1
|
Li J, Hilimire TA, Liu Y, Wang L, Liang J, Gyorffy B, Sikirzhytski V, Ji H, Zhang L, Cheng C, Ding X, Kerr KR, Dowling CE, Chumanevich AA, Mack ZT, Schools GP, Lim CU, Ellis L, Zi X, Porter DC, Broude EV, McInnes C, Wilding G, Lilly MB, Roninson IB, Chen M. Mediator kinase inhibition reverses castration resistance of advanced prostate cancer. J Clin Invest 2024; 134:e176709. [PMID: 38546787 DOI: 10.1172/jci176709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Mediator kinases CDK19 and CDK8, pleiotropic regulators of transcriptional reprogramming, are differentially regulated by androgen signaling, but both kinases are upregulated in castration-resistant prostate cancer (CRPC). Genetic or pharmacological inhibition of CDK8 and CDK19 reverses the castration-resistant phenotype and restores the sensitivity of CRPC xenografts to androgen deprivation in vivo. Prolonged CDK8/19 inhibitor treatment combined with castration not only suppressed the growth of CRPC xenografts but also induced tumor regression and cures. Transcriptomic analysis revealed that Mediator kinase inhibition amplified and modulated the effects of castration on gene expression, disrupting CRPC adaptation to androgen deprivation. Mediator kinase inactivation in tumor cells also affected stromal gene expression, indicating that Mediator kinase activity in CRPC molded the tumor microenvironment. The combination of castration and Mediator kinase inhibition downregulated the MYC pathway, and Mediator kinase inhibition suppressed a MYC-driven CRPC tumor model even without castration. CDK8/19 inhibitors showed efficacy in patient-derived xenograft models of CRPC, and a gene signature of Mediator kinase activity correlated with tumor progression and overall survival in clinical samples of metastatic CRPC. These results indicate that Mediator kinases mediated androgen-independent in vivo growth of CRPC, supporting the development of CDK8/19 inhibitors for the treatment of this presently incurable disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Thomas A Hilimire
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
- Senex Biotechnology Inc., Columbia, South Carolina, USA
| | - Yueying Liu
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lili Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Jiaxin Liang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Balazs Gyorffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Vitali Sikirzhytski
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Li Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Chen Cheng
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Xiaokai Ding
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Kendall R Kerr
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Charles E Dowling
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Alexander A Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Zachary T Mack
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Gary P Schools
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Chang-Uk Lim
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences; Walter Reed National Military Medical Center; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc.; Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaolin Zi
- Departments of Urology and Pharmaceutical Sciences, University of California, Irvine, California, USA
| | | | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Campbell McInnes
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | | | - Michael B Lilly
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
- Senex Biotechnology Inc., Columbia, South Carolina, USA
| |
Collapse
|
2
|
Chen M, Li J, Zhang L, Wang L, Cheng C, Ji H, Altilia S, Ding X, Cai G, Altomare D, Shtutman M, Byrum SD, Mackintosh SG, Feoktistov A, Soshnikova N, Mogila VA, Tatarskiy V, Erokhin M, Chetverina D, Prawira A, Ni Y, Urban S, McInnes C, Broude EV, Roninson IB. CDK8 and CDK19: positive regulators of signal-induced transcription and negative regulators of Mediator complex proteins. Nucleic Acids Res 2023; 51:7288-7313. [PMID: 37378433 PMCID: PMC10415139 DOI: 10.1093/nar/gkad538] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
We have conducted a detailed transcriptomic, proteomic and phosphoproteomic analysis of CDK8 and its paralog CDK19, alternative enzymatic components of the kinase module associated with transcriptional Mediator complex and implicated in development and diseases. This analysis was performed using genetic modifications of CDK8 and CDK19, selective CDK8/19 small molecule kinase inhibitors and a potent CDK8/19 PROTAC degrader. CDK8/19 inhibition in cells exposed to serum or to agonists of NFκB or protein kinase C (PKC) reduced the induction of signal-responsive genes, indicating a pleiotropic role of Mediator kinases in signal-induced transcriptional reprogramming. CDK8/19 inhibition under basal conditions initially downregulated a small group of genes, most of which were inducible by serum or PKC stimulation. Prolonged CDK8/19 inhibition or mutagenesis upregulated a larger gene set, along with a post-transcriptional increase in the proteins comprising the core Mediator complex and its kinase module. Regulation of both RNA and protein expression required CDK8/19 kinase activities but both enzymes protected their binding partner cyclin C from proteolytic degradation in a kinase-independent manner. Analysis of isogenic cell populations expressing CDK8, CDK19 or their kinase-inactive mutants revealed that CDK8 and CDK19 have the same qualitative effects on protein phosphorylation and gene expression at the RNA and protein levels, whereas differential effects of CDK8 versus CDK19 knockouts were attributable to quantitative differences in their expression and activity rather than different functions.
