1
|
Feng X, Tong L, Ma L, Mu T, Yu B, Ma R, Li J, Wang C, Zhang J, Gu Y. Mining key circRNA-associated-ceRNA networks for milk fat metabolism in cows with varying milk fat percentages. BMC Genomics 2024; 25:323. [PMID: 38561663 PMCID: PMC10983688 DOI: 10.1186/s12864-024-10252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Cow milk fat is an essential indicator for evaluating and measuring milk quality and cow performance. Growing research has identified the molecular functions of circular RNAs (circRNAs) necessary for mammary gland development and lactation in mammals. METHOD The present study analyzed circRNA expression profiling data in mammary epithelial cells (MECs) from cows with highly variable milk fat percentage (MFP) using differential expression analysis and weighted gene co-expression network analysis (WGCNA). RESULTS A total of 309 differentially expressed circRNAs (DE-circRNAs) were identified in the high and low MFP groups. WGCNA analysis revealed that the pink module was significantly associated with MFP (r = - 0.85, P = 0.007). Parental genes of circRNAs in this module were enriched mainly in lipid metabolism-related signaling pathways, such as focal adhesion, ECM-receptor interaction, adherens junction and AMPK. Finally, six DE-circRNAs were screened from the pink module: circ_0010571, circ_0007797, circ_0002746, circ_0003052, circ_0004319, and circ_0012840. Among them, circ_0002746, circ_0003052, circ_0004319, and circ_0012840 had circular structures and were highly expressed in mammary tissues. Subcellular localization revealed that these four DE-circRNAs may play a regulatory role in the mammary glands of dairy cows, mainly as competitive endogenous RNAs (ceRNAs). Seven hub target genes (GNB1, GNG2, PLCB1, PLCG1, ATP6V0C, NDUFS4, and PIGH) were obtained by constructing the regulatory network of their ceRNAs and then analyzed by CytoHubba and MCODE plugins in Cytoscape. Functional enrichment analysis revealed that these genes are crucial and most probable ceRNA regulators in milk fat metabolism. CONCLUSIONS Our study identified several vital circRNAs and ceRNAs affecting milk fat synthesis, providing new research ideas and a theoretical basis for cow lactation, milk quality, and breed improvement.
Collapse
Affiliation(s)
- Xiaofang Feng
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Lijia Tong
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Lina Ma
- NingXia Academy of Agriculture and Forestry Sciences, 750002, Yinchuan, China
| | - Tong Mu
- School of Life Science, Yan'an University, 716000, Yanan, China
| | - Baojun Yu
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Ruoshuang Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Jiwei Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Chuanchuan Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Juan Zhang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| | - Yaling Gu
- Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| |
Collapse
|
2
|
Zhang Y, Weh KM, Tripp BA, Clarke JL, Howard CL, Sunilkumar S, Howell AB, Kresty LA. Cranberry Proanthocyanidins Mitigate Reflux-Induced Transporter Dysregulation in an Esophageal Adenocarcinoma Model. Pharmaceuticals (Basel) 2023; 16:1697. [PMID: 38139823 PMCID: PMC10747310 DOI: 10.3390/ph16121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
We recently reported that cranberry proanthocyanidins (C-PACs) inhibit esophageal adenocarcinoma (EAC) by 83% through reversing reflux-induced bacterial, inflammatory and immune-implicated proteins and genes as well as reducing esophageal bile acids, which drive EAC progression. This study investigated whether C-PACs' mitigation of bile reflux-induced transporter dysregulation mechanistically contributes to EAC prevention. RNA was isolated from water-, C-PAC- and reflux-exposed rat esophagi with and without C-PAC treatment. Differential gene expression was determined by means of RNA sequencing and RT-PCR, followed by protein assessments. The literature, coupled with the publicly available Gene Expression Omnibus dataset GSE26886, was used to assess transporter expression levels in normal and EAC patient biopsies for translational relevance. Significant changes in ATP-binding cassette (ABC) transporters implicated in therapeutic resistance in humans (i.e., Abcb1, Abcb4, Abcc1, Abcc3, Abcc4, Abcc6 and Abcc10) and the transport of drugs, xenobiotics, lipids, and bile were altered in the reflux model with C-PACs' mitigating changes. Additionally, C-PACs restored reflux-induced changes in solute carrier (SLC), aquaporin, proton and cation transporters (i.e., Slc2a1, Slc7a11, Slc9a1, Slco2a1 and Atp6v0c). This research supports the suggestion that transporters merit investigation not only for their roles in metabolism and therapeutic resistance, but as targets for cancer prevention and targeting preventive agents in combination with chemotherapeutics.
