulmonary embolisms and portal vein thrombosis. Only 2 (5%) participants tested positive for JAK2 mutations: a 17-year-old male diagnosed concurrently with polycythemia vera after renal vein thrombosis and a 31-year-old woman with hepatic vein thrombosis and a normal CBC. Conclusion This study reveals that JAK2 mutations are infrequently found in high-altitude patients with unprovoked DVT, PE, or atypical thrombosis. While JAK2 testing is notably relevant for splanchnic vein thrombosis, its routine use for other thrombotic events, particularly with normal CBC results, remains uncertain. Given the study's limitations, further prospective research with larger cohorts is needed to refine guidelines for JAK2 mutation testing in various thrombotic contexts.
Collapse
Affiliation(s)
- Husain Yahya Alkhaldy
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayel Omar Yahya
- Division of Adult Hematology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | | | - Omayma S E Bakheet
- Department of Laboratory Medicine and Blood Bank, Aseer Central Hospital, Abha, Saudi Arabia
| | | | - Muhammad Saboor
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Leiva O, Liu O, Zhou S, How J, Lee M, Hobbs G. Myeloproliferative Neoplasms and Cardiovascular Disease: A Review. Curr Treat Options Oncol 2024; 25:1257-1267. [PMID: 39278999 DOI: 10.1007/s11864-024-01255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
OPINION STATEMENT Myeloproliferative neoplasms (MPN) are a heterogenous group of disorders of clonal hematopoiesis characterized by constitutive activation of the JAK/STAT signaling pathway leading to proliferation of blood cells. Cardiovascular disease (CVD) contributes significantly to the morbidity and mortality of patients with MPN. Particularly well-known CVD complications of MPNs are arterial and venous thrombotic events. However, MPNs are also associated with other forms of CVD including atrial fibrillation, heart failure, and pulmonary hypertension. Recent studies have characterized outcomes of patients with MPN and CVD, including acute myocardial infarction (AMI), heart failure, atrial fibrillation, and pulmonary hypertension. Additionally, optimal cardiovascular disease prevention strategies in patients with MPN are not yet clear. Further investigation is warranted to improve CVD outcomes in patients with MPN. Clinicians should be aware of cardiovascular complications of MPN, including thrombotic as well as non-thrombotic complications (heart failure, arrhythmias, pulmonary hypertension).
Collapse
Affiliation(s)
- Orly Leiva
- Department of Medicine, Division of Cardiology, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Medicine, Section of Cardiology - Heart Failure, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
| | - Olivia Liu
- Department of Medicine, Division of Cardiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sophia Zhou
- Department of Medicine, Division of Cardiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Joan How
- Department of Medicine, Division of Hematology and Oncology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michelle Lee
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gabriela Hobbs
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Nabigol M, Hajipirloo LK, Kuhestani-Dehaghi B, Farsani MA. Effect of AML-exosomes on the cellular and molecular properties of bone marrow mesenchymal stromal cells: Expression of JAK/STAT signaling genes. Curr Res Transl Med 2024; 73:103474. [PMID: 39366080 DOI: 10.1016/j.retram.2024.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/23/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
PURPOSE OF STUDY Despite the various therapeutic options introduced for AML treatment, therapy resistance and relapse are still the main obstacles. It is well known that alterations in the bone marrow microenvironment (BMM) play a crucial role in leukemia growth and the treatment failure of AML. Evidence shows that exosomes alter the components of BMM in a way that support leukemia survival, leading to chemoresistance. In this study, we evaluated the effect of AML exosomes on the biological functions of human bone marrow mesenchymal stromal cells (h BM-MSCs), especially alteration in the expression of the JAK/STAT signaling genes, as a leukemia-favoring pathway. METHOD Exosomes were isolated from the HL-60 cell line and characterized using flow cytometry, Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS) technique. The exosome protein content was assessed using a bicinchoninic acid (BCA) protein assay kit in order to determine the concentration of exosomes. Subsequently, MSCs were treated with varying concentrations of AML exosomes, and data was obtained using MTT, cell cycle, apoptosis, and ki67 assays. Additionally, gene expression analysis was conducted through qRT-PCR. RESULT AML exosomes regulated the viability and survival of MSCs in a concentration-dependent manner. The qRT-PCR data revealed that treatment with AML exosomes at a concentration of 50 μg/mL led to a significant upregulation of JAK2, STAT3, and STAT5 genes in MSCs. CONCLUSION Because the JAK/STAT signaling pathway has been shown to play a role in the proliferation and survival of leukemic cells, our results suggest that AML exosomes stimulate MSCs to activate this pathway. This activation may impede AML cell apoptosis, potentially leading to chemoresistance and relapse.
Collapse
Affiliation(s)
- Maryam Nabigol
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laya Khodayi Hajipirloo
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Kuhestani-Dehaghi
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Allahbakhshian Farsani
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zhen Y, Yang J, Song J, Xing Z, Zheng J. Silencing ARL11 relieved atherosclerotic inflammation and lipid deposition via retraining JAK2/STAT1 pathway. Atherosclerosis 2024; 398:118564. [PMID: 39312826 DOI: 10.1016/j.atherosclerosis.2024.118564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis (AS), an arterial vasculature disease, is characterized by abnormal lipid accumulation and inflammatory response. ADP ribosylation factor like GTPase 11 (ARL11) is linked to multifarious processes in cells. This study aims to clarify the underlying mechanism of ARL11 in AS. METHODS ApoE-/- mice fed with high-fat diet were used as mouse model of AS. Gene expression in AS was determined by mRNA-sequencing. ARL11 expression was detected by real-time PCR, Western blot and immunofluorescence. M1 polarization of macrophages was indicated by TNF-α and IL-6 levels as detected with ELISA, and iNOS expression determined by real-time PCR and Western blot. The role of ARL11 during AS was explored through loss-of-function analysis. RESULTS There were 1301 upregulated and 1110 downregulated genes during AS. These differentially expressed genes (DEGs) were mainly enriched in pathways and terms which are involved in inflammation. Moreover, Arl11 was highly expressed in AS models. Downregulation of Arl11 decreased lipid deposition and atherosclerotic plaques in the aortas of AS mice, and declined inflammatory cytokines and M1 polarization of macrophages induced by IFN-γ. Furthermore, ARL11 interacted with JAK2 and p-JAK2 and modulated their degradation, thus inhibiting the activation of JAK2/STAT1 pathway. CONCLUSIONS ARL11 promoted the development of AS via interacting with JAK2 and activating JAK2/STAT1 pathway. Thus, silencing ARL11 may prevent the process of AS and be a novel way to treat AS.
Collapse
Affiliation(s)
- Yanhua Zhen
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Jiaqi Yang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Ji Song
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Zeyu Xing
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
6
|
Golmohammadi M, Zamanian MY, Al-Ani AM, Jabbar TL, Kareem AK, Aghaei ZH, Tahernia H, Hjazi A, Jissir SAR, Hakimizadeh E. Targeting STAT3 signaling pathway by curcumin and its analogues for breast cancer: A narrative review. Animal Model Exp Med 2024. [PMID: 39219410 DOI: 10.1002/ame2.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Breast cancer (BC) continues to be a significant global health issue, with a rising number of cases requiring ongoing research and innovation in treatment strategies. Curcumin (CUR), a natural compound derived from Curcuma longa, and similar compounds have shown potential in targeting the STAT3 signaling pathway, which plays a crucial role in BC progression. AIMS The aim of this study was to investigate the effects of curcumin and its analogues on BC based on cellular and molecular mechanisms. MATERIALS & METHODS The literature search conducted for this study involved utilizing the Scopus, ScienceDirect, PubMed, and Google Scholar databases in order to identify pertinent articles. RESULTS This narrative review explores the potential of CUR and similar compounds in inhibiting STAT3 activation, thereby suppressing the proliferation of cancer cells, inducing apoptosis, and inhibiting metastasis. The review demonstrates that CUR directly inhibits the phosphorylation of STAT3, preventing its movement into the nucleus and its ability to bind to DNA, thereby hindering the survival and proliferation of cancer cells. CUR also enhances the effectiveness of other therapeutic agents and modulates the tumor microenvironment by affecting tumor-associated macrophages (TAMs). CUR analogues, such as hydrazinocurcumin (HC), FLLL11, FLLL12, and GO-Y030, show improved bioavailability and potency in inhibiting STAT3, resulting in reduced cell proliferation and increased apoptosis. CONCLUSION CUR and its analogues hold promise as effective adjuvant treatments for BC by targeting the STAT3 signaling pathway. These compounds provide new insights into the mechanisms of action of CUR and its potential to enhance the effectiveness of BC therapies.
Collapse
Affiliation(s)
- Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Yassin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmed Muzahem Al-Ani
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Thaer L Jabbar
- College of pharmacy, Al- Ayen University, Nasiriyah, Iraq
| | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Zeinab Hashem Aghaei
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Tahernia
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
7
|
Aday A, Bayrak AG, Toraman S, Hindilerden İY, Nalçacı M, Depciuch J, Cebulski J, Guleken Z. Raman Spectroscopy of Blood Serum for Essential Thrombocythemia Diagnosis: Correlation with Genetic Mutations and Optimization of Laser Wavelengths. Cell Biochem Biophys 2024; 82:2989-2999. [PMID: 38847941 DOI: 10.1007/s12013-024-01333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 10/02/2024]
Abstract
Essential thrombocythemia (ET) is a type of myeloproliferative neoplasm that increases the risk of thrombosis. To diagnose this disease, the analysis of mutations in the Janus Kinase 2 (JAK2), thrombopoietin receptor (MPL), or calreticulin (CALR) gene is recommended. Disease poses diagnostic challenges due to overlapping mutations with other neoplasms and the presence of triple-negative cases. This study explores the potential of Raman spectroscopy combined with machine learning for ET diagnosis. We assessed two laser wavelengths (785, 1064 nm) to differentiate between ET patients and healthy controls. The PCR results indicate that approximately 50% of patients in our group have a mutation in the JAK2 gene, while only 5% of patients harbor a mutation in the ASXL1 gene. Additionally, only one patient had a mutation in the IDH1 and one had a mutation in IDH2 gene. Consequently, patients having no mutations were also observed in our group, making diagnosis challenging. Raman spectra at 1064 nm showed lower amide, polysaccharide, and lipid vibrations in ET patients, while 785 nm spectra indicated significant decreases in amide II and C-H lipid vibrations. Principal Component Analysis (PCA) confirmed that both wavelengths could distinguish ET from healthy subjects. Support Vector Machine (SVM) analysis revealed that the 800-1800 cm-1 range provided the highest diagnostic accuracy, with 89% for 785 nm and 72% for 1064 nm. These findings suggest that FT-Raman spectroscopy, paired with multivariate and machine learning analyses, offers a promising method for diagnosing ET with high accuracy by detecting specific molecular changes in serum. Principal Component Analysis (PCA) confirmed that both wavelengths could distinguish ET from healthy subjects. Support Vector Machine (SVM) analysis revealed that the 800-1800 cm-1 range provided the highest diagnostic accuracy, with 89% for 785 nm and 72% for 1064 nm. These findings suggest that FT-Raman spectroscopy, paired with multivariate and machine learning analyses, offers a promising method for diagnosing ET with high accuracy by detecting specific molecular changes in serum.
Collapse
Affiliation(s)
- Aynur Aday
- Department of Internal Medicine, Division of Medical Genetics Turkey, Istanbul University, Istanbul Faculty of Medicine, Elazıg, Turkey
| | - Ayşe Gül Bayrak
- Department of Internal Medicine, Division of Medical Genetics Turkey, Istanbul University, Istanbul Faculty of Medicine, Elazıg, Turkey
| | - Suat Toraman
- Department of Air Traffic Control, School of Aviation, Fırat University, 23119, Elazıg, Turkey
| | - İpek Yönal Hindilerden
- Istanbul Faculty of Medicine, Department of Internal Medicine, Division of Hematology Turkey, Istanbul University, Elazıg, Turkey
| | - Meliha Nalçacı
- Istanbul Faculty of Medicine, Department of Internal Medicine, Division of Hematology Turkey, Istanbul University, Elazıg, Turkey
| | - Joanna Depciuch
- Institute of Nuclear Physics, PAS, 31342, Krakow, Poland.