Collapse
Affiliation(s)
- Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
- Senex Biotechnology, Inc. Columbia, SC 29208, USA
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Li Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Lili Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Chen Cheng
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Serena Altilia
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaokai Ding
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alexey Feoktistov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Nataliya Soshnikova
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Vladislav A Mogila
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Victor Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Angga Prawira
- Department of Infectious Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Campbell McInnes
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
3
|
Ding X, Sharko AC, McDermott MSJ, Schools GP, Chumanevich A, Ji H, Li J, Zhang L, Mack ZT, Sikirzhytski V, Shtutman M, Ivers L, O'Donovan N, Crown J, Győrffy B, Chen M, Roninson IB, Broude EV. Inhibition of CDK8/19 Mediator kinase potentiates HER2-targeting drugs and bypasses resistance to these agents in vitro and in vivo. Proc Natl Acad Sci U S A 2022; 119:e2201073119. [PMID: 35914167 PMCID: PMC9371674 DOI: 10.1073/pnas.2201073119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/28/2022] [Indexed: 02/03/2023] Open
Abstract
Breast cancers (BrCas) that overexpress oncogenic tyrosine kinase receptor HER2 are treated with HER2-targeting antibodies (such as trastuzumab) or small-molecule kinase inhibitors (such as lapatinib). However, most patients with metastatic HER2+ BrCa have intrinsic resistance and nearly all eventually become resistant to HER2-targeting therapy. Resistance to HER2-targeting drugs frequently involves transcriptional reprogramming associated with constitutive activation of different signaling pathways. We have investigated the role of CDK8/19 Mediator kinase, a regulator of transcriptional reprogramming, in the response of HER2+ BrCa to HER2-targeting drugs. CDK8 was in the top 1% of all genes ranked by correlation with shorter relapse-free survival among treated HER2+ BrCa patients. Selective CDK8/19 inhibitors (senexin B and SNX631) showed synergistic interactions with lapatinib and trastuzumab in a panel of HER2+ BrCa cell lines, overcoming and preventing resistance to HER2-targeting drugs. The synergistic effects were mediated in part through the PI3K/AKT/mTOR pathway and reduced by PI3K inhibition. Combination of HER2- and CDK8/19-targeting agents inhibited STAT1 and STAT3 phosphorylation at S727 and up-regulated tumor suppressor BTG2. The growth of xenograft tumors formed by lapatinib-sensitive or -resistant HER2+ breast cancer cells was partially inhibited by SNX631 alone and strongly suppressed by the combination of SNX631 and lapatinib, overcoming lapatinib resistance. These effects were associated with decreased tumor cell proliferation and altered recruitment of stromal components to the xenograft tumors. These results suggest potential clinical benefit of combining HER2- and CDK8/19-targeting drugs in the treatment of metastatic HER2+ BrCa.
Collapse
Affiliation(s)
- Xiaokai Ding
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Amanda C Sharko
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Martina S J McDermott
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Gary P Schools
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Alexander Chumanevich
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Li Zhang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Zachary T Mack
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Vitali Sikirzhytski
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Laura Ivers
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - John Crown
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, H-1085, Hungary
- Oncology Biomarker Research Group, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
- Senex Biotechnology, Inc., 715 Sumter St., Columbia, SC, 29208
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| |
Collapse
|
4
|
Zhang L, Cheng C, Li J, Wang L, Chumanevich AA, Porter DC, Mindich A, Gorbunova S, Roninson IB, Chen M, McInnes C. A Selective and Orally Bioavailable Quinoline-6-Carbonitrile-Based Inhibitor of CDK8/19 Mediator Kinase with Tumor-Enriched Pharmacokinetics. J Med Chem 2022; 65:3420-3433. [PMID: 35114084 PMCID: PMC10042267 DOI: 10.1021/acs.jmedchem.1c01951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Senexins are potent and selective quinazoline inhibitors of CDK8/19 Mediator kinases. To improve their potency and metabolic stability, quinoline-based derivatives were designed through a structure-guided strategy based on the simulated drug-target docking model of Senexin A and Senexin B. A library of quinoline-Senexin derivatives was synthesized to explore the structure-activity relationship (SAR). An optimized compound 20a (Senexin C) exhibits potent CDK8/19 inhibitory activity with high selectivity. Senexin C is more metabolically stable and provides a more sustained inhibition of CDK8/19-dependent cellular gene expression when compared with the prototype inhibitor Senexin B. In vivo pharmacokinetic (PK) and pharmacodynamic (PD) evaluation using a novel tumor-based PD assay showed good oral bioavailability of Senexin C with a strong tumor-enrichment PK profile and tumor-PD marker responses. Senexin C inhibits MV4-11 leukemia growth in a systemic in vivo model with good tolerability.