Collapse
Affiliation(s)
- Yun Zhang
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Katherine M. Weh
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Bridget A. Tripp
- Bioinformatics Core Research Facility, Center for Biotechnology, University of Nebraska—Lincoln, N300 Beadle Center, Lincoln, NE 68588, USA;
| | - Jennifer L. Clarke
- Department of Statistics and Department of Food Science Technology, Quantitative Life Sciences Initiative, University of Nebraska—Lincoln, 253 Food Innovation Center, Lincoln, NE 68583, USA;
| | - Connor L. Howard
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Shruthi Sunilkumar
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Amy B. Howell
- Marucci Center for Blueberry and Cranberry Research, Rutgers University, 125A Lake Oswego Road, Chatsworth, NJ 08019, USA;
| | - Laura A. Kresty
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| |
Collapse
|
3
|
Lengauer F, Geisslinger F, Gabriel A, von Schwarzenberg K, Vollmar AM, Bartel K. A metabolic shift toward glycolysis enables cancer cells to maintain survival upon concomitant glutamine deprivation and V-ATPase inhibition. Front Nutr 2023; 10:1124678. [PMID: 37255933 PMCID: PMC10225586 DOI: 10.3389/fnut.2023.1124678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
It is widely known that most cancer cells display an increased reliance on glutaminolysis to sustain proliferation and survival. Combining glutamine deprivation with additional anti-cancer therapies is an intensively investigated approach to increase therapeutic effectiveness. In this study, we examined a combination of glutamine deprivation by starvation or pharmacological tools, with the anti-cancer agent archazolid, an inhibitor of the lysosomal V-ATPase. We show that glutamine deprivation leads to lysosomal acidification and induction of pro-survival autophagy, which could be prevented by archazolid. Surprisingly, a combination of glutamine deprivation with archazolid did not lead to synergistic induction of cell death or reduction in proliferation. Investigating the underlying mechanisms revealed elevated expression and activity of amino acid transporters SLC1A5, SLC38A1 upon starvation, whereas archazolid had no additional effect. Furthermore, we found that the export of lysosomal glutamine derived from exogenous sources plays no role in the phenotype as knock-down of SLC38A7, the lysosomal glutamine exporter, could not increase V-ATPase inhibition-induced cell death or reduce proliferation. Analysis of the cellular metabolic phenotype revealed that glutamine deprivation led to a significant increase in glycolytic activity, indicated by an elevated glycolytic capacity and reserve, when V-ATPase function was inhibited concomitantly. This was confirmed by increased glutamine uptake, augmented lactate production, and an increase in hexokinase activity. Our study, therefore, provides evidence, that glutamine deprivation induces autophagy, which can be prevented by simultaneous inhibition of V-ATPase function. However, this does not lead to a therapeutic benefit, as cells are able to circumvent cell death and growth inhibition by a metabolic shift toward glycolysis.
