1
|
Loganath K, Craig N, Barton A, Joshi S, Anagnostopoulos C, Erba PA, Glaudemans AWJM, Saraste A, Bucerius J, Lubberink M, Gheysens O, Buechel RR, Habib G, Gaemperli O, Gimelli A, Hyafil F, Newby DE, Slart RHJA, Dweck MR. Cardiovascular positron emission tomography imaging of fibroblast activation: A review of the current literature. J Nucl Cardiol 2024:102106. [PMID: 39672296 DOI: 10.1016/j.nuclcard.2024.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Fibrosis is one of the key healing responses to injury, especially within the heart, where it helps to maintain structural integrity following acute insults such as myocardial infarction. However, if it becomes dysregulated, then fibrosis can become maladaptive, leading to adverse remodelling, impaired cardiac function and heart failure. Fibroblast activation protein is exclusively expressed by activated fibroblasts, the key effector cells of fibrogenesis, and has a unique extracellular domain that is an ideal ligand for novel molecular imaging probes. Fibroblast activation protein inhibitor (FAPI) radiotracers have been developed for positron emission tomography (PET) imaging, demonstrating high selectivity for activated fibroblasts across a range of different pathologies and disparate organ systems. In this review, we will summarise the role of fibroblast activation protein in cardiovascular disease and how FAPI radiotracers might improve the assessment and treatment of patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Krithika Loganath
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| | - Neil Craig
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Barton
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Shruti Joshi
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Constantinos Anagnostopoulos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Paola Anna Erba
- Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy; Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamllynkatu, Turku, Finland; Heart Center, Turku University Hospital, Turku, Finland
| | - Jan Bucerius
- Department of Nuclear Medicine, Georg-August University Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Mark Lubberink
- Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Ronny R Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Zurich, Switzerland
| | - Gilbert Habib
- Cardiology Department, APHM, La Timone Hospital, Marseille, France; Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Oliver Gaemperli
- HeartClinic, Hirslanden Hospital Zurich, Hirslanden, Switzerland
| | | | - Fabien Hyafil
- Department of Nuclear Medicine, DMU IMAGINA, Georges-Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, University of Paris, Paris, France; PARCC, INSERM, University of Paris, Paris, France
| | - David E Newby
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Riemer H J A Slart
- Medical Imaging Centre, Department of Nuclear Medicine & Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Faculty of Science and Technology Biomedical, Photonic Imaging, University of Twente, Enschede, the Netherlands
| | - Marc R Dweck
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Kruithof BPT, Mousavi Gourabi B, van de Merbel AF, DeRuiter MC, Goumans MJ. A New Ex Vivo Model to Study Cardiac Fibrosis in Whole Mouse Hearts. JACC Basic Transl Sci 2024; 9:1005-1022. [PMID: 39297130 PMCID: PMC11405901 DOI: 10.1016/j.jacbts.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 09/21/2024]
Abstract
Fibrosis is a characteristic of many cardiac diseases for which no effective treatment exists. We have developed an ex vivo flow system, which allows induction of cardiac fibrosis in intact adult mouse hearts. Lineage-tracing studies indicated that the collagen-producing myofibroblasts originated from the resident fibroblasts. The extent of fibrosis was flow rate dependent, and pharmacological inhibition of the transforming growth factor beta signaling pathway prevented fibrosis. Therefore, in this powerful system, the cellular and molecular mechanisms underlying cardiac fibrosis can be studied. In addition, new targets can be tested on organ level for their ability to inhibit fibrosis.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Babak Mousavi Gourabi
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
3
|
