1
|
Zhao X, Wang Z, Wang L, Jiang T, Dong D, Sun M. The PINK1/Parkin signaling pathway-mediated mitophagy: a forgotten protagonist in myocardial ischemia/reperfusion injury. Pharmacol Res 2024; 209:107466. [PMID: 39419133 DOI: 10.1016/j.phrs.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Myocardial ischemia causes extensive damage, further exacerbated by reperfusion, a phenomenon called myocardial ischemia/reperfusion injury (MIRI). Nowadays, the pathological mechanisms of MIRI have received extensive attention. Oxidative stress, multiple programmed cell deaths, inflammation and others are all essential pathological mechanisms contributing to MIRI. Mitochondria are the energy supply centers of cells. Numerous studies have found that abnormal mitochondrial function is an essential "culprit" of MIRI, and mitophagy mediated by the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1)/Parkin signaling pathway is an integral part of maintaining mitochondrial function. Therefore, exploring the association between the PINK1/Parkin signaling pathway-mediated mitophagy and MIRI is crucial. This review will mainly summarize the crucial role of the PINK1/Parkin signaling pathway-mediated mitophagy in MIR-induced several pathological mechanisms and various potential interventions that affect the PINK1/Parkin signaling pathway-mediated mitophagy, thus ameliorating MIRI.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| | - Zheng Wang
- School of Medicine, Qilu Institute of Technology, Jinan 250200, China.
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, China.
| | - Tao Jiang
- Rehabilitation Medicine Center, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| |
Collapse
|
2
|
Li QR, Xu HY, Ma RT, Ma YY, Chen MJ. Targeting Autophagy: A Promising Therapeutic Strategy for Diabetes Mellitus and Diabetic Nephropathy. Diabetes Ther 2024; 15:2153-2182. [PMID: 39167303 PMCID: PMC11410753 DOI: 10.1007/s13300-024-01641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Diabetes mellitus (DM) significantly impairs patients' quality of life, primarily because of its complications, which are the leading cause of mortality among individuals with the disease. Autophagy has emerged as a key process closely associated with DM, including its complications such as diabetic nephropathy (DN). DN is a major complication of DM, contributing significantly to chronic kidney disease and renal failure. The intricate connection between autophagy and DM, including DN, highlights the potential for new therapeutic targets. This review examines the interplay between autophagy and these conditions, aiming to uncover novel approaches to treatment and enhance our understanding of their underlying pathophysiology. It also explores the role of autophagy in maintaining renal homeostasis and its involvement in the development and progression of DM and DN. Furthermore, the review discusses natural compounds that may alleviate these conditions by modulating autophagy.
Collapse
Affiliation(s)
- Qi-Rui Li
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China
| | - Hui-Ying Xu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China
| | - Rui-Ting Ma
- Inner Mongolia Autonomous Region Mental Health Center, Hohhot, 010010, China
| | - Yuan-Yuan Ma
- The Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao Street, Hohhot, 010050, China.
| | - Mei-Juan Chen
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China.
| |
Collapse
|
3
|
Pires CL, Moreno MJ. Improving the Accuracy of Permeability Data to Gain Predictive Power: Assessing Sources of Variability in Assays Using Cell Monolayers. MEMBRANES 2024; 14:157. [PMID: 39057665 PMCID: PMC11278619 DOI: 10.3390/membranes14070157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The ability to predict the rate of permeation of new compounds across biological membranes is of high importance for their success as drugs, as it determines their efficacy, pharmacokinetics, and safety profile. In vitro permeability assays using Caco-2 monolayers are commonly employed to assess permeability across the intestinal epithelium, with an extensive number of apparent permeability coefficient (Papp) values available in the literature and a significant fraction collected in databases. The compilation of these Papp values for large datasets allows for the application of artificial intelligence tools for establishing quantitative structure-permeability relationships (QSPRs) to predict the permeability of new compounds from their structural properties. One of the main challenges that hinders the development of accurate predictions is the existence of multiple Papp values for the same compound, mostly caused by differences in the experimental protocols employed. This review addresses the magnitude of the variability within and between laboratories to interpret its impact on QSPR modelling, systematically and quantitatively assessing the most common sources of variability. This review emphasizes the importance of compiling consistent Papp data and suggests strategies that may be used to obtain such data, contributing to the establishment of robust QSPRs with enhanced predictive power.