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
| | - Jozef Cebulski
- Institute of Physics, University of Rzeszow, 35-959, Rzeszow, Poland.
| | - Zozan Guleken
- Faculty of Medicine, Department of Physiology, Gaziantep University of Islam Science and Technology, Gaziantep, Turkey.
| |
Collapse
|
8
|
Guleken Z, Aday A, Bayrak AG, Hindilerden İY, Nalçacı M, Cebulski J, Depciuch J. Relationship between amide ratio assessed by Fourier-transform infrared spectroscopy: A biomarker candidate for polycythemia vera disease. JOURNAL OF BIOPHOTONICS 2024; 17:e202400162. [PMID: 38978265 DOI: 10.1002/jbio.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
The study utilized Fourier transform infrared (FTIR) spectroscopy coupled with chemometrics to investigate protein composition and structural changes in the blood serum of patients with polycythemia vera (PV). Principal component analysis (PCA) revealed distinct biochemical properties, highlighting elevated absorbance of phospholipids, amides, and lipids in PV patients compared to healthy controls. Ratios of amide I/amide II and amide I/amide III indicated alterations in protein structures. Support vector machine analysis and receiver operating characteristic curves identified amide I as a crucial predictor of PV, achieving 100% accuracy, sensitivity, and specificity, while amide III showed a lower predictive value (70%). PCA analysis demonstrated effective differentiation between PV patients and controls, with key wavenumbers including amide II, amide I, and CH lipid vibrations. These findings underscore the potential of FTIR spectroscopy for diagnosing and monitoring PV.
Collapse
Affiliation(s)
- Zozan Guleken
- Faculty of Medicine, Department of Physiology, Gaziantep University of Islam Science and Technology, Gaziantep, Turkey
| | - Aynur Aday
- Faculty of Medicine, Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Istanbul, Turkey
| | - Ayşe Gül Bayrak
- Faculty of Medicine, Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Istanbul, Turkey
| | - İpek Yönal Hindilerden
- Department of Internal Medicine, Division of Hematology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Meliha Nalçacı
- Department of Internal Medicine, Division of Hematology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Jozef Cebulski
- Institute of Physics, University of Rzeszow, Rzeszow, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics, Krakow, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
9
|
Zaninetti C, Vater L, Kaderali L, Crodel CC, Schnöder TM, Fuhrmann J, Swensson L, Wesche J, Freyer C, Greinacher A, Heidel FH. Immunofluorescence microscopy on the blood smear identifies patients with myeloproliferative neoplasms. Leukemia 2024; 38:2051-2058. [PMID: 39020061 PMCID: PMC11347374 DOI: 10.1038/s41375-024-02346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Affiliation(s)
- Carlo Zaninetti
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany.
| | - Leonard Vater
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Lars Kaderali
- Institut für Bioinformatik, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Carl C Crodel
- Innere Medizin II, Abt. Hämatologie und Onkologie, Universitätsklinikum Jena, Jena, Germany
| | - Tina M Schnöder
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
- Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jessica Fuhrmann
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Leonard Swensson
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jan Wesche
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Carmen Freyer
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Florian H Heidel
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
- Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany.
- Leibniz Institute on Aging, Fritz-Lipmann Institute, Jena, Germany.
| |
Collapse
|
10
|
Wan YC, Yang Y, Pang S, Kong ZL. A novel derivative of evodiamine improves cognitive impairment and synaptic integrity in AD mice. Biomed Pharmacother 2024; 177:117103. [PMID: 39018870 DOI: 10.1016/j.biopha.2024.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024] Open
Abstract
Alzheimer's disease (AD), the major cause of dementia, is a multifactoral progressive neurodegenerative disorder that currently affects over 43 million people worldwide. The interaction betweengenetic and environmental factors decides pathogenesis and pathological development. The chemical drugs designed for clinical applications on AD have not reached the expected preventive effect so far.Here, we obtained a new evodiamine (Evo) derivative, LE-42, which exhibited lower cytotoxicity in SH-SY5Y cells and HepaG2 cells than that of Evo. The LD50 of LE-42 in SH-SY5Y cells and HepaG2 cells was increased by 9 folds and 14 folds than Evo, respectively. The LE-42 also exhibited much more potent effects on anti-oxidation and anti-cytotoxicity of AβOs than Evo. The LE-42 significantly improved the working memory, spatial learning, and memory of the 3×Tg AD mice, and the pharmacodynamic dose of LE-42 on AD mice was increased by 500 folds than that of Evo. LE-42 significantly improved the Tau hyperphosphorylation, a typical pathological feature in 3×Tg AD mice. The LE-42 restored the JAK2/STAT3 pathway's dysfunction and upregulated the expression of GluN1, GluA2, SYN, and PSD95, subsequentially improving the synaptic integrity in 3×Tg mice. The activation of the JAK2/STAT3 axis by LE-42 was a possible mechanism for a therapeutic effect on the AD mice.
Collapse
Affiliation(s)
- Ying-Chun Wan
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan.
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Material Medical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences,Beijing, China.
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan.
| |
Collapse
|
11
|
Isfort S, von Bubnoff N, Al-Ali HK, Becker H, Götze T, le Coutre P, Griesshammer M, Moskwa C, Wohn L, Riedel J, Palandri F, Manz K, Hochhaus A, Döhner K, Heidel FH. FRACTION: protocol of a phase II study of Fedratinib and Nivolumab combination in patients with myelofibrosis and resistance or suboptimal response to JAK-inhibitor treatment of the German MPN study group (GSG-MPN). Ann Hematol 2024; 103:2775-2785. [PMID: 38967662 PMCID: PMC11283433 DOI: 10.1007/s00277-024-05867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Development of Janus-kinase (JAK) inhibitors has revolutionized the therapeutic landscape for patients with myeloproliferative neoplasia (MPN). Following approval of the first JAK1/2-inhibitor Ruxolitinib, symptoms of this inflammatory disease, characterized by splenomegaly, release of inflammatory cytokines and appearance of thrombosis, could be effectively reduced for the first time. However, JAK-inhibitor treatment is limited in several aspects: 1) duration of response: 3 years after initiation of therapy more than 50% of patients have discontinued JAK-inhibitor treatment due to lack of efficacy or resistance; 2) reduction of disease burden: while effective in reducing inflammation and constitutional symptoms, JAK-inhibitors fail to reduce the malignant clone in the majority of patients and therefore lack long-term efficacy. Early clinical trials for patients with myelofibrosis (MF) have tried to address these issues for patients with suboptimal response to Ruxolitinib therapy while combination therapies with Fedratinib are rare. Recent reports provided first evidence on how the JAK2-V617F mutated myeloid cells may influence T-cell responses. JAK2-V617F promoted the synthesis of PD-L1 in MPN cells leading to limited anti-neoplastic T-cell responses, metabolic changes in T-cells and eventually JAK2-V617F-driven immune-escape of MPN cells. These findings may facilitate the use of immunotherapeutic approaches for JAK-mutated clones. Immune checkpoints refer to a variety of inhibitory pathways that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. The FRACTION study is a single arm, open label Phase II trial investigating the combination of Fedratinib with the PD-1 inhibitor Nivolumab in patients with myelofibrosis and suboptimal or lack of response to JAK-inhibitor therapy. Over a 12 months period the trial assesses longer term outcomes, particularly the effects on clinical outcomes, such as induction of clinical remissions, quality of life and improvement of anemia. No prospective clinical trial data exist for combinations of JAK- and immune-checkpoint-inhibitors in the planned MF study population and this study will provide new findings that may contribute to advancing the treatment landscape for MF patients with suboptimal responses and limited alternatives.
Collapse
Affiliation(s)
- Susanne Isfort
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital Lübeck, Lübeck, Germany
| | - Haifa Kathrin Al-Ali
- University Hospital Halle (Saale), Krukenberg Cancer Center Halle, Halle, Germany
| | - Heiko Becker
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of , Freiburg, Freiburg, Germany
| | - Thorsten Götze
- Krankenhaus Nordwest, University Cancer Center (UCT), Frankfurt, Germany
- Institut für Klinische Krebsforschung IKF Am Krankenhaus Nordwest, Frankfurt, Germany
| | - Philipp le Coutre
- Department of Hematology, Oncology and Stem Cell Transplantation, Charite Berlin, Germany
| | | | - Claudia Moskwa
- Internal Medicine C, Hematology, Oncology, Stem Cell Transplantation and Palliative Care, University Medicine Greifswald, Greifswald, Germany
| | - Luisa Wohn
- Institut für Klinische Krebsforschung IKF Am Krankenhaus Nordwest, Frankfurt, Germany
| | - Johanna Riedel
- Institut für Klinische Krebsforschung IKF Am Krankenhaus Nordwest, Frankfurt, Germany
| | - Francesca Palandri
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Istituto Di Ematologia "Seràgnoli", Bologna, Italy
| | - Kirsi Manz
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- Institute for Community Medicine - SHIP-KEF, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Florian H Heidel
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Internal Medicine C, Hematology, Oncology, Stem Cell Transplantation and Palliative Care, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
12
|
Wu XF, Xu Q, Wang A, Wang BZ, Lan XY, Li WY, Liu Y. Relationship between Indel Variants within the JAK2 Gene and Growth Traits in Goats. Animals (Basel) 2024; 14:1994. [PMID: 38998106 PMCID: PMC11240706 DOI: 10.3390/ani14131994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Janus kinase 2 (JAK2) plays a critical role in myoblast proliferation and fat deposition in animals. Our previous RNA-Seq analyses identified a close association between the JAK2 gene and muscle development. To date, research delving into the relationship between the JAK2 gene and growth traits has been sparse. In this study, we sought to investigate the relationship between novel mutations within the JAK2 gene and goat growth traits. Herein, two novel InDel (Insertion/Deletion) polymorphisms within the JAK2 gene were detected in 548 goats, and only two genotypes were designated as ID (Insertion/Deletion) and DD (Deletion/Deletion). The results indicate that the two InDels, the del19008 locus in intron 2 and del72416 InDel in intron 6, showed significant associations with growth traits (p < 0.05). Compared to Nubian and Jianzhou Daer goats, the del72416 locus displayed a more pronounced effect in the Fuqing breed group. In the Nubian breed (NB) group, both InDels showed a marked influence on body height (BH). There were strong linkages observed for these two InDels between the Fuqing (FQ) and Jianzhou (JZ) populations. The DD-ID diplotype was associated with inferior growth traits in chest width (ChW) and cannon circumference (CaC) in the FQ goats compared to the other diplotypes. In the NB population, the DD-DD diplotype exhibited a marked negative impact on BH and HuWI (hucklebone width index), in contrast to the other diplotypes. In summary, our findings suggest that the two InDel polymorphisms within the JAK2 gene could serve as valuable molecular markers for enhancing goat growth traits in breeding programs.
Collapse
Affiliation(s)
- Xian-Feng Wu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qian Xu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Ao Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ben-Zhi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xian-Yong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wen-Yang Li
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yuan Liu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
13
|
Krawczyk-Łebek A, Żarowska B, Dymarska M, Janeczko T, Kostrzewa-Susłow E. Synthesis, fungal biotransformation, and evaluation of the antimicrobial potential of chalcones with a chlorine atom. Sci Rep 2024; 14:15050. [PMID: 38951205 PMCID: PMC11217454 DOI: 10.1038/s41598-024-65054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Chalcones are intermediate products in the biosynthesis of flavonoids, which possess a wide range of biological properties, including antimicrobial and anticancer activities. The introduction of a chlorine atom and the glucosyl moiety into their structure may increase their bioavailability, bioactivity, and pharmacological use. The combined chemical and biotechnological methods can be applied to obtain such compounds. Therefore, 2-chloro-2'-hydroxychalcone and 3-chloro-2'-hydroxychalcone were synthesized and biotransformed in cultures of two strains of filamentous fungi, i.e. Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5 to obtain their novel glycosylated derivatives. Pharmacokinetics, drug-likeness, and biological activity of them were predicted using cheminformatics tools. 2-Chloro-2'-hydroxychalcone, 3-chloro-2'-hydroxychalcone, their main glycosylation products, and 2'-hydrochychalcone were screened for antimicrobial activity against several microbial strains. The growth of Escherichia coli 10,536 was completely inhibited by chalcones with a chlorine atom and 3-chlorodihydrochalcone 2'-O-β-D-(4″-O-methyl)-glucopyranoside. The strain Pseudomonas aeruginosa DSM 939 was the most resistant to the action of the tested compounds. However, chalcone aglycones and glycosides with a chlorine atom almost completely inhibited the growth of bacteria Staphylococcus aureus DSM 799 and yeast Candida albicans DSM 1386. The tested compounds had different effects on lactic acid bacteria depending on the tested species. In general, chlorinated chalcones were more effective in the inhibition of the tested microbial strains than their unchlorinated counterparts and aglycones were a little more effective than their glycosides.