Avagliano A, Fiume G, Bellevicine C, Troncone G, Venuta A, Acampora V, De Lella S, Ruocco MR, Masone S, Velotti N, Carotenuto P, Mallardo M, Caiazza C, Montagnani S, Arcucci A. Thyroid Cancer and Fibroblasts. Cancers (Basel) 2022; 14:cancers14174172. [PMID: 36077709 PMCID: PMC9455043 DOI: 10.3390/cancers14174172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid cancer is the most common type of endocrine cancer, and its prevalence continue to rise. Non-metastatic thyroid cancer patients are successfully treated. However, looking for new therapeutic strategies is of great importance for metastatic thyroid cancers that still lead to death. With respect to this, the tumor microenvironment (TME), which plays a key role in tumor progression, should be considered as a new promising therapeutic target to hamper thyroid cancer progression. Indeed, thyroid tumors consist of cancer cells and a heterogeneous and ever-changing niche, represented by the TME, which contributes to establishing most of the features of cancer cells. The TME consists of extracellular matrix (ECM) molecules, soluble factors, metabolites, blood and lymphatic tumor vessels and several stromal cell types that, by interacting with each other and with tumor cells, affect TME remodeling, cancer growth and progression. Among the thyroid TME components, cancer-associated fibroblasts (CAFs) have gained more attention in the last years. Indeed, recent important evidence showed that thyroid CAFs strongly sustain thyroid cancer growth and progression by producing soluble factors and ECM proteins, which, in turn, deeply affect thyroid cancer cell behavior and aggressiveness. Hence, in this article, we describe the thyroid TME, focusing on the desmoplastic stromal reaction, which is a powerful indicator of thyroid cancer progression and an invasive growth pattern. In addition, we discuss the origins and features of the thyroid CAFs, their influence on thyroid cancer growth and progression, their role in remodeling the ECM and their immune-modulating functions. We finally debate therapeutic perspectives targeting CAFs.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
- Correspondence: (A.A.); (A.A.); Tel.: +39-081-7463422 (A.A. & A.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Alessandro Venuta
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Vittoria Acampora
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Sabrina De Lella
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Nunzio Velotti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- Medical Genetics, Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
- Correspondence: (A.A.); (A.A.); Tel.: +39-081-7463422 (A.A. & A.A.)
| |
Collapse
|
4
|
Romano V, Ruocco MR, Carotenuto P, Barbato A, Venuta A, Acampora V, De Lella S, Vigliar E, Iaccarino A, Troncone G, Calì G, Insabato L, Russo D, Franco B, Masone S, Velotti N, Accurso A, Pellegrino T, Fiume G, Belviso I, Montagnani S, Avagliano A, Arcucci A. Generation and Characterization of a Tumor Stromal Microenvironment and Analysis of Its Interplay with Breast Cancer Cells: An In Vitro Model to Study Breast Cancer-Associated Fibroblast Inactivation. Int J Mol Sci 2022; 23:ijms23126875. [PMID: 35743318 PMCID: PMC9224278 DOI: 10.3390/ijms23126875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer-associated fibroblasts (BCAFs), the most abundant non-cancer stromal cells of the breast tumor microenvironment (TME), dramatically sustain breast cancer (BC) progression by interacting with BC cells. BCAFs, as well as myofibroblasts, display an up regulation of activation and inflammation markers represented by α-smooth muscle actin (α-SMA) and cyclooxygenase 2 (COX-2). BCAF aggregates have been identified in the peripheral blood of metastatic BC patients. We generated an in vitro stromal model consisting of human primary BCAFs grown as monolayers or 3D cell aggregates, namely spheroids and reverted BCAFs, obtained from BCAF spheroids reverted to 2D cell adhesion growth after 216 h of 3D culture. We firstly evaluated the state of activation and inflammation and the mesenchymal status of the BCAF monolayers, BCAF spheroids and reverted BCAFs. Then, we analyzed the MCF-7 cell viability and migration following treatment with conditioned media from the different BCAF cultures. After 216 h of 3D culture, the BCAFs acquired an inactivated phenotype, associated with a significant reduction in α-SMA and COX-2 protein expression. The deactivation of the BCAF spheroids at 216 h was further confirmed by the cytostatic effect exerted by their conditioned medium on MCF-7 cells. Interestingly, the reverted BCAFs also retained a less activated phenotype as indicated by α-SMA protein expression reduction. Furthermore, the reverted BCAFs exhibited a reduced pro-tumor phenotype as indicated by the anti-migratory effect exerted by their conditioned medium on MCF-7 cells. The deactivation of BCAFs without drug treatment is possible and leads to a reduced capability of BCAFs to sustain BC progression in vitro. Consequently, this study could be a starting point to develop new therapeutic strategies targeting BCAFs and their interactions with cancer cells.
Collapse
Affiliation(s)
- Veronica Romano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy; (P.C.); (A.B.); (B.F.)