Collapse
Affiliation(s)
- Cristiana L. Pires
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
4
|
Zhang S, Yan F, Luan F, Chai Y, Li N, Wang YW, Chen ZL, Xu DQ, Tang YP. The pathological mechanisms and potential therapeutic drugs for myocardial ischemia reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155649. [PMID: 38653154 DOI: 10.1016/j.phymed.2024.155649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Cardiovascular disease is the main cause of death and disability, with myocardial ischemia being the predominant type that poses a significant threat to humans. Reperfusion, an essential therapeutic approach, promptly reinstates blood circulation to the ischemic myocardium and stands as the most efficacious clinical method for myocardial preservation. Nevertheless, the restoration of blood flow associated with this process can potentially induce myocardial ischemia-reperfusion injury (MIRI), thereby diminishing the effectiveness of reperfusion and impacting patient prognosis. Therefore, it is of great significance to prevent and treat MIRI. PURPOSE MIRI is an important factor affecting the prognosis of patients, and there is no specific in-clinic treatment plan. In this review, we have endeavored to summarize its pathological mechanisms and therapeutic drugs to provide more powerful evidence for clinical application. METHODS A comprehensive literature review was conducted using PubMed, Web of Science, Embase, Medline and Google Scholar with a core focus on the pathological mechanisms and potential therapeutic drugs of MIRI. RESULTS Accumulated evidence revealed that oxidative stress, calcium overload, mitochondrial dysfunction, energy metabolism disorder, ferroptosis, inflammatory reaction, endoplasmic reticulum stress, pyroptosis and autophagy regulation have been shown to participate in the process, and that the occurrence and development of MIRI are related to plenty of signaling pathways. Currently, a range of chemical drugs, natural products, and traditional Chinese medicine (TCM) preparations have demonstrated the ability to mitigate MIRI by targeting various mechanisms. CONCLUSIONS At present, most of the research focuses on animal and cell experiments, and the regulatory mechanisms of each signaling pathway are still unclear. The translation of experimental findings into clinical practice remains incomplete, necessitating further exploration through large-scale, multi-center randomized controlled trials. Given the absence of a specific drug for MIRI, the identification of therapeutic agents to reduce myocardial ischemia is of utmost significance. For the future, it is imperative to enhance our understanding of the pathological mechanism underlying MIRI, continuously investigate and develop novel pharmaceutical agents, expedite the clinical translation of these drugs, and foster innovative approaches that integrate TCM with Western medicine. These efforts will facilitate the emergence of fresh perspectives for the clinical management of MIRI.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Luan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yun Chai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Yu-Wei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Zhen-Lin Chen
- International Programs Office, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China.
| |
Collapse
|
5
|
Preinfalk V, Kimmeswenger I, Somoza V, Lieder B. Dipeptidyl-peptidase 4 (DPP4) mediates fatty acid uptake inhibition by glucose via TAS1R3 and GLUT-2 in Caco-2 enterocytes. Heliyon 2024; 10:e30329. [PMID: 38707340 PMCID: PMC11066672 DOI: 10.1016/j.heliyon.2024.e30329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Both high glucose intake with a high-fat meal and inhibition of dipeptidyl peptidase-4 (DPP4) have been associated with plasma lipid-lowering effects, but mechanistic understanding linking glucose and fat absorption is lacking. We here hypothesized that glucose ameliorates intestinal fatty acid uptake via a pathway involving DPP4. A concentration of 50 mM glucose reduced mean DPP4 activity in differentiated Caco-2 enterocytes by 42.5 % and fatty acid uptake by 66.0 % via nutrient sensing by the sweet taste receptor subunit TAS1R3 and glucose transporter GLUT-2. No effect of the DPP4 substrates GLP-1 and GIP or of the cellular energy status on the reduced uptake of fatty acids was seen, but a direct interaction between DPP4 and fatty acid transporters is suggested. Conclusively we identified DPP4 as a regulator of fatty acid absorption in Caco-2 enterocytes that mediates the inhibition of intestinal fatty acid uptake by glucose via an interplay of GLUT-2 and TAS1R3.