Collapse
|
4
|
Kim HJ, Kim DH, Um SH. The Novel Inhibitory Effect of YM976 on Adipocyte Differentiation. Cells 2023; 12:cells12020205. [PMID: 36672141 PMCID: PMC9856710 DOI: 10.3390/cells12020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
The pyrimidine derivative YM976 (4-(3-chlorophenyl)-1,7-diethylpyrido(2,3-d)-pyrimidin-2(1H)-one) exerts anti-inflammatory and anti-asthmatic effects. Considering that accumulation of lipids in adipose tissue is accompanied by inflammation, we investigated whether YM976 affects adipocyte differentiation. We found that YM976 significantly decreased lipid accumulation without cytotoxicity and reduced the expression levels of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) as well as their lipogenic regulators including fatty acid synthase (FASN) and fatty acid-binding protein 4 (FABP4) in 3T3-L1 cells induced for differentiation. YM976 mainly inhibited the early stage of adipocyte differentiation. Furthermore, intracellular cAMP level was elevated by YM976 resulting in increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Conversely, decreasing the levels of AMPK or treatment with Compound C, an AMPK inhibitor, lessened the suppressive effects of YM976 on PPARγ transcriptional activity and adipogenesis. Thus, our results suggest YM976 as a novel potential compound for controlling lipid accumulation and formation of adipocytes in obesity.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Biomedical Institute for Convergence (BICS) at Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Protein kinase C epsilon promotes de novo lipogenesis and tumor growth in prostate cancer cells by regulating the phosphorylation and nuclear translocation of pyruvate kinase isoform M2. Exp Cell Res 2023; 422:113427. [PMID: 36400183 DOI: 10.1016/j.yexcr.2022.113427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Protein kinase C epsilon (PKCε) belongs to a family of serine/threonine kinases that control cell proliferation, differentiation and survival. Aberrant PKCε activation and overexpression is a frequent feature of numerous cancers. However, its role in regulation of lipid metabolism in cancer cells remains elusive. Here we report a novel function of PKCε in regulating of prostate cancer cell proliferation by modulation of PKM2-mediated de novo lipogenesis. We show that PKCε promotes de novo lipogenesis and tumor cell proliferation via upregulation of lipogenic enzymes and lipid contents in prostate cancer cells. Mechanistically, PKCε interacts with NABD (1-388) domain of C-terminal deletion on pyruvate kinase isoform M2 (PKM2) and enhances the Tyr105 phosphorylation of PKM2, leading to its nuclear localization. Moreover, forced expression of mutant Tyr105 (Y105F) or PKM2 inhibition suppressed de novo lipogenesis and cell proliferation induced by overexpression of PKCε in prostate cancer cells. In a murine tumor model, inhibitor of PKM2 antagonizes lipogenic enzymes expression and prostate cancer growth induced by overexpression of PKCε in vivo. These data indicate that PKCε is a critical regulator of de novo lipogenesis, which may represent a potential therapeutic target for the treatment of prostate cancer.
Collapse
|
6
|
Santos-Pereira C, Guedes JP, Ferreira D, Rodrigues LR, Côrte-Real M. Lactoferrin perturbs intracellular trafficking, disrupts cholesterol-rich lipid rafts and inhibits glycolysis of highly metastatic cancer cells harbouring plasmalemmal V-ATPase. Int J Biol Macromol 2022; 220:1589-1604. [PMID: 36116593 DOI: 10.1016/j.ijbiomac.2022.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
The milk-derived bovine lactoferrin (bLf) is an iron-binding glycoprotein with remarkable selective anticancer activity towards highly metastatic cancer cells displaying the proton pump V-ATPase at the plasma membrane. As studies aiming to dissect the bLf mechanisms of action are critical to improve its efficacy and boost its targeted clinical use, herein we sought to further uncover the molecular basis of bLf anticancer activity. We showed that bLf co-localizes with V-ATPase and cholesterol-rich lipid rafts at the plasma membrane of highly metastatic cancer cells. Our data also revealed that bLf perturbs cellular trafficking, induces intracellular accumulation of cholesterol and lipid rafts disruption, downregulates PI3K, and AKT or p-AKT and inhibits glycolysis of cancer cells harbouring V-ATPase at the plasma membrane lipid rafts. Altogether, our results can lay the foundation for future bLf-based targeted anticancer strategies as they unravel a novel cascade of molecular events that explains and further reinforces bLf selectivity for cancer cells displaying plasmalemmal V-ATPase.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana P Guedes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Débora Ferreira
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Lígia R Rodrigues
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
7
|
Xiang Y, Fan D, An Q, Zhang T, Wu X, Ding J, Xu X, Yue G, Tang S, Du Q, Xu J, Xie R. Effects of Ion-Transporting Proteins on the Digestive System Under Hypoxia. Front Physiol 2022; 13:870243. [PMID: 36187789 PMCID: PMC9515906 DOI: 10.3389/fphys.2022.870243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia refers to a state of oxygen limitation, which mainly mediates pathological processes in the human body and participates in the regulation of normal physiological processes. In the hypoxic environment, the main regulator of human body homeostasis is the hypoxia-inducible factor family (HIF). HIF can regulate the expression of many hypoxia-induced genes and then participate in various physiological and pathological processes of the human body. Ion-transporting proteins are extremely important types of proteins. Ion-transporting proteins are distributed on cell membranes or organelles and strictly control the inflow or outflow of ions in cells or organelles. Changes in ions in cells are often closely related to extensive physiological and pathological processes in the human body. Numerous studies have confirmed that hypoxia and its regulatory factors can regulate the transcription and expression of ion-transporting protein-related genes. Under hypoxic stress, the regulation and interaction of ion-transporting proteins by hypoxia often leads to diseases of various human systems and even tumors. Using ion-transporting proteins and hypoxia as targets to explore the mechanism of digestive system diseases and targeted therapy is expected to become a new breakthrough point.