- Medical Genetics, Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Barbato
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy; (P.C.); (A.B.); (B.F.)
| | - Alessandro Venuta
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Vittoria Acampora
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Sabrina De Lella
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Gaetano Calì
- IEOS Istituto di Endocrinologia e Oncologia Sperimentale ‘G. Salvatore’, National Council of Research, 80131 Naples, Italy;
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Brunella Franco
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy; (P.C.); (A.B.); (B.F.)
- Medical Genetics, Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy
- Scuola Superiore Meridionale, School for Advanced Studies, 80138 Naples, Italy
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzio Velotti
- Department of Advanced Biochemical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Tommaso Pellegrino
- DAI Chirurgia Generale, Endocrinologia, Ortopedia e Riabilitazione, Azienda Ospedaliera Universitaria Federico II, 80131 Naples, Italy;
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Immacolata Belviso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
- Correspondence: (A.A.); (A.A.); Tel.: +39-081-7463422 (A.A. & A.A.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (A.V.); (V.A.); (S.D.L.); (E.V.); (A.I.); (G.T.); (I.B.); (S.M.)
- Correspondence: (A.A.); (A.A.); Tel.: +39-081-7463422 (A.A. & A.A.)
| |
Collapse
|
5
|
Simon T, Salhia B. Cancer-Associated Fibroblast Subpopulations With Diverse and Dynamic Roles in the Tumor Microenvironment. Mol Cancer Res 2022; 20:183-192. [PMID: 34670861 PMCID: PMC9306405 DOI: 10.1158/1541-7786.mcr-21-0282] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/21/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023]
Abstract
Close interactions between cancer cells and cancer-associated fibroblasts (CAF) have repeatedly been reported to support tumor progression. Yet, targeting CAFs has so far failed to show a real benefit in cancer treatment, as preclinical studies have shown that such a strategy can enhance tumor growth. Accordingly, recent paradigm-shifting data suggest that certain CAF subpopulations could also show tumor-inhibitory capabilities. The present review aims to provide an in-depth description of the cellular heterogeneity of the CAF compartment in tumors. Through combining information from different cancer types, here we define 4 main CAF subpopulations that might cohabitate in any tumor microenvironment (TME). In addition, a model for the evolution of CAFs during tumor development is introduced. Moreover, the presence of tumor-inhibitory CAFs in the TME as well as their molecular characteristics are extensively discussed. Finally, the potential cellular origins of these distinct CAF subpopulations are reviewed. To our knowledge, this is the first attempt at establishing a broad but comprehensive classification of CAF subpopulations. Altogether, the present manuscript aims to provide the latest developments and innovative insights that could help refine future therapeutic targeting of CAFs for cancer treatment.
Collapse
Affiliation(s)
- Thomas Simon
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Corresponding Author: Bodour Salhia, Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033. Phone: 323-442-3099; E-mail:
| |
Collapse
|
6
|
Avagliano A, Arcucci A. Insights into Melanoma Fibroblast Populations and Therapeutic Strategy Perspectives: Friends or Foes? Curr Med Chem 2022; 29:6159-6168. [PMID: 35726413 DOI: 10.2174/0929867329666220620124138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022]
Abstract
Cutaneous melanoma (CM) is an aggressive and highly metastatic solid tumor associated with drug resistance. Before 2011, despite therapies based on cytokines or molecules inhibiting DNA synthesis, metastatic melanoma led to patient death within 18 months from diagnosis. However, recent studies on bidirectional interactions between melanoma cells and tumor microenvironment (TME) have had a significant impact on the development of new therapeutic strategies represented by targeted therapy and immunotherapy. In particular, the heterogeneous stromal fibroblast populations, including fibroblasts, fibroblast aggregates, myofibroblasts, and melanoma associated fibroblasts (MAFs), represent the most abundant cell population of TME and regulate cancer growth differently. Therefore, in this perspective article, we have highlighted the different impacts of fibroblast populations on cancer development and growth. In particular, we focused on the role of MAFs in sustaining melanoma cell survival, proliferation, migration and invasion, drug resistance, and immunoregulation. The important role of constitutively activated MAFs in promoting CM growth and immunoediting makes this cell type a promising target for cancer therapy.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
7
|