Collapse
Affiliation(s)
- Agnieszka Krawczyk-Łebek
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Barbara Żarowska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
14
|
Hamwi MN, Elsayed E, Dabash H, Abuawad A, Aweer NA, Al Zeir F, Pedersen S, Al-Mansoori L, Burgon PG. MLIP and Its Potential Influence on Key Oncogenic Pathways. Cells 2024; 13:1109. [PMID: 38994962 PMCID: PMC11240681 DOI: 10.3390/cells13131109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Muscle-enriched A-type lamin-interacting protein (MLIP) is an emerging protein involved in cellular homeostasis and stress adaptation. Eukaryotic cells regulate various cellular processes, including metabolism, DNA repair, and cell cycle progression, to maintain cellular homeostasis. Disruptions in this homeostasis can lead to diseases such as cancer, characterized by uncontrolled cell growth and division. This review aims to explore for the first time the unique role MLIP may play in cancer development and progression, given its interactions with the PI3K/Akt/mTOR pathway, p53, MAPK9, and FOXO transcription factors, all critical regulators of cellular homeostasis and tumor suppression. We discuss the current understanding of MLIP's involvement in pro-survival pathways and its potential implications in cancer cells' metabolic remodeling and dysregulated homeostasis. Additionally, we examine the potential of MLIP as a novel therapeutic target for cancer treatment. This review aims to shed light on MLIP's potential impact on cancer biology and contribute to developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Mahmoud N Hamwi
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Engy Elsayed
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Hanan Dabash
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Amani Abuawad
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Noor A Aweer
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Faissal Al Zeir
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Shona Pedersen
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar
| | - Layla Al-Mansoori
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Patrick G Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
15
|
Liu Y, Wang Y, Huang G, Wu S, Liu X, Chen S, Luo P, Liu C, Zuo X. The role of leukocytes in myeloproliferative neoplasm thromboinflammation. J Leukoc Biol 2024; 115:1020-1028. [PMID: 38527797 DOI: 10.1093/jleuko/qiae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Classic myeloproliferative neoplasms lacking the Philadelphia chromosome are stem cell disorders characterized by the proliferation of myeloid cells in the bone marrow and increased counts of peripheral blood cells. The occurrence of thrombotic events is a common complication in myeloproliferative neoplasms. The heightened levels of cytokines play a substantial role in the morbidity and mortality of these patients, establishing a persistent proinflammatory condition that culminates in thrombosis. The etiology of thrombosis remains intricate and multifaceted, involving blood cells and endothelial dysfunction, the inflammatory state, and the coagulation cascade, leading to hypercoagulability. Leukocytes play a pivotal role in the thromboinflammatory process of myeloproliferative neoplasms by releasing various proinflammatory and prothrombotic factors as well as interacting with other cells, which contributes to the amplification of the clotting cascade and subsequent thrombosis. The correlation between increased leukocyte counts and thrombotic risk has been established. However, there is a need for an accurate biomarker to assess leukocyte activation. Lastly, tailored treatments to address the thrombotic risk in myeloproliferative neoplasms are needed. Therefore, this review aims to summarize the potential mechanisms of leukocyte involvement in myeloproliferative neoplasm thromboinflammation, propose potential biomarkers for leukocyte activation, and discuss promising treatment options for controlling myeloproliferative neoplasm thromboinflammation.
Collapse
Affiliation(s)
- Yu Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Yingying Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Yixueyuan Road, Yuzhong District, Chongqing 400016, P.R. China
| | - Gang Huang
- Department of Cell Systems & Anatomy, Department of Pathology & Laboratory, Medicine UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, 8403 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Shuo Chen
- Biomedical Sciences Graduate Program, Ohio State University, Columbus, OH 43210, United States
| | - Ping Luo
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Chang Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Xuelan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| |
Collapse
|
16
|
Ji L, Lou S, Fang Y, Wang X, Zhu W, Liang G, Lee K, Luo W, Zhuang Z. Patchouli Alcohol Protects the Heart against Diabetes-Related Cardiomyopathy through the JAK2/STAT3 Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:631. [PMID: 38794201 PMCID: PMC11124524 DOI: 10.3390/ph17050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a common pathological state brought about by diabetes mellitus (DM). Patchouli alcohol (PatA) is known for its diverse advantageous effects, notably its anti-inflammatory properties and protective role against metabolic disorders. Despite this, the influence of PatA on DCM remains relatively unexplored. To explore the effect of PatA on diabetes-induced cardiac injury and dysfunction in mice, streptozotocin (STZ) was used to mimic type 1 diabetes in mice. Serological markers and echocardiography show that PatA treatment protects the heart against cardiomyopathy by controlling myocardial fibrosis but not by reducing hyperglycemia in diabetic mice. Discovery Studio 2017 software was used to perform reverse target screening of PatA, and we found that JAK2 may be a potential target of PatA. RNA-seq analysis of heart tissues revealed that PatA activity in the myocardium was primarily associated with the inflammatory fibrosis through the Janus tyrosine kinase 2 (JAK2)/signal transducer and activator of the transcription 3 (STAT3) pathway. In vitro, we also found that PatA alleviates high glucose (HG) + palmitic acid (PA)-induced fibrotic and inflammatory responses via inhibiting the JAK2/STAT3 signaling pathway in H9C2 cells. Our findings illustrate that PatA mitigates the effects of HG + PA- or STZ-induced cardiomyopathy by acting on the JAK2/STAT3 signaling pathway. These insights indicate that PatA could potentially serve as a therapeutic agent for DCM treatment.
Collapse
Affiliation(s)
- Lijun Ji
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Shuaijie Lou
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Yi Fang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Xu Wang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Weiwei Zhu
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Guang Liang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China
| | - Kwangyoul Lee
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Wu Luo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China
| | - Zaishou Zhuang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| |
Collapse
|
17
|
Álvarez-Reguera C, Prieto-Peña D, Herrero-Morant A, Sánchez-Bilbao L, Batlle-López A, Fernández-Luis S, Paz-Gandiaga N, Blanco R. Features of immune mediated diseases in JAK2 (V617F)-positive myeloproliferative neoplasms and the potential therapeutic role of JAK inhibitors. Eur J Intern Med 2024; 123:102-106. [PMID: 38044168 DOI: 10.1016/j.ejim.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVE The Janus Kinase (JAK) 2 (V617F) mutation is the most frequently detected in myeloproliferative neoplasms (MPN). JAK2(V617F) mutation displays a pro-inflammatory phenotype that may be associated to a higher risk of immune mediated diseases (IMIDs), thromboembolic complications or other cancers. We aimed to evaluate the prevalence and main features of both rheumatic and non-rheumatic IMIDs in a cohort of MPNs patients with JAK2 (V617F) mutation. METHODS Study of all patients diagnosed with MPNs and JAK2 (V617F) mutation at a tertiary hospital in Northern Spain from 2004 to 2022. We focused on patients with rheumatic IMIDs to assess the time from IMIDs diagnosis to the detection of JAK2V617F mutation, the clinical course and severity of the disease, potential thrombotic complications, malignancies and therapeutic response. RESULTS 130 patients (73 men/57 women; mean age, 70.1 ± 14.5 years) were identified. Fifty-four (41.5 %) patients were diagnosed with at least one IMID. The prevalence of rheumatic IMIDs was 7.7 % (n = 10), including rheumatoid arthritis (n = 4), polymyalgia rheumatica (n = 3), Sjögren syndrome (n = 1), antiphospholipid syndrome (n = 1) and autoinflammatory syndrome with WDR1 mutation (n = 1). Thrombotic complications were observed in 4 of these 10 patients. The clinical course of the rheumatic IMID was mild in most cases and responded to conventional immunosuppressive therapy. One patient was successfully treated with Baricitinib, a JAK1/JAK2 inhibitor. CONCLUSIONS A high prevalence of rheumatic IMIDs is observed in patients with MPNs and JAK2 (V617F) mutation. JAK inhibitors might be a targeted therapy option in these patients.
Collapse
Affiliation(s)
- Carmen Álvarez-Reguera
- Immunopathology Research Group, IDIVAL, Rheumatology, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla s/n, ES-39008, Santander, Spain
| | - Diana Prieto-Peña
- Immunopathology Research Group, IDIVAL, Rheumatology, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla s/n, ES-39008, Santander, Spain
| | - Alba Herrero-Morant
- Immunopathology Research Group, IDIVAL, Rheumatology, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla s/n, ES-39008, Santander, Spain
| | - Lara Sánchez-Bilbao
- Immunopathology Research Group, IDIVAL, Rheumatology, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla s/n, ES-39008, Santander, Spain
| | - Ana Batlle-López
- IDIVAL, Hematology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Sara Fernández-Luis
- IDIVAL, Hematology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Nerea Paz-Gandiaga
- IDIVAL, Department of genetics, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Ricardo Blanco
- Immunopathology Research Group, IDIVAL, Rheumatology, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla s/n, ES-39008, Santander, Spain.
| |
Collapse
|
18
|
Mao F, Gao L, Liu L, Tang Y. Enhanced synergy of pacritinib with temsirolimus and sunitinib in preclinical renal cell carcinoma model by targeting JAK2/STAT pathway. J Chemother 2024; 36:238-248. [PMID: 37916436 DOI: 10.1080/1120009x.2023.2274700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Pacritinib is an oral medication that inhibits several kinases including JAK2, FLT3, IRAK and STAT3. It has been recently approved to treat patients with thrombocytopenia and myelofibrosis. Studies are currently exploring the potential use of pacritinib in treating other types of cancer such as leukaemia, breast cancer and prostate cancer. Our study aimed to investigate the effects of pacritinib alone and its combination with standard of care in renal cell carcinoma (RCC). We showed that pacritinib dose-dependently decreased viability of RCC cells, with IC50 at nanomolar or low micromolar concentration rage. Pacritinib inhibited cell proliferation, decreased colony formation, and increased apoptosis. Interestingly, pacritinib exhibited synergistic effects when combined with temsirolimus and sunitinib, but antagonistic effects when combined with doxorubicin, in a panel of RCC cell lines. We also confirmed that the combination of pacritinib with temsirolimus and sunitinib resulted in synergistic effects in RCC mouse models, with complete inhibition of tumour growth throughout the treatment period. Mechanistic studies indicated that the inhibition of JAK2, but not IRAK, was the main contributor to the anti-RCC activity of pacritinib. Our study is the first to demonstrate that pacritinib shows promise as a treatment option for RCC and underscores the therapeutic potential of targeting the JAK2/STAT signalling pathway in RCC.
Collapse
Affiliation(s)
- Fei Mao
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, People's Republic of China
| | - Liangkui Gao
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, People's Republic of China
| | - Liming Liu
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, People's Republic of China
| | - Yuanjia Tang
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, People's Republic of China
| |
Collapse
|
19
|
Tashkandi H, Younes IE. Advances in Molecular Understanding of Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis: Towards Precision Medicine. Cancers (Basel) 2024; 16:1679. [PMID: 38730632 PMCID: PMC11083661 DOI: 10.3390/cancers16091679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs), including Polycythemia Vera (PV), Essential Thrombocythemia (ET), and Primary Myelofibrosis (PMF), are characterized by the clonal proliferation of hematopoietic stem cells leading to an overproduction of hematopoietic cells. The last two decades have seen significant advances in our understanding of the molecular pathogenesis of these diseases, with the discovery of key mutations in the JAK2, CALR, and MPL genes being pivotal. This review provides a comprehensive update on the molecular landscape of PV, ET, and PMF, highlighting the diagnostic, prognostic, and therapeutic implications of these genetic findings. We delve into the challenges of diagnosing and treating patients with prognostic mutations, clonal evolution, and the impact of emerging technologies like next-generation sequencing and single-cell genomics on the field. The future of MPN management lies in leveraging these molecular insights to develop personalized treatment strategies, aiming for precision medicine that optimizes outcomes for patients. This article synthesizes current knowledge on molecular diagnostics in MPNs, underscoring the critical role of genetic profiling in enhancing patient care and pointing towards future research directions that promise to further refine our approach to these complex disorders.