Collapse
Affiliation(s)
- Yiwei Xiang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Dongdong Fan
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Qimin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Xianli Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Xiaolin Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Gengyu Yue
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
- *Correspondence: Jingyu Xu, ; Rui Xie,
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
- *Correspondence: Jingyu Xu, ; Rui Xie,
| |
Collapse
|
8
|
Monticolo F, Chiusano ML. Computational Approaches for Cancer-Fighting: From Gene Expression to Functional Foods. Cancers (Basel) 2021; 13:4207. [PMID: 34439361 PMCID: PMC8393935 DOI: 10.3390/cancers13164207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023] Open
Abstract
It is today widely accepted that a healthy diet is very useful to prevent the risk for cancer or its deleterious effects. Nutrigenomics studies are therefore taking place with the aim to test the effects of nutrients at molecular level and contribute to the search for anti-cancer treatments. These efforts are expanding the precious source of information necessary for the selection of natural compounds useful for the design of novel drugs or functional foods. Here we present a computational study to select new candidate compounds that could play a role in cancer prevention and care. Starting from a dataset of genes that are co-expressed in programmed cell death experiments, we investigated on nutrigenomics treatments inducing apoptosis, and searched for compounds that determine the same expression pattern. Subsequently, we selected cancer types where the genes showed an opposite expression pattern and we confirmed that the apoptotic/nutrigenomics expression trend had a significant positive survival in cancer-affected patients. Furthermore, we considered the functional interactors of the genes as defined by public protein-protein interaction data, and inferred on their involvement in cancers and/or in programmed cell death. We identified 7 genes and, from available nutrigenomics experiments, 6 compounds effective on their expression. These 6 compounds were exploited to identify, by ligand-based virtual screening, additional molecules with similar structure. We checked for ADME criteria and selected 23 natural compounds representing suitable candidates for further testing their efficacy in apoptosis induction. Due to their presence in natural resources, novel drugs and/or the design of functional foods are conceivable from the presented results.
Collapse
Affiliation(s)
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy;
| |
Collapse
|
9
|
Di Pompo G, Errani C, Gillies R, Mercatali L, Ibrahim T, Tamanti J, Baldini N, Avnet S. Acid-Induced Inflammatory Cytokines in Osteoblasts: A Guided Path to Osteolysis in Bone Metastasis. Front Cell Dev Biol 2021; 9:678532. [PMID: 34124067 PMCID: PMC8194084 DOI: 10.3389/fcell.2021.678532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bone metastasis (BM) is a dismal complication of cancer that frequently occurs in patients with advanced carcinomas and that often manifests as an osteolytic lesion. In bone, tumor cells promote an imbalance in bone remodeling via the release of growth factors that, directly or indirectly, stimulate osteoclast resorption activity. However, carcinoma cells are also characterized by an altered metabolism responsible for a decrease of extracellular pH, which, in turn, directly intensifies osteoclast bone erosion. Here, we speculated that tumor-derived acidosis causes the osteoblast–osteoclast uncoupling in BM by modulating the pro-osteoclastogenic phenotype of osteoblasts. According to our results, a low pH recruits osteoclast precursors and promotes their differentiation through the secretome of acid-stressed osteoblasts that includes pro-osteoclastogenic factors and inflammatory mediators, such as RANKL, M-CSF, TNF, IL-6, and, above the others, IL-8. The treatment with the anti-IL-6R antibody tocilizumab or with an anti-IL-8 antibody reverted this effect. Finally, in a series of BM patients, circulating levels of the osteolytic marker TRACP5b significantly correlated with IL-8. Our findings brought out that tumor-derived acidosis promotes excessive osteolysis at least in part by inducing an inflammatory phenotype in osteoblasts, and these results strengthen the use of anti-IL-6 or anti-IL-8 strategies to treat osteolysis in BM.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Costantino Errani