Collapse
Affiliation(s)
- Li Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chen Cheng
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Lili Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alexander A Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Donald C Porter
- Senex Biotechnology, Inc., Columbia, South Carolina 29208, United States
| | - Aleksei Mindich
- CSC BIOCAD, Strelna, Saint-Petersburg 198515, Russia.,Biotechnology Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | | | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States.,Senex Biotechnology, Inc., Columbia, South Carolina 29208, United States
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States.,Senex Biotechnology, Inc., Columbia, South Carolina 29208, United States
| | - Campbell McInnes
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
5
|
Lin TE, Yang CR, Chou CH, Hsu JY, Chao MW, Sung TY, Hsieh JH, Huang WJ, Hsu KC. Discovery of a novel cyclin-dependent kinase 8 inhibitor with an oxindole core for anti-inflammatory treatment. Biomed Pharmacother 2022; 146:112459. [PMID: 34953394 PMCID: PMC8776612 DOI: 10.1016/j.biopha.2021.112459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023] Open
Abstract
Chronic inflammation is an underlying cause in a number of diseases. Cyclin-dependent kinase 8 (CDK8) has been implicated as an inflammatory mediator, indicating its potential as an anti-inflammatory target. Herein, we performed structure-based virtual screening (SBVS) to identify novel CDK8 inhibitors. The pharmacological interactions for CDK8 were identified and incorporated into a SBVS protocol. Selected compounds were tested in enzymatic assays, and one compound was confirmed to be a CDK8 inhibitor with a 50% inhibitory concentration (IC50) value of 1684.4 nM. Comparing structural analogs identified a compound, F059-1017, with greater potency (IC50 558.1 nM). When tested in cell lines, the compounds displayed low cytotoxicity. Cellular assays revealed that the identified CDK8 inhibitors can reduce phosphorylation and expression of signaling mediators associated with inflammation. In addition, results of kinase profiling showed that compound F059-1017 is selective towards CDK8. These findings suggest that the new inhibitors have great potential as lead compounds for developing novel anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery,
College of Medical Science and Technology, Taipei Medical University, Taipei,
Taiwan,Master Program in Graduate Institute of Cancer Biology and
Drug Discovery, College of Medical Science and Technology, Taipei Medical
University, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan
University, Taipei, Taiwan
| | - Ching-Hsuan Chou
- School of Pharmacy, College of Medicine, National Taiwan
University, Taipei, Taiwan
| | - Jui-Yi Hsu
- Graduate Institute of Cancer Biology and Drug Discovery,
College of Medical Science and Technology, Taipei Medical University, Taipei,
Taiwan,Ph.D. Program for Cancer Molecular Biology and Drug
Discovery, College of Medical Science and Technology, Taipei Medical University,
Taipei, Taiwan
| | - Min-Wu Chao
- School of Pharmacy, College of Medicine, National Taiwan
University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Biomedical Translation Research Center, Academia Sinica,
Taipei, Taiwan
| | - Jui-Hua Hsieh
- Division of the National Toxicology Program, National
Institute of Environmental Health Sciences, National Institutes of Health, Durham,
NC, USA
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry,
College of Pharmacy, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Pharmacognosy, College of Pharmacy,
Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery,
College of Medical Science and Technology, Taipei Medical University, Taipei,
Taiwan,Ph.D. Program for Cancer Molecular Biology and Drug
Discovery, College of Medical Science and Technology, Taipei Medical University,
Taipei, Taiwan,Ph.D. Program in Drug Discovery and Development Industry,
College of Pharmacy, Taipei Medical University, Taipei, Taiwan,Cancer Center, Wan Fang Hospital, Taipei Medical
University, Taipei, Taiwan,TMU Research Center of Cancer Translational Medicine,
Taipei Medical University, Taipei, Taiwan,TMU Research Center of Drug Discovery, Taipei Medical
University, Taipei, Taiwan,Corresponding author at: Graduate Institute of
Cancer Biology and Drug Discovery, College of Medical Science and Technology,
Taipei Medical University, Taipei, Taiwan. (K.-C.