Collapse
Affiliation(s)
- Hammad Tashkandi
- Department of Pathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ismail Elbaz Younes
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
20
|
Vaziri-Amjad S, Rahgosha R, Taherkhani A. Potential JAK2 Inhibitors from Selected Natural Compounds: A Promising Approach for Complementary Therapy in Cancer Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:1114928. [PMID: 38706884 PMCID: PMC11068457 DOI: 10.1155/2024/1114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 02/14/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
Background Janus-activated kinase 2 (JAK2) plays a pivotal role in numerous essential biological processes, including proliferation, apoptosis, and metastasis in human cells. Prior studies have indicated that inhibiting JAK2 could be a promising strategy to mitigate cell proliferation and induce apoptosis in tumor cells. Objectives This study aimed to estimate the binding affinity of 79 herbal compounds, comprising 46 flavonoids, 21 anthraquinones, and 12 cinnamic acids, to the ATP-binding cleft of JAK2 to identify potential herbal inhibitors of JAK2. Methods The binding affinities between ligands and JAK2 were calculated utilizing AutoDock 4.0 software in conjunction with the Cygwin environment. Cross-validation was conducted using the Schrödinger tool. Molecular dynamics simulations were employed to evaluate the stability of docked poses for the most significant JAK2 inhibitors. Furthermore, the Discovery Studio Visualizer tool was utilized to elucidate interactions between the top-ranked JAK2 inhibitors and residues within the JAK2 ATP-binding site. Results Twelve flavonoids, two anthraquinones, and three cinnamic acids demonstrated substantial binding affinities to the protein kinase domain of the receptor, with a criterion of ΔGbinding < -10 kcal/mol. Among the studied flavonoids, anthraquinones, and cinnamic acid derivatives, orientin, chlorogenic acid, and pulmatin emerged as the most potent JAK2 inhibitors, exhibiting ΔGbinding scores of -14.49, -11.87, and -10.76 kcal/mol, respectively. Furthermore, the docked poses of orientin, pulmatin, and chlorogenic acid remained stable throughout 60 ns computer simulations. The average root mean square deviation values calculated for JAK2 when complexed with orientin, chlorogenic acid, and pulmatin were 2.04 Å, 2.06 Å, and 1.95 Å, respectively. Conclusion This study underscores the robust inhibitory potential of orientin, pulmatin, and chlorogenic acid against JAK2. The findings hold promise for the development of novel and effective drugs for cancer treatment.
Collapse
Affiliation(s)
- Samaneh Vaziri-Amjad
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Rahgosha
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
21
|
Shao W, Yao Y, Yang L, Li X, Ge T, Zheng Y, Zhu Q, Ge S, Gu X, Jia R, Song X, Zhuang A. Novel insights into TCR-T cell therapy in solid neoplasms: optimizing adoptive immunotherapy. Exp Hematol Oncol 2024; 13:37. [PMID: 38570883 PMCID: PMC10988985 DOI: 10.1186/s40164-024-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Adoptive immunotherapy in the T cell landscape exhibits efficacy in cancer treatment. Over the past few decades, genetically modified T cells, particularly chimeric antigen receptor T cells, have enabled remarkable strides in the treatment of hematological malignancies. Besides, extensive exploration of multiple antigens for the treatment of solid tumors has led to clinical interest in the potential of T cells expressing the engineered T cell receptor (TCR). TCR-T cells possess the capacity to recognize intracellular antigen families and maintain the intrinsic properties of TCRs in terms of affinity to target epitopes and signal transduction. Recent research has provided critical insight into their capability and therapeutic targets for multiple refractory solid tumors, but also exposes some challenges for durable efficacy. In this review, we describe the screening and identification of available tumor antigens, and the acquisition and optimization of TCRs for TCR-T cell therapy. Furthermore, we summarize the complete flow from laboratory to clinical applications of TCR-T cells. Last, we emerge future prospects for improving therapeutic efficacy in cancer world with combination therapies or TCR-T derived products. In conclusion, this review depicts our current understanding of TCR-T cell therapy in solid neoplasms, and provides new perspectives for expanding its clinical applications and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Weihuan Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiaoran Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Qiuyi Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
22
|
Yasuda S, Chiba M, Nishitani R, Watanabe T. Adrenal infarction with latent myelodysplastic/myeloproliferative neoplasm, unclassifiable with JAK2V617F mutation. Clin Case Rep 2024; 12:e8729. [PMID: 38601172 PMCID: PMC11004262 DOI: 10.1002/ccr3.8729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
Key Clinical Message Hematopoietic neoplasms can cause adrenal infarction. In cases of thrombosis occurring at uncommon sites, it is necessary to consider evaluating for the JAK2V617F mutation, even in the absence of notable abnormalities in blood counts. Abstract Adrenal infarction, a rare ailment, has been sporadically linked to hematopoietic neoplasms. A 46-year-old male encountered left adrenal infarction, which coincided with a progressive rise in platelet counts. Subsequent diagnosis revealed myelodysplastic/myeloproliferative neoplasm-unclassifiable, featuring a JAK2V617F mutation. Simultaneously, the patient manifested multiple arteriovenous thromboses, necessitating treatment with edoxaban, aspirin, and hydroxyurea. Following thrombosis resolution, he was transferred to a transplantation center. This report delves into the thrombogenicity linked to the JAK2V617F mutation, while also examining documented instances of adrenal infarction in myeloid neoplasms. We should consider evaluating for JAK2V617F mutation even in cases of thrombosis at unusual sites, including adrenal infarction, even if there are no considerable abnormalities in blood counts.
Collapse
Affiliation(s)
| | - Momoko Chiba
- Department of HematologyTokyo Kyosai HospitalTokyoJapan
| | - Rie Nishitani
- Department of Diabetes, Endocrinology and MetabolismTokyo Kyosai HospitalTokyoJapan
| | - Takako Watanabe
- Department of Diabetes, Endocrinology and MetabolismTokyo Kyosai HospitalTokyoJapan
| |
Collapse
|
23
|
Al-Danakh A, Safi M, Jian Y, Yang L, Zhu X, Chen Q, Yang K, Wang S, Zhang J, Yang D. Aging-related biomarker discovery in the era of immune checkpoint inhibitors for cancer patients. Front Immunol 2024; 15:1348189. [PMID: 38590525 PMCID: PMC11000233 DOI: 10.3389/fimmu.2024.1348189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.
Collapse
Affiliation(s)
- Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Safi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Linlin Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xinqing Zhu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kangkang Yang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Surgery, Healinghands Clinic, Dalian, Liaoning, China
| |
Collapse
|
24
|
Guo B, Yu Y, Wang M, Li R, He X, Tang S, Liu Q, Mao Y. Targeting the JAK2/STAT3 signaling pathway with natural plants and phytochemical ingredients: A novel therapeutic method for combatting cardiovascular diseases. Biomed Pharmacother 2024; 172:116313. [PMID: 38377736 DOI: 10.1016/j.biopha.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
The aim of this article is to introduce the roles and mechanisms of the JAK2/STAT3 pathway in various cardiovascular diseases, such as myocardial fibrosis, cardiac hypertrophy, atherosclerosis, myocardial infarction, and myocardial ischemiareperfusion. In addition, the effects of phytochemical ingredients and different natural plants, mainly traditional Chinese medicines, on the regulation of different cardiovascular diseases via the JAK2/STAT3 pathway are discussed. Surprisingly, the JAK2 pathway has dual roles in different cardiovascular diseases. Future research should focus on the dual regulatory effects of different phytochemical ingredients and natural plants on JAK2 to pave the way for their use in clinical trials.
Collapse
Affiliation(s)
- Bing Guo
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Yunfeng Yu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Min Wang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Ronghui Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan He
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Siqin Tang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Qili Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yilin Mao
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China.
| |
Collapse
|
25
|
Chen P, Long J, Zhang J, Xie F, Wu W, Tian Z, Zhang S, Yu K. Identification and validation of the association of Janus kinase 2 mutations with the response to immune checkpoint inhibitor therapy. Inflamm Res 2024; 73:263-276. [PMID: 38200372 PMCID: PMC10824873 DOI: 10.1007/s00011-023-01833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Janus kinase 2 (JAK2) mutation plays an important role in T cell immunity. However, the effect of JAK2 mutation on immunotherapy is largely uncharacterized. METHODS In this study, we analyzed the effect of JAK2 mutation on the efficacy and outcomes of immune checkpoint inhibitor (ICI) therapy in the discovery cohort (n = 662) and the verification cohort (n = 1423). Furthermore, we explored the association of JAK2 mutation with the tumor immune microenvironment in a multiomics cohort. RESULTS In the discovery cohort (n = 662), JAK2 mutant-type patients had a better objective response rate (58.8% vs. 26.7%, P = 0.010), durable clinical benefit (64.7% vs. 38.9%, P = 0.043), progression-free survival (hazard ratio [HR] = 0.431, P = 0.015), and overall survival (HR = 0.378, P = 0.025), relative to JAK2 wild-type patients. Moreover, we further verified the prognostic significance of JAK2 mutation in an independent ICI treatment cohort with a larger sample size (n = 1423). In addition, we discovered that the JAK2 mutation was remarkably related to increased immunogenicity, such as a higher TMB, higher expression of costimulatory molecules and stimulation of antigen processing mechanisms. In addition, JAK2 mutation was positively correlated with activated anticancer immunity, such as infiltration of various immune cells and higher expression of chemokines. CONCLUSION Our study demonstrates that JAK2 mutation is a novel marker that can be used to effectively predict prognosis and response to ICI therapy.
Collapse
Affiliation(s)
- Peipei Chen
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyu Long
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiayang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Fucun Xie
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Wu
- Department of Cardiology, Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhuang Tian
- Department of Cardiology, Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shuyang Zhang
- Department of Cardiology, Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Kang Yu
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
26
|
He Q, Sun X, Niu J, Yang J, Wang Y, Huang C, Zhou K, Tong Y, Cai Y, Dong B, Wan L, Song X, Qiu H. A Novel JAK1 Inhibitor SHR0302 Combined With Prednisone for First-Line Treatment of Chronic Graft-Versus-Host Disease: A Phase I Clinical Trial. Cell Transplant 2024; 33:9636897241254678. [PMID: 38798038 PMCID: PMC11129572 DOI: 10.1177/09636897241254678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a potentially life-threatening complication after allogeneic hematopoietic stem cell transplantation. Standard steroid first-line treatment could not satisfy therapeutic needs due to limited efficacy. As a highly selective Janus kinase (JAK) 1 inhibitor, SHR0302 exhibits a reduced inhibition effect on JAK2 and might have less effect on hematopoiesis. This phase I clinical trial investigated the tolerability and safety of SHR0302 in combination with prednisone, and its early efficacy evidence as a potential first-line treatment to moderate/severe cGVHD. The standard 3 + 3 dose escalation was implemented to find the optimal dose of SHR0302. And prednisone was concurrently administrated with a dose of 1 mg/kg/d and then gradually tapered after 2 weeks. Eighteen patients were enrolled into the study. Grade ≥ 3 treatment-related adverse events were observed in 38.9% of patients. Only one patient developed DLT (grade ≥ 3 hypercholesterolemia) in the highest dose-level group who had pre-existing hypercholesterolemia. The maximum tolerated dose was not reached. No patient discontinued treatment due to AEs. Sixteen out of 18 patients were evaluable for responses, the ORR at week 4 and week 24 were 94.4 and 87.5%, respectively. Overall, the treatment of SHR0302 combined with prednisone was safe and well-tolerated, preliminary clinical results presented a high response for previously untreated cGVHD and a significant reduction in prednisone use in this study. A phase II trial will be conducted to further investigate its therapeutic effects clinically.