Systematically Assessing Natural Compounds’ Wound Healing Potential with Spheroid and Scratch Assays. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:227-241. [DOI: 10.1007/5584_2022_727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
9
|
Fibroblasts Influence Metastatic Melanoma Cell Sensitivity to Combined BRAF and MEK Inhibition. Cancers (Basel) 2021; 13:cancers13194761. [PMID: 34638245 PMCID: PMC8507536 DOI: 10.3390/cancers13194761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Preclinical 3D in vitro coculture models are known to be more complex systems than monolayer cell culture and mimic the physiological environment more closely. Three-dimensional dermal equivalents provide a relevant environment for cutaneous metastatic melanoma cells and are capable of modulating a cancer cell’s response to drugs. We showed that a combined targeted therapy (vemurafenib and cobimetinib) efficiently inhibits cell proliferation and induces apoptosis, especially in the 3D coculture model. A cancer-associated fibroblast population isolated from a cutaneous melanoma was also sensitive to the treatment but with no detectable induction of apoptosis. To better understand the complex crosstalk between melanoma cells and their microenvironment, we compared the influence of conditioned media obtained from healthy or cancer-associated fibroblasts on the response of metastatic melanomas to the drugs. Our data indicate that normal fibroblast supernatants potentialize the therapy’s efficiency, whereas cancer-associated fibroblast secretomes favor melanoma cell survival. Abstract The sensitivity of melanoma cells to targeted therapy compounds depends on the tumor microenvironment. Three-dimensional (3D) in vitro coculture systems better reflect the native structural architecture of tissues and are ideal for investigating cellular interactions modulating cell sensitivity to drugs. Metastatic melanoma (MM) cells (SK-MEL-28 BRAF V600E mutant and SK-MEL-2 BRAF wt) were cultured as a monolayer (2D) or cocultured on 3D dermal equivalents (with fibroblasts) and treated with a BRAFi (vemurafenib) combined with a MEK inhibitor (MEKi, cobimetinib). The drug combination efficiently inhibited 2D and 3D MM cell proliferation and survival regardless of their BRAF status. Two-dimensional and three-dimensional cancer-associated fibroblasts (CAFs), isolated from a cutaneous MM biopsy, were also sensitive to the targeted therapy. Conditioned media obtained from healthy dermal fibroblasts or CAFs modulated the MM cell’s response differently to the treatment: while supernatants from healthy fibroblasts potentialized the efficiency of drugs on MM, those from CAFs tended to increase cell survival. Our data indicate that the secretory profiles of fibroblasts influence MM sensitivity to the combined vemurafenib and cobimetinib treatment and highlight the need for 3D in vitro cocultures representing the complex crosstalk between melanoma and CAFs during preclinical studies of drugs.
Collapse
|
10
|
Romano V, Belviso I, Venuta A, Ruocco MR, Masone S, Aliotta F, Fiume G, Montagnani S, Avagliano A, Arcucci A. Influence of Tumor Microenvironment and Fibroblast Population Plasticity on Melanoma Growth, Therapy Resistance and Immunoescape. Int J Mol Sci 2021; 22:5283. [PMID: 34067929 PMCID: PMC8157224 DOI: 10.3390/ijms22105283] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Cutaneous melanoma (CM) tissue represents a network constituted by cancer cells and tumor microenvironment (TME). A key feature of CM is the high structural and cellular plasticity of TME, allowing its evolution with disease and adaptation to cancer cell and environmental alterations. In particular, during melanoma development and progression each component of TME by interacting with each other and with cancer cells is subjected to dramatic structural and cellular modifications. These alterations affect extracellular matrix (ECM) remodelling, phenotypic profile of stromal cells, cancer growth and therapeutic response. The stromal fibroblast populations of the TME include normal fibroblasts and melanoma-associated fibroblasts (MAFs) that are highly abundant and flexible cell types interacting with melanoma and stromal cells and differently influencing CM outcomes. The shift from the normal microenvironment to TME and from normal fibroblasts to MAFs deeply sustains CM growth. Hence, in this article we review the features of the normal microenvironment and TME and describe the phenotypic plasticity of normal dermal fibroblasts and MAFs, highlighting their roles in normal skin homeostasis and TME regulation. Moreover, we discuss the influence of MAFs and their secretory profiles on TME remodelling, melanoma progression, targeted therapy resistance and immunosurveillance, highlighting the cellular interactions, the signalling pathways and molecules involved in these processes.
Collapse
Affiliation(s)
- Veronica Romano
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Immacolata Belviso
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Alessandro Venuta
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (F.A.)