- Orthopaedic Oncology Surgical Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Robert Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Jacopo Tamanti
- National Tumor Assistance (ANT) Foundation, Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Han P, Cao P, Hu S, Kong K, Deng Y, Zhao B, Li F. Esophageal Microenvironment: From Precursor Microenvironment to Premetastatic Niche. Cancer Manag Res 2020; 12:5857-5879. [PMID: 32765088 PMCID: PMC7371556 DOI: 10.2147/cmar.s258215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Esophageal cancer (EC) is the sixth most deadly cancer, and its incidence is still increasing year by year. Although the researches on the molecular mechanisms of EC have been widely carried out and incremental progress has been made, its overall survival rate is still low. There is cumulative evidence showing that the esophageal microenvironment plays a vital role in the development of EC. In precancerous lesions of the esophagus, high-risk environmental factors can promote the development of precancerous lesions by inducing the production of inflammatory factors and the recruitment of immune cells. In the tumor microenvironment, tumor-promoting cells can inhibit anti-tumor immunity and promote tumor progression through a variety of pathways, such as bone marrow-derived suppressor cells (MDSCs), tumor-associated fibroblasts (CAFs), and regulatory T cells (Tregs). The formation of extracellular hypoxia and acidic microenvironment and the change of extracellular matrix stiffness are also important factors affecting tumor progression and metastasis. Simultaneously, primary tumor-derived cytokines and bone marrow-derived immune cells can also promote the formation of pre-metastasis niche of EC lymph nodes, which are beneficial to EC lymph node metastasis. Further research on the specific mechanism of these processes in the occurrence, development, and metastasis of each EC subtype will support us to grasp the overall pre-cancerous prevention, targeted treatment, and metastatic assessment of EC.
Collapse
Affiliation(s)
- Peng Han
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Peng Cao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shan Hu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Kangle Kong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
11
|
Waheed AA, Swiderski M, Khan A, Gitzen A, Majadly A, Freed EO. The viral protein U (Vpu)-interacting host protein ATP6V0C down-regulates cell-surface expression of tetherin and thereby contributes to HIV-1 release. J Biol Chem 2020; 295:7327-7340. [PMID: 32291285 PMCID: PMC7247306 DOI: 10.1074/jbc.ra120.013280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Host proteins with antiviral activity have evolved as first-line defenses to suppress viral replication. The HIV-1 accessory protein viral protein U (Vpu) enhances release of the virus from host cells by down-regulating the cell-surface expression of the host restriction factor tetherin. However, the exact mechanism of Vpu-mediated suppression of antiviral host responses is unclear. To further understand the role of host proteins in Vpu's function, here we carried out yeast two-hybrid screening and identified the V0 subunit C of vacuolar ATPase (ATP6V0C) as a Vpu-binding protein. To examine the role of ATP6V0C in Vpu-mediated tetherin degradation and HIV-1 release, we knocked down ATP6V0C expression in HeLa cells and observed that ATP6V0C depletion impairs Vpu-mediated tetherin degradation, resulting in defective HIV-1 release. We also observed that ATP6V0C overexpression stabilizes tetherin expression. This stabilization effect was specific to ATP6V0C, as overexpression of another subunit of the vacuolar ATPase, ATP6V0C″, had no effect on tetherin expression. ATP6V0C overexpression did not stabilize CD4, another target of Vpu-mediated degradation. Immunofluorescence localization experiments revealed that the ATP6V0C-stabilized tetherin is sequestered in a CD63- and lysosome-associated membrane protein 1 (LAMP1)-positive intracellular compartment. These results indicate that the Vpu-interacting protein ATP6V0C plays a role in down-regulating cell-surface expression of tetherin and thereby contributes to HIV-1 assembly and release.
Collapse
Affiliation(s)
- Abdul A Waheed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702.
| | - Maya Swiderski
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Ali Khan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Ariana Gitzen
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Ahlam Majadly
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| |
Collapse
|