Collapse
Affiliation(s)
- Qiaomei He
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Sun
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahua Niu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Yang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Chongmei Huang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Zhou
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin Tong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Cai
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baoxia Dong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Wan
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianmin Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiying Qiu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Fujii T, Nakano Y, Hagita D, Onishi N, Endo A, Nakagawa M, Yoshiura T, Otsuka Y, Takeuchi S, Suzuki M, Shimizu Y, Toyooka T, Matsushita Y, Hibiya Y, Tomura S, Kondo A, Wada K, Ichimura K, Tomiyama A. KLC1-ROS1 Fusion Exerts Oncogenic Properties of Glioma Cells via Specific Activation of JAK-STAT Pathway. Cancers (Basel) 2023; 16:9. [PMID: 38201436 PMCID: PMC10778328 DOI: 10.3390/cancers16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Here, we investigated the detailed molecular oncogenic mechanisms of a novel receptor tyrosine kinase (RTK) fusion, KLC1-ROS1, with an adapter molecule, KLC1, and an RTK, ROS1, discovered in pediatric glioma, and we explored a novel therapeutic target for glioma that possesses oncogenic RTK fusion. When wild-type ROS1 and KLC1-ROS1 fusions were stably expressed in the human glioma cell lines A172 and U343MG, immunoblotting revealed that KLC1-ROS1 fusion specifically activated the JAK2-STAT3 pathway, a major RTK downstream signaling pathway, when compared with wild-type ROS1. Immunoprecipitation of the fractionated cell lysates revealed a more abundant association of the KLC1-ROS1 fusion with JAK2 than that observed for wild-type ROS1 in the cytosolic fraction. A mutagenesis study of the KLC1-ROS1 fusion protein demonstrated the fundamental roles of both the KLC1 and ROS1 domains in the constitutive activation of KLC1-ROS1 fusion. Additionally, in vitro assays demonstrated that KLC1-ROS1 fusion upregulated cell proliferation, invasion, and chemoresistance when compared to wild-type ROS1. Combination treatment with the chemotherapeutic agent temozolomide and an inhibitor of ROS1, JAK2, or a downstream target of STAT3, demonstrated antitumor effects against KLC1-ROS1 fusion-expressing glioma cells. Our results demonstrate that KLC1-ROS1 fusion exerts oncogenic activity through serum-independent constitutive activation, resulting in specific activation of the JAK-STAT pathway. Our data suggested that molecules other than RTKs may serve as novel therapeutic targets for RTK fusion in gliomas.
Collapse
Affiliation(s)
- Takashi Fujii
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Yoshiko Nakano
- Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Daichi Hagita
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Nobuyuki Onishi
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Arumu Endo
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Masaya Nakagawa
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Toru Yoshiura
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Yohei Otsuka
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Satoru Takeuchi
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Mario Suzuki
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Yuzaburo Shimizu
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Terushige Toyooka
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Yuko Matsushita
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Yuko Hibiya
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Satoshi Tomura
- Division of Traumatology, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan;
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Kojiro Wada
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Arata Tomiyama
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| |
Collapse
|
28
|
Gozzellino L, Nannini M, Urbini M, Pizzi C, Leone O, Corti B, Baldovini C, Angeli F, Foà A, Pacini D, Folesani G, Costa A, Palumbo T, Nigro MC, Pasquinelli G, Astolfi A, Pantaleo MA. Genomic Landscape Comparison of Cardiac versus Extra-Cardiac Angiosarcomas. Biomedicines 2023; 11:3290. [PMID: 38137511 PMCID: PMC10741871 DOI: 10.3390/biomedicines11123290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Angiosarcomas (ASs) are rare malignant vascular entities that can affect several regions in our body, including the heart. Cardiac ASs comprise 25-40% of cardiac sarcomas and can cause death within months of diagnosis. Thus, our aim was to identify potential differences and/or similarities between cardiac and extra-cardiac ASs to enhance targeted therapies and, consequently, patients' prognosis. Whole-transcriptome analysis of three cardiac and eleven extra-cardiac non-cutaneous samples was performed to investigate differential gene expression and mutational events between the two groups. The gene signature of cardiac and extra-cardiac non-cutaneous ASs was also compared to that of cutaneous angiosarcomas (n = 9). H/N/K-RAS and TP53 alterations were more recurrent in extra-cardiac ASs, while POTE-gene family overexpression was peculiar to cardiac ASs. Additionally, in vitro functional analyses showed that POTEH upregulation conferred a growth advantage to recipient cells, partly supporting the cardiac AS aggressive phenotype and patients' scarce survival rate. These features should be considered when investigating alternative treatments.
Collapse
Affiliation(s)
- Livia Gozzellino
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum—University of Bologna, 40138 Bologna, Italy; (L.G.); (M.N.); (F.A.); (M.C.N.); (M.A.P.)
| | - Margherita Nannini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum—University of Bologna, 40138 Bologna, Italy; (L.G.); (M.N.); (F.A.); (M.C.N.); (M.A.P.)
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Carmine Pizzi
- Unit of Cardiology, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (C.P.); (A.F.)
| | - Ornella Leone
- Division of Pathology, Cardiovascular and Cardiac Transplant Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (O.L.); (B.C.); (C.B.)
| | - Barbara Corti
- Division of Pathology, Cardiovascular and Cardiac Transplant Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (O.L.); (B.C.); (C.B.)
| | - Chiara Baldovini
- Division of Pathology, Cardiovascular and Cardiac Transplant Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (O.L.); (B.C.); (C.B.)
| | - Francesco Angeli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum—University of Bologna, 40138 Bologna, Italy; (L.G.); (M.N.); (F.A.); (M.C.N.); (M.A.P.)
| | - Alberto Foà
- Unit of Cardiology, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (C.P.); (A.F.)
| | - Davide Pacini
- Cardiac Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (D.P.); (G.F.)
| | - Gianluca Folesani
- Cardiac Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (D.P.); (G.F.)
| | - Alice Costa
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Teresa Palumbo
- Interdepartmental Center Alma Mater Institute on Healthy Planet, Alma Mater Studiorum—University of Bologna, 40138 Bologna, Italy;
| | - Maria Concetta Nigro
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum—University of Bologna, 40138 Bologna, Italy; (L.G.); (M.N.); (F.A.); (M.C.N.); (M.A.P.)
| | - Gianandrea Pasquinelli
- Division of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Annalisa Astolfi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum—University of Bologna, 40138 Bologna, Italy; (L.G.); (M.N.); (F.A.); (M.C.N.); (M.A.P.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Maria Abbondanza Pantaleo
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum—University of Bologna, 40138 Bologna, Italy; (L.G.); (M.N.); (F.A.); (M.C.N.); (M.A.P.)
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
29
|
Yasir M, Park J, Han ET, Park WS, Han JH, Kwon YS, Lee HJ, Chun W. Machine Learning-Based Drug Repositioning of Novel Janus Kinase 2 Inhibitors Utilizing Molecular Docking and Molecular Dynamic Simulation. J Chem Inf Model 2023; 63:6487-6500. [PMID: 37906702 DOI: 10.1021/acs.jcim.3c01090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Machine learning algorithms have been increasingly applied in drug development due to their efficiency and effectiveness. Machine learning-based drug repurposing can contribute to the identification of novel therapeutic applications for drugs with other indications. The current study used a trained machine learning model to screen a vast chemical library for new JAK2 inhibitors, the biological activities of which were reported. Reference JAK2 inhibitors, comprising 1911 compounds, have experimentally determined IC50 values. To generate the input to the machine learning model, reference compounds were subjected to RDKit, a cheminformatic toolkit, to extract molecular descriptors. A Random Forest Regression model from the Scikit-learn machine learning library was applied to obtain a predictive regression model and to analyze each molecular descriptor's role in determining IC50 values in the reference data set. Then, IC50 values of the library compounds, comprised of 1,576,903 compounds, were predicted using the generated regression model. Interestingly, some compounds that exhibit high IC50 values from the prediction were reported to possess JAK inhibition activity, which indicates the limitations of the prediction model. To confirm the JAK2 inhibition activity of predicted compounds, molecular docking and molecular dynamics simulation were carried out with the JAK inhibitor reference compound, tofacitinib. The binding affinity of docked compounds in the active region of JAK2 was also analyzed by the gmxMMPBSA approach. Furthermore, experimental validation confirmed the results from the computational analysis. Results showed highly comparable outcomes concerning tofacitinib. Conclusively, the machine learning model can efficiently improve the virtual screening of drugs and drug development.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Hee-Jae Lee
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| |
Collapse
|
30
|
Kristiansen MH, Kjær L, Skov V, Larsen MK, Ellervik C, Hasselbalch HC, Wienecke T. JAK2V617F mutation is highly prevalent in patients with ischemic stroke: a case-control study. Blood Adv 2023; 7:5825-5834. [PMID: 37522722 PMCID: PMC10561044 DOI: 10.1182/bloodadvances.2023010588] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Ischemic stroke has a high recurrence rate despite treatment. This underlines the significance of investigating new possible cerebrovascular risk factors, such as the acquired gene mutation JAK2V617F found in 3.1% of the general population. We aimed to investigate the prevalence of the JAK2V617F mutation in a population with ischemic stroke compared with that in matched controls. We enrolled 538 consecutive Danish patients with ischemic stroke (mean age, 69.5 ± 10.9 years; 39.2% female) within 7 days of symptom onset. Using multiple-adjusted conditional logistic regression analysis, we compared the prevalence of JAK2V617F with that in age- and sex-matched controls free of ischemic cerebrovascular disease (ICVD) from the Danish General Suburban Population Study. DNA was analyzed for JAK2V617F mutation using sensitive droplet digital polymerase chain reaction in patients and controls. Of the 538 patients with ischemic stroke, 61 (11.3%) had JAK2V617F mutation. There were no differences in patient demographics or cerebrovascular comorbidities between the patients with and without mutations. Patients with ischemic stroke were more likely to have the JAK2V617F mutation than matched controls, in whom the JAK2V617F prevalence was 4.4% (odds ratio, 2.37; 95% confidence interval, 1.57-3.58; P < .001). A subanalysis stratified by smoking history revealed that the association was strongest in current smokers (odds ratio, 4.78; 95% confidence interval, 2.22-10.28; P < .001). Patients with ischemic stroke were 2.4 times more likely to have the JAK2V617F mutation than matched controls without ICVD when adjusting for other cerebrovascular risk factors. This finding supports JAK2V617F mutation as a novel cerebrovascular risk factor.
Collapse
Affiliation(s)
- Marie Hvelplund Kristiansen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Morten Kranker Larsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Data and Data Support, Region Zealand, Sorø, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Hans Carl Hasselbalch
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Troels Wienecke
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
31
|
Naeem M, Ittermann T, Markus MRP, Mousa MFM, von Heder L, Bülow R, Dörr M, Nauck M, Agdassi A, Heidel FH, Völzke H. Associations of spleen volume with markers of blood count and lipid profile in a large population-based study. Ups J Med Sci 2023; 128:9785. [PMID: 37807997 PMCID: PMC10552697 DOI: 10.48101/ujms.v128.9785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Background The aim of our study was to investigate associations of spleen volume with blood count markers and lipid profile in the general population. Materials & methods Cross-sectional data from 1,106 individuals aged 30-90 years from the population-based Study of Health in Pomerania (SHIP-START-2) were analyzed. Blood count markers included red blood cell (RBC) counts, hemoglobin, platelet count, and white blood cell (WBC) counts. Lipid profile included total-cholesterol, high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) as well as triglycerides. Linear regression models adjusted for age, sex, body height, and weight were used to associate standardized spleen volume with blood counts and lipid profile markers. Results Spleen volume was positively associated with RBC (β = 0.05; 95% confidence interval [CI] = 0.03 to 0.08) and hemoglobin (β = 0.05; 95% CI = 0.01 to 0.09) but inversely with platelet count (β = -16.3; 95% CI = -20.5 to -12.1) and WBC (β = -0.25; 95% CI = -0.37 to -0.14). Furthermore, spleen volume showed inverse associations with total cholesterol (β = -0.17; 95% CI = -0.24 to -0.09), HDL-C (β = -0.08; 95% CI = -0.10 to -0.05), and LDL-C (β = -0.12; 95% CI = -0.17 to -0.06). There was no significant association of spleen volume with triglycerides. Conclusion Our study showed that the spleen volume is associated with markers of the blood count and lipid profile in the general population.