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Federica Aliotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (F.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Angelica Avagliano
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, 80125 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| |
Collapse
|
11
|
Abstract
Myofibroblasts are key cells in mediating normal wound contraction and promoting connective tissue deformations characteristic of fibrosis and scarring. Five decades ago, myofibroblasts were discovered in electron micrographs of wound granulation tissue as fibroblastic cells containing microfilaments that are organized in bundles like those present in smooth muscle. The contractile function of myofibroblasts was demonstrated by measuring the contraction of strips of granulation tissue in response to smooth muscle agonists and in cell culture. Although formation of contractile bundles already defines the myofibroblast, neo-expression of α-smooth muscle actin (α-SMA) in fibroblastic cells has become the most widely used myofibroblast marker. Because α-SMA incorporation into stress fibers mediates enhanced fibroblast contraction, it has been proposed and successfully tested as a drug target in therapeutic approaches to reduce tissue contractures. Other anti-fibrosis strategies target growth factor-, extracellular matrix-, and mechanical stress-induced pathways of myofibroblast activation from various precursors or aim to induce myofibroblast apoptosis. To understand the involved mechanisms of myofibroblast formation and function, critical experimental tools and animal models have been developed, which are made available in this collection of protocols by experts in the field.
Collapse
|
12
|
Sanità G, Carrese B, Lamberti A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front Mol Biosci 2020; 7:587012. [PMID: 33324678 PMCID: PMC7726445 DOI: 10.3389/fmolb.2020.587012] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
The use of nanoparticles (NP) in diagnosis and treatment of many human diseases, including cancer, is of increasing interest. However, cytotoxic effects of NPs on cells and the uptake efficiency significantly limit their use in clinical practice. The physico-chemical properties of NPs including surface composition, superficial charge, size and shape are considered the key factors that affect the biocompatibility and uptake efficiency of these nanoplatforms. Thanks to the possibility of modifying physico-chemical properties of NPs, it is possible to improve their biocompatibility and uptake efficiency through the functionalization of the NP surface. In this review, we summarize some of the most recent studies in which NP surface modification enhances biocompatibility and uptake. Furthermore, the most used techniques used to assess biocompatibility and uptake are also reported.
Collapse
Affiliation(s)
- Gennaro Sanità
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Landi N, Ruocco MR, Ragucci S, Aliotta F, Nasso R, Pedone PV, Di Maro A. Quinoa as source of type 1 ribosome inactivating proteins: A novel knowledge for a revision of its consumption. Food Chem 2020; 342:128337. [PMID: 33077288 DOI: 10.1016/j.foodchem.2020.128337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/30/2022]
Abstract
This study investigates on the presence of toxic proteins in quinoa seeds. To this aim, a plethora of biochemical approaches were adopted for the purification and characterization of quinoin, a type 1 ribosome-inactivating protein (RIP) contained in quinoa seeds. We determined its melting temperature (68.2 ± 0.6 °C) and thermostability (loss of activity after 10-min incubation at 70 °C). Considering that quinoa seeds are used as a food, we found that quinoin is cytotoxic against BJ-5ta (human fibroblasts) and HaCaT (human keratinocytes) in a dose- and time-dependent manner. Moreover, in an in vitro digestive pepsin-trypsin treatment, 30% of quinoin is resistant to enzymatic cleavage. This toxin was found in seeds (0.23 mg/g of seeds) and in sprouted seeds obtained after 24-h (0.12 mg/g of sprout) and 48-h (0.09 mg/g of sprout). We suggest a thermal treatment of quinoa seeds before consumption in order to inactivate the toxin, particularly in sprouts, generally consumed raw.
