1
|
Rezig IM, Yaduma WG, McInerny CJ. Processes Controlling the Contractile Ring during Cytokinesis in Fission Yeast, Including the Role of ESCRT Proteins. J Fungi (Basel) 2024; 10:154. [PMID: 38392827 PMCID: PMC10890238 DOI: 10.3390/jof10020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Cytokinesis, as the last stage of the cell division cycle, is a tightly controlled process amongst all eukaryotes, with defective division leading to severe cellular consequences and implicated in serious human diseases and conditions such as cancer. Both mammalian cells and the fission yeast Schizosaccharomyces pombe use binary fission to divide into two equally sized daughter cells. Similar to mammalian cells, in S. pombe, cytokinetic division is driven by the assembly of an actomyosin contractile ring (ACR) at the cell equator between the two cell tips. The ACR is composed of a complex network of membrane scaffold proteins, actin filaments, myosin motors and other cytokinesis regulators. The contraction of the ACR leads to the formation of a cleavage furrow which is severed by the endosomal sorting complex required for transport (ESCRT) proteins, leading to the final cell separation during the last stage of cytokinesis, the abscission. This review describes recent findings defining the two phases of cytokinesis in S. pombe: ACR assembly and constriction, and their coordination with septation. In summary, we provide an overview of the current understanding of the mechanisms regulating ACR-mediated cytokinesis in S. pombe and emphasize a potential role of ESCRT proteins in this process.
Collapse
Affiliation(s)
- Imane M Rezig
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK
| | - Wandiahyel G Yaduma
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK
- Department of Chemistry, School of Sciences, Adamawa State College of Education, Hong 640001, Adamawa State, Nigeria
| | - Christopher J McInerny
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK
| |
Collapse
|
2
|
Poinsignon T, Gallopin M, Grognet P, Malagnac F, Lelandais G, Poulain P. 3D models of fungal chromosomes to enhance visual integration of omics data. NAR Genom Bioinform 2023; 5:lqad104. [PMID: 38058589 PMCID: PMC10696920 DOI: 10.1093/nargab/lqad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
The functions of eukaryotic chromosomes and their spatial architecture in the nucleus are reciprocally dependent. Hi-C experiments are routinely used to study chromosome 3D organization by probing chromatin interactions. Standard representation of the data has relied on contact maps that show the frequency of interactions between parts of the genome. In parallel, it has become easier to build 3D models of the entire genome based on the same Hi-C data, and thus benefit from the methodology and visualization tools developed for structural biology. 3D modeling of entire genomes leverages the understanding of their spatial organization. However, this opportunity for original and insightful modeling is underexploited. In this paper, we show how seeing the spatial organization of chromosomes can bring new perspectives to omics data integration. We assembled state-of-the-art tools into a workflow that goes from Hi-C raw data to fully annotated 3D models and we re-analysed public omics datasets available for three fungal species. Besides the well-described properties of the spatial organization of their chromosomes (Rabl conformation, hypercoiling and chromosome territories), our results highlighted (i) in Saccharomyces cerevisiae, the backbones of the cohesin anchor regions, which were aligned all along the chromosomes, (ii) in Schizosaccharomyces pombe, the oscillations of the coiling of chromosome arms throughout the cell cycle and (iii) in Neurospora crassa, the massive relocalization of histone marks in mutants of heterochromatin regulators. 3D modeling of the chromosomes brings new opportunities for visual integration of omics data. This holistic perspective supports intuition and lays the foundation for building new concepts.
Collapse
Affiliation(s)
- Thibault Poinsignon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Mélina Gallopin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Pierre Grognet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Fabienne Malagnac
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Gaëlle Lelandais
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Pierre Poulain
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
3
|
Varberg JM, Unruh JR, Bestul AJ, Khan AA, Jaspersen SL. Quantitative analysis of nuclear pore complex organization in Schizosaccharomyces pombe. Life Sci Alliance 2022; 5:e202201423. [PMID: 35354597 PMCID: PMC8967992 DOI: 10.26508/lsa.202201423] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/06/2023] Open
Abstract
The number, distribution, and composition of nuclear pore complexes (NPCs) in the nuclear envelope varies between cell types and changes during cellular differentiation and in disease. To understand how NPC density and organization are controlled, we analyzed the NPC number and distribution in the fission yeast Schizosaccharomyces pombe using structured illumination microscopy. The small size of yeast nuclei, genetic features of fungi, and our robust image analysis pipeline allowed us to study NPCs in intact nuclei under multiple conditions. Our data revealed that NPC density is maintained across a wide range of nuclear sizes. Regions of reduced NPC density are observed over the nucleolus and surrounding the spindle pole body (SPB). Lem2-mediated tethering of the centromeres to the SPB is required to maintain NPC exclusion near SPBs. These findings provide a quantitative understanding of NPC number and distribution in S. pombe and show that interactions between the centromere and the nuclear envelope influences local NPC distribution.
Collapse
Affiliation(s)
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrew J Bestul
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Azqa A Khan
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
4
|
Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells 2021; 10:cells10102624. [PMID: 34685604 PMCID: PMC8534098 DOI: 10.3390/cells10102624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.
Collapse
|
5
|
Wang C, Wang D, Nie J, Gao X, Yin J, Zhu G. Unique Tubulin-Based Structures in the Zoonotic Apicomplexan Parasite Cryptosporidium parvum. Microorganisms 2021; 9:microorganisms9091921. [PMID: 34576816 PMCID: PMC8464796 DOI: 10.3390/microorganisms9091921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Cryptosporidium parasites are known to be highly divergent from other apicomplexan species at evolutionary and biological levels. Here we provide evidence showing that the zoonotic Cryptosporidium parvum also differs from other apicomplexans, such as Toxoplasma gondii, by possessing only two tubulin-based filamentous structures, rather than an array of subpellicular microtubules. Using an affinity-purified polyclonal antibody against C. parvum β-tubulin (CpTubB), we observed a long and a short microtubule that are rigid and stable in the sporozoites and restructured during the intracellular parasite development. In asexual development (merogony), the two restructuring microtubules are present in pairs (one pair per nucleus or merozoites). In sexual developmental stages, tubulin-based structures are detectable only in microgametes, but undetectable in macrogametes. These observations indicate that C. parvum parasites use unique microtubule structures that differ from other apicomplexans as part of their cytoskeletal elements.
Collapse
|
6
|
Nuclear Envelope Proteins Modulating the Heterochromatin Formation and Functions in Fission Yeast. Cells 2020; 9:cells9081908. [PMID: 32824370 PMCID: PMC7464478 DOI: 10.3390/cells9081908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/16/2022] Open
Abstract
The nuclear envelope (NE) consists of the inner and outer nuclear membranes (INM and ONM), and the nuclear pore complex (NPC), which penetrates the double membrane. ONM continues with the endoplasmic reticulum (ER). INM and NPC can interact with chromatin to regulate the genetic activities of the chromosome. Studies in the fission yeast Schizosaccharomyces pombe have contributed to understanding the molecular mechanisms underlying heterochromatin formation by the RNAi-mediated and histone deacetylase machineries. Recent studies have demonstrated that NE proteins modulate heterochromatin formation and functions through interactions with heterochromatic regions, including the pericentromeric and the sub-telomeric regions. In this review, we first introduce the molecular mechanisms underlying the heterochromatin formation and functions in fission yeast, and then summarize the NE proteins that play a role in anchoring heterochromatic regions and in modulating heterochromatin formation and functions, highlighting roles for a conserved INM protein, Lem2.
Collapse
|