Collapse
Affiliation(s)
- Muhammad Naeem
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, Germany
- Department of Zoology, University of Malakand, 18800, Pakistan
| | - Marcello Ricardo Paulista Markus
- Department of Internal Medicine B – Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Germany
| | | | - Laura von Heder
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Robin Bülow
- Institute for Radiology and Neuradiology, University Medicine Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B – Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Germany
| | - Matthias Nauck
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany
| | - Ali Agdassi
- Department of Internal Medicine A, University Medicine Greifswald, Germany
| | - Florian H. Heidel
- Department of Internal Medicine C, University Medicine Greifswald, Germany
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Germany
| |
Collapse
|
32
|
Pranty AI, Wruck W, Adjaye J. Free Bilirubin Induces Neuro-Inflammation in an Induced Pluripotent Stem Cell-Derived Cortical Organoid Model of Crigler-Najjar Syndrome. Cells 2023; 12:2277. [PMID: 37759499 PMCID: PMC10527749 DOI: 10.3390/cells12182277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Bilirubin-induced neurological damage (BIND), which might progress to kernicterus, occurs as a consequence of defects in the bilirubin conjugation machinery, thus enabling albumin-unbound free bilirubin (BF) to cross the blood-brain barrier and accumulate within. A defect in the UGT1A1 enzyme-encoding gene, which is directly responsible for bilirubin conjugation, can cause Crigler-Najjar syndrome (CNS) and Gilbert's syndrome. We used human-induced pluripotent stem cell (hiPSC)-derived 3D brain organoids to model BIND in vitro and unveil the molecular basis of the detrimental effects of BF in the developing human brain. Healthy and patient-derived iPSCs were differentiated into day-20 brain organoids, and then stimulated with 200 nM BF. Analyses at 24 and 72 h post-treatment point to BF-induced neuro-inflammation in both cell lines. Transcriptome, associated KEGG, and Gene Ontology analyses unveiled the activation of distinct inflammatory pathways, such as cytokine-cytokine receptor interaction, MAPK signaling, and NFκB activation. Furthermore, the mRNA expression and secretome analysis confirmed an upregulation of pro-inflammatory cytokines such as IL-6 and IL-8 upon BF stimulation. This novel study has provided insights into how a human iPSC-derived 3D brain organoid model can serve as a prospective platform for studying the etiology of BIND kernicterus.
Collapse
Affiliation(s)
- Abida Islam Pranty
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (A.I.P.); (W.W.)
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (A.I.P.); (W.W.)
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (A.I.P.); (W.W.)
- Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL)—EGA Institute for Women’s Health, 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
33
|
Salybekov AA, Hassanpour M. Unveiling the Genetic Footprint: Exploring Somatic Mutations in Peripheral Arterial Disease Progression. Biomedicines 2023; 11:2288. [PMID: 37626784 PMCID: PMC10452092 DOI: 10.3390/biomedicines11082288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Peripheral arterial diseases (PADs) are complex cardiovascular conditions influenced by environmental factors and somatic mutations in multiple genes involved in hematopoiesis and inflammation. While traditional risk factors, such as smoking, hypercholesterolemia, and hypertension, have been extensively studied, the role of somatic mutations in PAD progression remains underexplored. The present article intends to provide a comprehensive commentary of the molecular mechanisms, genetic landscape, prognostic significance, and clinical implications of somatic mutations in PADs. The expansion of clonal hematopoiesis of indeterminate potential (CHIP) clones in the circulating blood, named clonal hematopoiesis (CH), leads to the infiltration of these clones into atherosclerotic plaques and the production of inflammatory cytokines, increasing the risk of cardiovascular diseases, including PADs. Furthermore, recent experimental evidence has demonstrated the involvement of somatically mutated TP53 genes with a high variant allele frequency (VAF) in PAD development and prognosis. This review delves into the relationship between CH and PADs, elucidating the prevalence, impact, and underlying mechanisms of this association. This understanding paves the way for novel therapeutic approaches targeting CHIP to promote tissue regeneration and improve outcomes in PAD patients. It emphasizes the need for further research to fully unravel the genetic footprint of the disease and highlights potential clinical implications. The findings presented in this article lay the foundation for personalized medicine approaches and open avenues for the development of targeted therapies based on somatic mutation profiling.
Collapse
|
34
|
Li WL, Liu YH, Li JX, Ding MT, Adeola AC, Isakova J, Aldashev AA, Peng MS, Huang X, Xie G, Chen X, Yang WK, Zhou WW, Ghanatsaman ZA, Olaogun SC, Sanke OJ, Dawuda PM, Hytönen MK, Lohi H, Esmailizadeh A, Poyarkov AD, Savolainen P, Wang GD, Zhang YP. Multiple Origins and Genomic Basis of Complex Traits in Sighthounds. Mol Biol Evol 2023; 40:msad158. [PMID: 37433053 PMCID: PMC10401622 DOI: 10.1093/molbev/msad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Sighthounds, a distinctive group of hounds comprising numerous breeds, have their origins rooted in ancient artificial selection of dogs. In this study, we performed genome sequencing for 123 sighthounds, including one breed from Africa, six breeds from Europe, two breeds from Russia, and four breeds and 12 village dogs from the Middle East. We gathered public genome data of five sighthounds and 98 other dogs as well as 31 gray wolves to pinpoint the origin and genes influencing the morphology of the sighthound genome. Population genomic analysis suggested that sighthounds originated from native dogs independently and were comprehensively admixed among breeds, supporting the multiple origins hypothesis of sighthounds. An additional 67 published ancient wolf genomes were added for gene flow detection. Results showed dramatic admixture of ancient wolves in African sighthounds, even more than with modern wolves. Whole-genome scan analysis identified 17 positively selected genes (PSGs) in the African population, 27 PSGs in the European population, and 54 PSGs in the Middle Eastern population. None of the PSGs overlapped in the three populations. Pooled PSGs of the three populations were significantly enriched in "regulation of release of sequestered calcium ion into cytosol" (gene ontology: 0051279), which is related to blood circulation and heart contraction. In addition, ESR1, JAK2, ADRB1, PRKCE, and CAMK2D were under positive selection in all three selected groups. This suggests that different PSGs in the same pathway contributed to the similar phenotype of sighthounds. We identified an ESR1 mutation (chr1: g.42,177,149 T > C) in the transcription factor (TF) binding site of Stat5a and a JAK2 mutation (chr1: g.93,277,007 T > A) in the TF binding site of Sox5. Functional experiments confirmed that the ESR1 and JAK2 mutation reduced their expression. Our results provide new insights into the domestication history and genomic basis of sighthounds.
Collapse
Affiliation(s)
- Wu-Lue Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jin-Xiu Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meng-Ting Ding
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Jainagul Isakova
- Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
| | - Almaz A Aldashev
- Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Xuezhen Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Guoli Xie
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xi Chen
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei-Kang Yang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei-Wei Zhou
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zeinab Amiri Ghanatsaman
- Animal Science Research Department, Fars Agricultural and Natural Resources research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Sunday C Olaogun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oscar J Sanke
- Ministry of Agriculture and Natural Resources, Taraba State Government, Jalingo, Nigeria
| | - Philip M Dawuda
- Department of Animal Science, Faculty of Agriculture, National University of Lesotho, Roma, Southern Africa
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Andrey D Poyarkov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Moscow, Russia
| | - Peter Savolainen
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, Solna, Sweden
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
35
|
Schmidt A, Bernhardt C, Bürkle D, Fries S, Hannig CV, Jentsch-Ullrich K, Josting A, Kreher S, Reiser M, Steinmetz HT, Tesch H, Terner S, Schulte A, Crodel CC, Palandri F, Heidel FH. Diagnosis and treatment of MPN in real life: exploratory and retrospective chart review including 960 MPN patients diagnosed with ET or MF in Germany. J Cancer Res Clin Oncol 2023; 149:7197-7206. [PMID: 36884118 PMCID: PMC10374473 DOI: 10.1007/s00432-023-04669-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE The WHO 2016 re-classification of myeloproliferative neoplasms resulted in a separation of essential thrombocythemia (ET) from the pre-fibrotic and fibrotic (overt) phases of primary myelofibrosis (MF). This study reports on a chart review conducted to evaluate the real life approach regarding clinical characteristics, diagnostic assessment, risk stratification and treatment decisions for MPN patients classified as ET or MF after implementation of the WHO 2016 classification. METHODS In this retrospective chart review, 31 office-based hematologists/oncologists and primary care centers in Germany participated between April 2021 and May 2022. Physicians reported available data obtained from patient charts via paper-pencil based survey (secondary use of data). Patient features were evaluated using descriptive analysis, also including diagnostic assessment, therapeutic strategies and risk stratification. RESULTS Data of 960 MPN patients diagnosed with essential thrombocythemia (ET) (n = 495) or myelofibrosis (MF) (n = 465) after implementation of the revised 2016 WHO classification of myeloid neoplasms was collected from the patient charts. While they met at least one minor WHO-criteria for primary myelofibrosis, 39.8% of those diagnosed with ET did not have histological BM testing at diagnosis. 63.4% of patients who were classified as having MF, however, did not obtain an early prognostic risk assessment. More than 50% of MF patients showed characteristics consistent with the pre-fibrotic phase, which was emphasized by the frequent use of cytoreductive therapy. Hydroxyurea was the most frequently used cytoreductive medication in 84.7% of ET and 53.1% of MF patients. While both ET and MF cohorts showed cardiovascular risk factors in more than 2/3 of the cases, the use of platelet inhibitors or anticoagulants varied between 56.8% in ET and 38.1% in MF patients. CONCLUSIONS Improved histopathologic diagnostics, dynamic risk stratification including genetic risk factors for cases of suspected ET and MF are recommended for precise risk assessment and therapeutic stratification according to WHO criteria.
Collapse
Affiliation(s)
- Andreas Schmidt
- Internal Medicine C, University Medicine Greifswald, Sauerbruchstrasse, 17475, Greifswald, Germany
| | | | - Dieter Bürkle
- Zentrum für Ambulante Onkologie, Schorndorf, Germany
| | - Stefan Fries
- Onkologische Schwerpunktpraxis, Bamberg, Germany
| | | | | | | | - Stephan Kreher
- Hämatologisch-Onkologische Schwerpunktpraxis, Bad Liebenwerda, Germany
| | - Marcel Reiser
- Praxis Internistischer Onkologie und Hämatologie, Cologne, Germany
| | | | - Hans Tesch
- Onkologie Bethanien, Frankfurt a.M., Germany
| | | | | | - Carl C Crodel
- Department of Hematology and Oncology, University Hospital Jena, Jena, Germany
| | - Francesca Palandri
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Florian H Heidel
- Internal Medicine C, University Medicine Greifswald, Sauerbruchstrasse, 17475, Greifswald, Germany.
| |
Collapse
|
36
|
Manz K, Bahr J, Ittermann T, Döhner K, Koschmieder S, Brümmendorf TH, Griesshammer M, Nauck M, Völzke H, Heidel FH. Validation of myeloproliferative neoplasms associated risk factor RDW as predictor of thromboembolic complications in healthy individuals: analysis on 6849 participants of the SHIP-study. Leukemia 2023; 37:1745-1749. [PMID: 37353711 PMCID: PMC10400416 DOI: 10.1038/s41375-023-01943-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Affiliation(s)
- Kirsi Manz
- Institut für Community Medicine - Abteilung Versorgungsepidemiologie und Community Health, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jeanette Bahr
- Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Till Ittermann
- Institut für Community Medicine - Abteilung SHIP-KEF, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Konstanze Döhner
- German MPN Study Group, GSG-MPN, Germany
- Innere Medizin III, Universitätsklinikum Ulm, Ulm, Germany
| | - Steffen Koschmieder
- German MPN Study Group, GSG-MPN, Germany
- Innere Medizin IV, RWTH Aachen, Aachen, Germany
| | - Tim H Brümmendorf
- German MPN Study Group, GSG-MPN, Germany
- Innere Medizin IV, RWTH Aachen, Aachen, Germany
| | - Martin Griesshammer
- German MPN Study Group, GSG-MPN, Germany
- Mühlenkreisklinikum Minden, Universitätsklinikum Bochum, Minden, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Henry Völzke
- Institut für Community Medicine - Abteilung SHIP-KEF, Universitätsmedizin Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Florian H Heidel
- Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany.