Collapse
Affiliation(s)
- Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II', Via S. Pansini 5, 80131 Naples, Italy
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Federica Aliotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II', Via S. Pansini 5, 80131 Naples, Italy
| | - Rosarita Nasso
- Department of Movement Sciences and Wellness, University of Naples 'Parthenope', Via F. Acton 38, 80133 Naples, Italy
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
14
|
Han X, Zhang WH, Wang WQ, Yu XJ, Liu L. Cancer-associated fibroblasts in therapeutic resistance of pancreatic cancer: Present situation, predicaments, and perspectives. Biochim Biophys Acta Rev Cancer 2020; 1874:188444. [PMID: 33031899 DOI: 10.1016/j.bbcan.2020.188444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is highly lethal, and the most effective treatment is curative resection followed by chemotherapy. Unfortunately, chemoresistance is an extremely common occurrence, and novel treatment modalities, such as immunotherapy and molecular targeted therapy, have shown limited success in clinical practice. Pancreatic cancer is characterized by an abundant stromal compartment. Cancer-associated fibroblasts (CAFs) and the extracellular matrix they deposit account for a large portion of the pancreatic tumor stroma. CAFs interact directly and indirectly with pancreatic cancer cells and can compromise the effects of, and even promote tumorigenic responses to, various treatment approaches. To eliminate these adverse effects, CAFs depletion strategies were developed. Instead of the anticipated antitumor effects of CAFs depletion, more aggressive tumor phenotypes were occasionally observed. The failure of universal stromal depletion led to the investigation of CAFs heterogeneity that forms the foundation for stromal remodeling and normalization. This review analyzes the role of CAFs in therapeutic resistance of pancreatic cancer and discusses potential CAFs-targeting strategies basing on the diverse biological functions of CAFs, thus to improve the outcome of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xuan Han
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wu-Hu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Avagliano A, Fiume G, Ruocco MR, Martucci N, Vecchio E, Insabato L, Russo D, Accurso A, Masone S, Montagnani S, Arcucci A. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers (Basel) 2020; 12:E1697. [PMID: 32604738 PMCID: PMC7352995 DOI: 10.3390/cancers12061697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
The stromal microenvironment regulates mammary gland development and tumorigenesis. In normal mammary glands, the stromal microenvironment encompasses the ducts and contains fibroblasts, the main regulators of branching morphogenesis. Understanding the way fibroblast signaling pathways regulate mammary gland development may offer insights into the mechanisms of breast cancer (BC) biology. In fact, the unregulated mammary fibroblast signaling pathways, associated with alterations in extracellular matrix (ECM) remodeling and branching morphogenesis, drive breast cancer microenvironment (BCM) remodeling and cancer growth. The BCM comprises a very heterogeneous tissue containing non-cancer stromal cells, namely, breast cancer-associated fibroblasts (BCAFs), which represent most of the tumor mass. Moreover, the different components of the BCM highly interact with cancer cells, thereby generating a tightly intertwined network. In particular, BC cells activate recruited normal fibroblasts in BCAFs, which, in turn, promote BCM remodeling and metastasis. Thus, comparing the roles of normal fibroblasts and BCAFs in the physiological and metastatic processes, could provide a deeper understanding of the signaling pathways regulating BC dissemination. Here, we review the latest literature describing the structure of the mammary gland and the BCM and summarize the influence of epithelial-mesenchymal transition (EpMT) and autophagy in BC dissemination. Finally, we discuss the roles of fibroblasts and BCAFs in mammary gland development and BCM remodeling, respectively.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzia Martucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| |
Collapse
|
16
|
Avagliano A, Fiume G, Pelagalli A, Sanità G, Ruocco MR, Montagnani S, Arcucci A. Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment. Front Oncol 2020; 10:722. [PMID: 32528879 PMCID: PMC7256186 DOI: 10.3389/fonc.2020.00722] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma (CM) is a highly aggressive and drug resistant solid tumor, showing an impressive metabolic plasticity modulated by oncogenic activation. In particular, melanoma cells can generate adenosine triphosphate (ATP) during cancer progression by both cytosolic and mitochondrial compartments, although CM energetic request mostly relies on glycolysis. The upregulation of glycolysis is associated with constitutive activation of BRAF/MAPK signaling sustained by BRAFV600E kinase mutant. In this scenario, the growth and progression of CM are strongly affected by melanoma metabolic changes and interplay with tumor microenvironment (TME) that sustain tumor development and immune escape. Furthermore, CM metabolic plasticity can induce a metabolic adaptive response to BRAF/MEK inhibitors (BRAFi/MEKi), associated with the shift from glycolysis toward oxidative phosphorylation (OXPHOS). Therefore, in this review article we survey the metabolic alterations and plasticity of CM, its crosstalk with TME that regulates melanoma progression, drug resistance and immunosurveillance. Finally, we describe hallmarks of melanoma therapeutic strategies targeting the shift from glycolysis toward OXPHOS.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.,Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Gennaro Sanità
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|