Collapse
Affiliation(s)
- Verena Preinfalk
- Christian Doppler Laboratory for Taste Research, Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
| | - Isabella Kimmeswenger
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Veronika Somoza
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Barbara Lieder
- Christian Doppler Laboratory for Taste Research, Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Clinical Nutrition, Department of Human Nutrition and Dietetics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
6
|
Dubois N, Muñoz-Garcia J, Heymann D, Renodon-Cornière A. High glucose exposure drives intestinal barrier dysfunction by altering its morphological, structural and functional properties. Biochem Pharmacol 2023; 216:115765. [PMID: 37619641 DOI: 10.1016/j.bcp.2023.115765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
High dietary glucose consumption and hyperglycemia can result in chronic complications. Several studies suggest that high glucose (HG) induces dysfunction of the intestinal barrier. However, the precise changes remain unclear. In our study, we used in vitro models composed of Caco-2 and/or HT29-MTX cells in both monoculture and co-culture to assess the effects of long-term HG exposure on the morphological, structural, and functional properties of the intestinal barrier. Cells were grown in medium containing normal physiologic glucose (NG, 5.5 mM) or a clinically relevant HG (25 mM) concentration until 21 days. Results demonstrated that HG induced morphological changes, with the layers appearing denser and less organized than under physiological conditions, which is in accordance with the increased migration capacity of Caco-2 cells and proliferation properties of HT29-MTX cells. Although we mostly observed a small decrease in mRNA and protein expressions of three junction proteins (ZO-1, OCLN and E-cad) in both Caco-2 and HT29-MTX cells cultured in HG medium, confocal microscopy showed that HG induced a remarkable reduction in their immunofluorescence intensity, triggering disruption of their associated structural network. In addition, we highlighted that HG affected different functionalities (permeability, mucus production and alkaline phosphatase activity) of monolayers with Caco-2 and HT29-MTX cells. Interestingly, these alterations were stronger in co-culture than in monoculture, suggesting a cross-relationship between enterocytes and goblet cells. Controlling hyperglycemia remains a major therapeutical method for reducing damage to the intestinal barrier and improving therapies.
Collapse
Affiliation(s)
- Nolwenn Dubois
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France
| | - Javier Muñoz-Garcia
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France; The University of Sheffield, Dept of Oncology and Metabolism, S102RX Sheffield, UK
| | - Axelle Renodon-Cornière
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France.
| |
Collapse
|
7
|
Sreekumar PG, Su F, Spee C, Hong E, Komirisetty R, Araujo E, Nusinowitz S, Reddy ST, Kannan R. Paraoxonase 2 Deficiency Causes Mitochondrial Dysfunction in Retinal Pigment Epithelial Cells and Retinal Degeneration in Mice. Antioxidants (Basel) 2023; 12:1820. [PMID: 37891899 PMCID: PMC10604559 DOI: 10.3390/antiox12101820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Although AMD is a complex disease, oxidative stress is a crucial contributor to its development, especially in view of the higher oxygen demand of the retina. Paraoxonase 2 (PON2) is a ubiquitously and constitutively expressed antioxidant protein that is found intracellularly associated with mitochondrial membranes and modulates mitochondrial ROS production and function. The contribution of PON2 to AMD has not been studied to date. In this study, we examined the role of PON2 in AMD utilizing both in vitro and in vivo models of AMD with emphasis on mitochondrial function. Mitochondrial localization and regulation of PON2 following oxidative stress were determined in human primary cultured retinal pigment epithelium (hRPE) cells. PON2 was knocked down in RPE cells using siRNA and mitochondrial bioenergetics were measured. To investigate the function of PON2 in the retina, WT and PON2-deficient mice were administered NaIO3 (20 mg/kg) intravenously; fundus imaging, optical coherence tomography (OCT), electroretinography (ERG) were conducted; and retinal thickness and cell death were measured and quantified. In hRPE, mitochondrial localization of PON2 increased markedly with stress. Moreover, a time-dependent regulation of PON2 was observed following oxidative stress, with an initial significant increase in expression followed by a significant decrease. Mitochondrial bioenergetic parameters (basal respiration, ATP production, spare respiratory capacity, and maximal respiration) showed a significant decrease with oxidative stress, which was further exacerbated in the absence of PON2. NaIO3 treatment caused significant retinal degeneration, retinal thinning, and reduced rod and cone function in PON2-deficient mice when compared to WT mice. The apoptotic cells and active caspase 3 significantly increased in PON2-deficient mice treated with NaIO3, when compared to WT mice. Our investigation demonstrates that deficiency of PON2 results in RPE mitochondrial dysfunction and a decline in retinal function. These findings imply that PON2 may have a beneficial role in retinal pathophysiology and is worthy of further investigation.
Collapse
Affiliation(s)
| | - Feng Su
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA;
| | - Christine Spee
- Doheny Eye Institute, Pasadena, CA 91103, USA; (P.G.S.); (C.S.); (E.H.)
| | - Elise Hong
- Doheny Eye Institute, Pasadena, CA 91103, USA; (P.G.S.); (C.S.); (E.H.)
| | - Ravikiran Komirisetty
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA;
| | - Eduardo Araujo
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; (E.A.); (S.N.)
| | - Steven Nusinowitz
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; (E.A.); (S.N.)
| | - Srinivasa T. Reddy
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA;
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ram Kannan
- Doheny Eye Institute, Pasadena, CA 91103, USA; (P.G.S.); (C.S.); (E.H.)