- German MPN Study Group, GSG-MPN, Germany.
| |
Collapse
|
37
|
Holik H, Krečak I, Lucijanić M, Samardžić I, Pilipac D, Vučinić Ljubičić I, Coha B, Kitter Pipić A, Miškić B, Zupančić-Šalek S. Hip and Knee Osteoarthritis in Patients with Chronic Myeloproliferative Neoplasms: A Cross-Sectional Study. Life (Basel) 2023; 13:1388. [PMID: 37374170 PMCID: PMC10300951 DOI: 10.3390/life13061388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a progressive degenerative disease with an inflammatory background. Chronic myeloproliferative neoplasms (MPN) are clonal hematopoietic disorders characterized by chronic inflammation and a tendency for connective tissue remodeling. AIM This study aimed to investigate the prevalence and associated risk factors of symptomatic OA (sOA) in MPN patients. PATIENTS AND METHODS A total of 100 consecutive MPN (39 essential-thrombocythemia, 34 polycythemia-vera, 27 myelofibrosis) patients treated in two community hematologic centers were cross-sectionally evaluated. Patients were required to have both symptoms attributable to hip and/or knee OA and radiographic confirmation to be considered as having sOA. RESULTS The prevalence of hip and/or knee sOA was significantly higher among MPN patients than the previously reported prevalence in the general population of similar age (61% vs. 22%, p < 0.001). Hip sOA was present in 50%, knee sOA in 51% and sOA of both localizations in 41% of patients. A high proportion of MPN patients had radiographic signs of hip OA (94%) and knee OA (98%) in the presence of attributable symptoms. Among the other factors, sOA was univariately associated with the presence of JAK2 mutation, myelofibrosis phenotype, older age, higher body weight, and higher MPN-SAF score (p < 0.050 for all analyses). In the multivariate analysis, older age (odds ratio = 1.19, 95% confidence interval-CI 1.06-1.33) and higher body weight (OR = 1.15, 95% CI 1.06-1.25) were recognized as independent risk factors for sOA. On the other hand, cytoreductive treatment was a protective factor for sOA (OR = 0.07, 95% CI 0.006-0.86). CONCLUSIONS The prevalence of sOA in MPN patients was higher than that in the general population and seems to correlate with older age, increased myeloproliferation and a higher inflammatory state. Whether cytoreductive treatment may postpone OA development in MPN patients warrants additional confirmation.
Collapse
Affiliation(s)
- Hrvoje Holik
- Department of Internal Medicine, Dr. Josip Benčević General Hospital, 35000 Slavonski Brod, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivan Krečak
- Department of Internal Medicine, General Hospital of Šibenik-Knin County, 22000 Šibenik, Croatia
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Marko Lucijanić
- University Hospital Dubrava, 10000 Zagreb, Croatia
- Faculty of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Samardžić
- Department of Orthopaedic Surgery, Dr. Josip Benčević General Hospital, 35000 Slavonski Brod, Croatia
| | - Danijel Pilipac
- Department of Orthopaedic Surgery, General Hospital of Šibenik-Knin County, 22000 Šibenik, Croatia
| | - Ivana Vučinić Ljubičić
- Department of Internal Medicine, Dr. Josip Benčević General Hospital, 35000 Slavonski Brod, Croatia
| | - Božena Coha
- Department of Internal Medicine, Dr. Josip Benčević General Hospital, 35000 Slavonski Brod, Croatia
| | - Alma Kitter Pipić
- Department of Laboratory Diagnostics, General Hospital ‘Dr Josip Benčević’, 35000 Slavonski Brod, Croatia
| | - Blaženka Miškić
- Department of Internal Medicine, Dr. Josip Benčević General Hospital, 35000 Slavonski Brod, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Silva Zupančić-Šalek
- Department of Hematology and Coagulation, University Hospital Holy Spirit, 10000 Zagreb, Croatia
| |
Collapse
|
38
|
Huang Z, Vlasschaert C, Robinson-Cohen C, Pan Y, Sun X, Lash JP, Kestenbaum B, Kelly TN. Emerging evidence on the role of clonal hematopoiesis of indeterminate potential in chronic kidney disease. Transl Res 2023; 256:87-94. [PMID: 36586535 PMCID: PMC10101890 DOI: 10.1016/j.trsl.2022.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Chronic kidney disease (CKD) was responsible for 1.2 million deaths globally in 2016. Despite the large and growing burden of CKD, treatment options are limited and generally only preserve kidney function. Characterizing molecular precursors to incident and progressive CKD could point to critically needed prevention and treatment strategies. Clonal hematopoiesis of indeterminate potential (CHIP) is typically characterized by the clonal expansion of blood cells carrying somatic mutations in specific driver genes. An age-related disorder, CHIP is rare in the young but common in older adults. Recent studies have identified causal associations between CHIP and atherosclerotic cardiovascular disease which are most likely mediated by inflammation, a hallmark of CKD. Animal evidence has supported causal effects of CHIP on kidney injury, inflammation, and fibrosis, providing impetus for human research. Although prospective epidemiologic studies investigating associations of CHIP with development and progression of CKD are few, intriguing findings have been reported. CHIP was significantly associated with kidney function decline and end stage kidney disease in the general population, although effect sizes were modest. Recent work suggests larger associations of CHIP with kidney disease progression in CKD patients, but further investigations in this area are needed. In addition, the accumulating literature has identified some heterogeneity in associations between CHIP and kidney endpoints across study populations, but reasons for these differences remain unclear. The current review provides an in-depth exploration into this nascent area of research, develops a conceptual framework linking CHIP to CKD, and discusses the clinical and public health implications of this work.
Collapse
Affiliation(s)
- Zhijie Huang
- Department of Epidemiology, Tulane University, New Orleans, Louisiana
| | | | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yang Pan
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Xiao Sun
- Department of Epidemiology, Tulane University, New Orleans, Louisiana; Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - James P Lash
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Bryan Kestenbaum
- Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington, Seattle, Washington
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
39
|
Hermouet S. Mutations, inflammation and phenotype of myeloproliferative neoplasms. Front Oncol 2023; 13:1196817. [PMID: 37284191 PMCID: PMC10239955 DOI: 10.3389/fonc.2023.1196817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Knowledge on the myeloproliferative neoplasms (MPNs) - polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF) - has accumulated since the discovery of the JAK/STAT-activating mutations associated with MPNs: JAK2V617F, observed in PV, ET and PMF; and the MPL and CALR mutations, found in ET and PMF. The intriguing lack of disease specificity of these mutations, and of the chronic inflammation associated with MPNs, triggered a quest for finding what precisely determines that MPN patients develop a PV, ET or PMF phenoptype. The mechanisms of action of MPN-driving mutations, and concomitant mutations (ASXL1, DNMT3A, TET2, others), have been extensively studied, as well as the role played by these mutations in inflammation, and several pathogenic models have been proposed. In parallel, different types of drugs have been tested in MPNs (JAK inhibitors, interferons, hydroxyurea, anagrelide, azacytidine, combinations of those), some acting on both JAK2 and inflammation. Yet MPNs remain incurable diseases. This review aims to present current, detailed knowledge on the pathogenic mechanisms specifically associated with PV, ET or PMF that may pave the way for the development of novel, curative therapies.
Collapse
Affiliation(s)
- Sylvie Hermouet
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
- Laboratoire d'Hématologie, CHU Nantes, Nantes, France
| |
Collapse
|
40
|
Beckman JD, DaSilva A, Aronovich E, Nguyen A, Nguyen J, Hargis G, Reynolds D, Vercellotti GM, Betts B, Wood DK. JAK-STAT inhibition reduces endothelial prothrombotic activation and leukocyte-endothelial proadhesive interactions. J Thromb Haemost 2023; 21:1366-1380. [PMID: 36738826 PMCID: PMC10246778 DOI: 10.1016/j.jtha.2023.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Vascular activation is characterized by increased proinflammatory, pro thrombotic, and proadhesive signaling. Several chronic and acute conditions, including Bcr-abl-negative myeloproliferative neoplasms (MPNs), graft-vs-host disease, and COVID-19 have been noted to have increased activation of the janus kinase (JAK)-signal transducer and downstream activator of transcription (STAT) pathways. Two notable inhibitors of the JAK-STAT pathway are ruxolitinib (JAK1/2 inhibitor) and fedratinib (JAK2 inhibitor), which are currently used to treat MPN patients. However, in some conditions, it has been noted that JAK inhibitors can increase the risk of thromboembolic complications. OBJECTIVES We sought to define the anti-inflammatory and antithrombotic effects of JAK-STAT inhibitors in vascular endothelial cells. METHODS We assessed endothelial activation in the presence or absence of ruxolitinib or fedratinib by using immunoblots, immunofluorescence, qRT-PCR, and function coagulation assays. Finally, we used endothelialized microfluidics perfused with blood from normal and JAK2V617F+ individuals to evaluate whether ruxolitinib and fedratinib changed cell adhesion. RESULTS We found that both ruxolitinib and fedratinib reduced endothelial cell phospho-STAT1 and STAT3 signaling and attenuated nuclear phospho-NK-κB and phospho-c-Jun localization. JAK-STAT inhibition also limited secretion of proadhesive and procoagulant P-selectin and von Willebrand factor and proinflammatory IL-6. Likewise, we found that JAK-STAT inhibition reduced endothelial tissue factor and urokinase plasminogen activator expression and activity. CONCLUSIONS By using endothelialized microfluidics perfused with whole blood samples, we demonstrated that endothelial treatment with JAK-STAT inhibitors prevented rolling of both healthy control and JAK2V617F MPN leukocytes. Together, these findings demonstrate that JAK-STAT inhibitors reduce the upregulation of critical prothrombotic pathways and prevent increased leukocyte-endothelial adhesion.
Collapse
Affiliation(s)
- Joan D Beckman
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Angelica DaSilva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elena Aronovich
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aithanh Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Geneva Hargis
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Reynolds
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory M Vercellotti
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian Betts
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - David K Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
41
|
Ziemann F, Metzeler KH. Klonale Hämatopoese (CHIP) und klonale Zytopenie unbestimmter Signifikanz (CCUS). Dtsch Med Wochenschr 2023; 148:441-450. [PMID: 36990116 DOI: 10.1055/a-1873-4250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) refers to the outgrowth of blood cells from a hematopoietic stem cell (HSC) clone that acquired one or more somatic mutations, leading to a growth advantage compared to wild type HSCs. In the last years this age-associated phenomenon has been extensively studied, and several cohort studies found association between CH and age-related diseases, esp. leukaemia and cardiovascular disease. For patients with CH present with abnormal blood counts, the term 'clonal cytopenia of unknown significance' is used, which carries a higher risk for developing myeloid neoplasms. In this year, CHIP and CCUS have been included in the updated WHO classification of hematolymphoid tumours. We review the current understanding of the emergence of CHIP, diagnostics, association with other diseases, and potential therapeutic interventions.
Collapse
|
42
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
43
|
Ma X, Xu W, Jin X, Mu H, Wang Z, Hua Y, Cai Z, Zhang T. Telocinobufagin inhibits osteosarcoma growth and metastasis by inhibiting the JAK2/STAT3 signaling pathway. Eur J Pharmacol 2023; 942:175529. [PMID: 36690054 DOI: 10.1016/j.ejphar.2023.175529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Osteosarcoma is the most common primary bone malignancy in children and adolescents; it exhibits rapid growth and a high metastatic potential and may thus lead to relatively high mortality. The JAK2/STAT3 signaling pathway, which plays a critical role in the occurrence and development of osteosarcoma, is a potential target for the treatment of osteosarcoma. Here, we identified the natural product telocinobufagin (TCB), which is a component isolated from toad cake, as a potent candidate with anti-osteosarcoma effects. TCB inhibited osteosarcoma cell growth, migration, invasion and induced cancer cell apoptosis. Mechanistically, TCB specifically inhibited the JAK2/STAT3 signaling pathway. More importantly, TCB significantly suppressed tumor growth and metastasis in an osteosarcoma xenograft animal model. Moreover, TCB also showed strong inhibitory effects in other cancer types, such as lung cancer, liver cancer, colon cancer, breast cancer and gastric cancer. Hence, our study reveals TCB as a potent anti-osteosarcoma therapeutic agent that inhibits the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xinglong Ma
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Wenyuan Xu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Xinmeng Jin
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Haoran Mu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Tao Zhang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
44
|
Xie Z, Zeidan AM. CHIPing away the progression potential of CHIP: A new reality in the making. Blood Rev 2023; 58:101001. [PMID: 35989137 DOI: 10.1016/j.blre.2022.101001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022]
Abstract
Over the past few years, we have gained a deeper understanding of clonal hematopoiesis of indeterminate potential (CHIP), especially with regard to the epidemiology, clinical sequelae, and mechanical aspects. However, interventional strategies to prevent or delay the potential negative consequences of CHIP remain underdeveloped. In this review, we highlight the latest updates on clonal hematopoiesis research, including molecular mechanisms and clinical implications, with a particular focus on the evolving strategies for the interventions that are being evaluated in ongoing observational and interventional trials. There remains an urgent need to formulate standardized and evidence-based recommendations and guidelines for evaluating and managing individuals with clonal hematopoiesis. In addition, patient-centric endpoints must be defined for clinical trials, which will enable us to continue the robust development of effective preventive strategies and improve clinical outcomes.