Hsu)
| |
Collapse
|
6
|
Saito K, Shinozuka T, Nakao A, Kunikata T, Nakai D, Nagai Y, Naito S. Discovery of 3-amino-4-{(3S)-3-[(2-ethoxyethoxy)methyl]piperidin-1-yl}thieno[2,3-b]pyridine-2-carboxamide (DS96432529): A potent and orally active bone anabolic agent. Bioorg Med Chem Lett 2021; 54:128440. [PMID: 34742889 DOI: 10.1016/j.bmcl.2021.128440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
The continuing investigation of SAR of 3-aminothieno[2,3-b]pyridine-2-carboxamide derivatives has been described. In this study, C4-piperidine derivatives with polar functional groups were synthesized to develop orally available bone anabolic agents. The optimized compound 9o (DS96432529), which exhibited the best PK profile and high in vitro activity, showed the highest in vivo efficacy in this series. Moreover, significant synergistic effects were observed following co-administration of DS96432529 and alendronate or parathyroid hormone. The mechanism of action is most likely mediated through CDK8 inhibition.
Collapse
Affiliation(s)
- Keiji Saito
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Akira Nakao
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomonori Kunikata
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Daisuke Nakai
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yoko Nagai
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Satoru Naito
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
7
|
The Inhibition of CDK8/19 Mediator Kinases Prevents the Development of Resistance to EGFR-Targeting Drugs. Cells 2021; 10:cells10010144. [PMID: 33445730 PMCID: PMC7828184 DOI: 10.3390/cells10010144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Drug resistance is the main obstacle to achieving cures with both conventional and targeted anticancer drugs. The emergence of acquired drug resistance is initially mediated by non-genetic transcriptional changes, which occur at a much higher frequency than mutations and may involve population-scale transcriptomic adaptation. CDK8/19 kinases, through association with transcriptional Mediator complex, regulate transcriptional reprogramming by co-operating with different signal-responsive transcription factors. Here we tested if CDK8/19 inhibition could prevent adaptation to drugs acting on epidermal growth factor receptor (EGFR/ERBB1/HER1). The development of resistance was analyzed following long-term exposure of BT474 and SKBR3 breast cancer cells to EGFR-targeting small molecules (gefitinib, erlotinib) and of SW48 colon cancer cells to an anti-EGFR monoclonal antibody cetuximab. In all cases, treatment of small cell populations (~105 cells) with a single dose of the drug initially led to growth inhibition that was followed by the resumption of proliferation and development of drug resistance in the adapted populations. However, this adaptation was always prevented by the addition of selective CDK8/19 inhibitors, even though such inhibitors alone had only moderate or no effect on cell growth. These results indicate that combining EGFR-targeting drugs with CDK8/19 inhibitors may delay or prevent the development of tumor resistance to therapy.
Collapse
|
8
|
Systemic Toxicity Reported for CDK8/19 Inhibitors CCT251921 and MSC2530818 Is Not Due to Target Inhibition. Cells 2019; 8:cells8111413. [PMID: 31717492 PMCID: PMC6912361 DOI: 10.3390/cells8111413] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
CDK8/19 kinases, which mediate transcriptional reprogramming, have become an active target for cancer drug discovery. Several small-molecule CDK8/19 inhibitors showed in vivo efficacy and two have entered clinical trials, with no significant toxicities reported. However, Clarke et al. (eLife 2016; 5; e20722) found severe systemic toxicity associated with two potent CDK8/19 inhibitors, Cmpd3 (CCT251921) and Cmpd4 (MSC2530818), and suggested that their toxicity was due to on-target effects. Here, we compared five CDK8/19 inhibitors: Cmpd3, Cmpd4, Senexin B, 16-didehydro-cortistatin A (dCA) and 15w, in different assays. Only Cmpd4 showed striking toxicity in developing zebrafish. In cell-based assays for CDK8 and CDK19 inhibition, Cmpd3, Cmpd4, dCA and 15w showed similar low-nanomolar potency and efficacy against CDK8 and CDK19, while Senexin B was less potent. Only dCA produced sustained inhibition of CDK8/19-dependent gene expression. While toxicity of different compounds did not correlate with their effects on CDK8 and CDK19, kinome profiling identified several off-target kinases for both Cmpd3 and Cmpd4, which could be responsible for their toxicity. Off-target activities could have been achieved in the study of Clarke et al. due to high in vivo doses of Cmpd3 and Cmpd4, chosen for the ability to inhibit STAT1 S727 phosphorylation in tumor xenografts. We show here that STAT1 S727 phosphorylation is induced by various cytokines and stress stimuli in CDK8/19-independent manner, indicating that it is not a reliable pharmacodynamic marker of CDK8/19 activity. These results illustrate the need for careful off-target analysis and dose selection in the development of CDK8/19 inhibitors.
Collapse
|