Collapse
Affiliation(s)
- Zhuoer Xie
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, CT, United States.
| |
Collapse
|
45
|
Guo Y, Zou Y, Chen Y, Deng D, Zhang Z, Liu K, Tang M, Yang T, Fu S, Zhang C, Si W, Ma Z, Zhang S, Peng B, Xu D, Chen L. Design, synthesis and biological evaluation of purine-based derivatives as novel JAK2/BRD4(BD2) dual target inhibitors. Bioorg Chem 2023; 132:106386. [PMID: 36702002 DOI: 10.1016/j.bioorg.2023.106386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Based on the pharmacological synergy of JAK2 and BRD4 in the NF-κB pathway and positive therapeutic effect of combination of JAK2 and BRD4 inhibitors in treating MPN and inflammation. A series of unique 9H-purine-2,6-diamine derivatives that selectively inhibited Janus kinase 2 (JAK2) and BRD4(BD2) were designed, prepared, and evaluated for their in vitro and in vivo potency. Among them, compound 9j exhibited acceptable inhibitory activity with IC50 values of 13 and 22 nM for BD2 of BRD4 and JAK2, respectively. The western blot assay demonstrated that 9j performed good functional potency in the NF-κB pathway and the phosphorylation of p65, IκB-α, and IKKα/β signal intensities were suppressed on RAW264.7 cell lines. Furthermore, 9j significantly improved the disease symptoms in a Ba/F3-JAK2V617F allograft model. Meanwhile, 9j was also effective in relieving symptoms in an acute ulcerative colitis model. Taken together, 9j was a potent JAK2/BRD4(BD2) dual target inhibitor and could be a potential lead compound in treating myeloproliferative neoplasms and inflammatory diseases.
Collapse
Affiliation(s)
- Yong Guo
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yurong Zou
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yong Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dexin Deng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zihao Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kongjun Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Suhong Fu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chufeng Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenting Si
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyan Ma
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shunjie Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Peng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
46
|
A xanthine oxidase inhibit activity component from biotransformation of cholesterol by Streptomyces cellulosae WHX1301. Heliyon 2023; 9:e14160. [PMID: 36915485 PMCID: PMC10006828 DOI: 10.1016/j.heliyon.2023.e14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Steroids are one of the most widely used groups of medicines presently. There are some steroid drugs that have acquired with the transformation of microorganism. It's indispensability to screen the strain that is able to utilize steroids to generate new products. This study has screened a transformation strain WHX1301 that have ability to convert cholesterol. Based on the 16S rRNA gene sequence comparison, the isolate WHX1301 has been demonstrated to most similar as Streptomyces cellulosae. Separation and purification of transformation product were identifying by NMR and ESI-MS. The major of product was 2,7-dihydroxycholesterol, and the by-product were 7-Hydroxycholestane-3,5-diene, Cholesterane-3,5-diene. Fortunately, 2,7-dihydroxycholesterol has inhibitory activity against xanthine oxidase with a 34.8% inhibition rate at a concentration of 20 μg/ml. Using the resting cells of Streptomyces cellulosae WHX1301 to transform cholesterol, the product yield can reach 76%. Present paper is the first report regarding the microbial transformation of steroids by Streptomyces cellulosae.
Collapse
|
47
|
Wang Y, Ran F, Lin J, Zhang J, Ma D. Genetic and Clinical Characteristics of Patients with Philadelphia-Negative Myeloproliferative Neoplasm Carrying Concurrent Mutations in JAK2V617F, CALR, and MPL. Technol Cancer Res Treat 2023; 22:15330338231154092. [PMID: 36744404 PMCID: PMC9905029 DOI: 10.1177/15330338231154092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Simultaneous mutations in Janus kinase 2 (JAK2), calreticulin, and myeloproliferative leukemia (MPL) genes are generally not considered for characterizing Philadelphia-negative myeloproliferative neoplasms (MPNs), leading to misdiagnosis. Sanger sequencing and quantitative polymerase chain reaction were used to detect gene mutations in patients with MPN. We retrospectively screened the data of patients with double mutations in our center and from the PubMed database. Two patients tested positive for both JAK2V617F and CALR mutations (2/352 0.57%) in our center, while data of 35 patients from the PubMed database, including 26 patients with essential thrombocythemia (ET), 6 with primary myelofibrosis (PMF), 2 with unexplained thrombosis, and 1 with polycythemia vera were screened for double mutations. Among these mutations, co-mutation of JAKV617F-CALR constituted the majority (80.0%), when compared with JAKV617F-MPL (17.1%) and CALR-MPL (2.9%) mutations. Moreover, patients with concurrent mutational myeloproliferative neoplasm (MPN) were relatively older (P = .010) with significantly higher platelet counts than their counterparts with single gene mutations (P < .001). The occurrence of palpable splenomegaly (P < .001) and leukocyte count (P = .041) were also significantly different between patients with single and simultaneous gene mutations. These 4 risk factors also showed significant test effectiveness in the ET and PMF cohorts (P < .05). In terms of clinical characteristics of patients with ET, those with JAK2V617F-CALR mutation had higher but normal hemoglobin levels (P = .0151) than those carrying JAK2V617F-MPL mutation. From a clinical perspective, patients with multiple mutational MPN are different from those with single gene mutations. The poor treatment response by patients in our center and unfavorable indicators for patients with co-mutations in published literature indicate that customized treatment may be the best choice for patients with MPN carrying co-mutations.
Collapse
Affiliation(s)
- Yan Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Institute of Hematological Malignancies, Guiyang, China
| | - Fei Ran
- Department of Clinical Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jin Lin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Institute of Hematological Malignancies, Guiyang, China,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China,Dr Dan Ma, Department of Hematology, Affiliated Hospital of Guizhou Medical University; 28 Guiyi Street, Yunyan District, Guiyang, Guizhou 550004, China.
| |
Collapse
|
48
|
Verachi P, Gobbo F, Martelli F, Falchi M, di Virgilio A, Sarli G, Wilke C, Bruederle A, Prahallad A, Arciprete F, Zingariello M, Migliaccio AR. Preclinical studies on the use of a P-selectin-blocking monoclonal antibody to halt progression of myelofibrosis in the Gata1 low mouse model. Exp Hematol 2023; 117:43-61. [PMID: 36191885 PMCID: PMC10450205 DOI: 10.1016/j.exphem.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/10/2023]
Abstract
The bone marrow (BM) and spleen from patients with myelofibrosis (MF), as well as those from the Gata1low mouse model of the disease contain increased number of abnormal megakaryocytes. These cells express high levels of the adhesion receptor P-selectin on their surface, which triggers a pathologic neutrophil emperipolesis, leading to increased bioavailability of transforming growth factor-β (TGF-β) in the microenvironment and disease progression. With age, Gata1low mice develop a phenotype similar to that of patients with MF, which is the most severe of the Philadelphia-negative myeloproliferative neoplasms. We previously demonstrated that Gata1low mice lacking the P-selectin gene do not develop MF. In the current study, we tested the hypothesis that pharmacologic inhibition of P-selectin may normalize the phenotype of Gata1low mice that have already developed MF. To test this hypothesis, we have investigated the phenotype expressed by aged Gata1low mice treated with the antimouse monoclonal antibody RB40.34, alone and also in combination with ruxolitinib. The results indicated that RB40.34 in combination with ruxolitinib normalizes the phenotype of Gata1low mice with limited toxicity by reducing fibrosis and the content of TGF-β and CXCL1 (two drivers of fibrosis in this model) in the BM and spleen and by restoring hematopoiesis in the BM and the architecture of the spleen. In conclusion, we provide preclinical evidence that treatment with an antibody against P-selectin in combination with ruxolitinib may be more effective than ruxolitinib alone to treat MF in patients.
Collapse
Affiliation(s)
- Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Francesca Gobbo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National Center for HIV/AIDS Research, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio di Virgilio
- Center for Animal Experimentation and Well-being, Istituto Superiore di Santà, Rome, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | | | | | | | - Francesca Arciprete
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Anna Rita Migliaccio
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy; Altius Institute for Biomedical Sciences, Seattle, WA, USA.
| |
Collapse
|
49
|
Li Y, Grommes C, Deobhakta A, Diaz M. Unilateral panuveitis secondary to JAK2 mutation-associated lymphoproliferative disease. BMJ Case Rep 2022; 15:e253572. [PMID: 36593595 PMCID: PMC9723887 DOI: 10.1136/bcr-2022-253572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
A woman in her 70s experienced painless vision loss in the right eye for 1 month. Acute retinal necrosis-induced panuveitis was the referral diagnosis. With dense vitreous haze, a vitrectomy was performed for vitreous biopsy followed by multimodal imaging. Vitreous biopsy yielded negative PCR results for herpes viruses and only inflammatory cells. Post-vitrectomy imaging showed involuted but pervasive pigmentary foci in the outer retina and the retinal pigment epithelium. Concurrently, peripheral blood showed pancytosis with giant platelets and a Janus kinase 2 (JAK2) mutation, which prompted a haematological evaluation. CT and MRI revealed a right frontal lobe intra-axial mass, diagnosed as diffuse large B cell lymphoma (DLBCL). Subsequently, bone marrow aspirate confirmed the pathogenic V617F JAK2 mutation. Following chemotherapy, the patient achieved lymphoma regression and uveitic quiescence. This is the first case report of acute unilateral panuveitis in a patient with JAK2 mutation and DLBCL but without evidence of intraocular involvement.
Collapse
Affiliation(s)
- Yafeng Li
- Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York, USA
| | - Christian Grommes
- Neurology and Neuro-oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Avnish Deobhakta
- Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York, USA
| | - Maria Diaz
- Neurology and Neuro-oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
50
|
Yan R, Mi D, Qiu X, Li Z. A case of ischemic stroke with hemorrhagic transformation associated with essential thrombocythemia and JAK-2 V617F mutation. BMC Neurol 2022; 22:437. [DOI: 10.1186/s12883-022-02964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
Essential thrombocythemia (ET) is a rare cause of stroke. The V617F mutation in the Janus kinase 2 (JAK2) gene is one of the most typical mutations in ET and has been shown to be a risk factor for stroke, especially in younger people. However, to date, there have been few reports of intracranial thrombotic and hemorrhagic complications in patients with ET. Herein, we present a case of JAK2 gene mutation-associated ET in a patient who developed both ischemic and hemorrhagic stroke, and discuss potential underlying mechanisms.
Case presentation
A 45-year-old Chinese male presented to our center with gradually developing weakness of the right limbs for 3 months. A computed tomography scan of the brain showed an area of infarction with hemorrhage in the left subcortical and corona radiata regions. High-resolution magnetic resonance imaging revealed a thrombosis on the surface of the atherosclerotic plaque. Digital subtraction angiography revealed an insect bite-like change in the C1 branch of the left internal carotid artery, which caused up to 50% stenosis. Blood tests showed continued elevation of the platelet and white blood cell counts. After consultation with a hematologist, a bone marrow biopsy was performed, which revealed proliferative bone marrow changes with numerous megakaryocytes and proliferative but mature granulocytes. Further genetic testing revealed a positive JAK2-V617F mutation. Therefore, the diagnosis of ET was confirmed according to the World Health Organization (WHO) 2016 diagnostic criteria. Finally, we decided to administer aspirin and hydroxyurea. The patient remained stroke free and the platelet levels were normal throughout the 1-year follow-up period.
Conclusions
JAK2 mutations affect the proliferation and differentiation of blood cells through the JAK, signal transducer and activator of transcription pathway, which leads to changes in platelets and macrophages, and an increase in neutrophil extracellular traps, which may explain the patient’s ischemic and hemorrhagic changes. Further investigation of the underlying mechanisms may change the treatment strategy for such patients in the future.
Collapse
|