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; (E.A.); (S.N.)
| |
Collapse
|
8
|
Effect of Sphingomyelinase-Treated LDLs on HUVECs. Molecules 2023; 28:molecules28052100. [PMID: 36903354 PMCID: PMC10004656 DOI: 10.3390/molecules28052100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Low-density lipoproteins (LDLs) exert a key role in the transport of esterified cholesterol to tissues. Among the atherogenic modifications of LDLs, the oxidative modification has been mainly investigated as a major risk factor for accelerating atherogenesis. Since LDL sphingolipids are also emerging as important regulators of the atherogenic process, increasing attention is devoted to the effects of sphingomyelinase (SMase) on LDL structural and atherogenic properties. The aims of the study were to investigate the effect of SMase treatment on the physical-chemical properties of LDLs. Moreover, we evaluated cell viability, apoptosis, and oxidative and inflammatory status in human umbilical vein endothelial cells (HUVECs) treated with either ox-LDLs or SMase-treated LDLs (SMase-LDLs). Both treatments were associated with the accrual of the intracellular ROS and upregulation of the antioxidant Paraoxonase 2 (PON2), while only SMase-LDLs induced an increase of superoxide dismutase 2 (SOD2), suggesting the activation of a feedback loop to restrain the detrimental effects of ROS. The increased caspase-3 activity and reduced viability observed in cells treated with SMase-LDLs and ox-LDLs suggest a pro-apoptotic effect of these modified lipoproteins on endothelial cells. Moreover, a strong proinflammatory effect of SMase-LDLs compared to ox-LDLs was confirmed by an increased activation of NF-κB and consequent increased expression of its downstream cytokines IL-8 and IL-6 in HUVECs.
Collapse
|
9
|
Rahmoon MA, Elghaish RA, Ibrahim AA, Alaswad Z, Gad MZ, El-Khamisy SF, Elserafy M. High Glucose Increases DNA Damage and Elevates the Expression of Multiple DDR Genes. Genes (Basel) 2023; 14:144. [PMID: 36672885 PMCID: PMC9858638 DOI: 10.3390/genes14010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
The DNA Damage Response (DDR) pathways sense DNA damage and coordinate robust DNA repair and bypass mechanisms. A series of repair proteins are recruited depending on the type of breaks and lesions to ensure overall survival. An increase in glucose levels was shown to induce genome instability, yet the links between DDR and glucose are still not well investigated. In this study, we aimed to identify dysregulation in the transcriptome of normal and cancerous breast cell lines upon changing glucose levels. We first performed bioinformatics analysis using a microarray dataset containing the triple-negative breast cancer (TNBC) MDA-MB-231 and the normal human mammary epithelium MCF10A cell lines grown in high glucose (HG) or in the presence of the glycolysis inhibitor 2-deoxyglucose (2DG). Interestingly, multiple DDR genes were significantly upregulated in both cell lines grown in HG. In the wet lab, we remarkably found that HG results in severe DNA damage to TNBC cells as observed using the comet assay. In addition, several DDR genes were confirmed to be upregulated using qPCR analysis in the same cell line. Our results propose a strong need for DDR pathways in the presence of HG to oppose the severe DNA damage induced in cells.
Collapse
Affiliation(s)
- Mai A. Rahmoon
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Reem A. Elghaish
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Aya A. Ibrahim
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Zina Alaswad
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Mohamed Z. Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Sherif F. El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
- The Healthy Lifespan Institute and Institute of Neuroscience, School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1 DP, UK
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| |
Collapse
|
10
|
Scirè A, Cianfruglia L, Minnelli C, Romaldi B, Laudadio E, Galeazzi R, Antognelli C, Armeni T. Glyoxalase 2: Towards a Broader View of the Second Player of the Glyoxalase System. Antioxidants (Basel) 2022; 11:2131. [PMID: 36358501 PMCID: PMC9686547 DOI: 10.3390/antiox11112131] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Glyoxalase 2 is a mitochondrial and cytoplasmic protein belonging to the metallo-β-lactamase family encoded by the hydroxyacylglutathione hydrolase (HAGH) gene. This enzyme is the second enzyme of the glyoxalase system that is responsible for detoxification of the α-ketothaldehyde methylglyoxal in cells. The two enzymes glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) form the complete glyoxalase pathway, which utilizes glutathione as cofactor in eukaryotic cells. The importance of Glo2 is highlighted by its ubiquitous distribution in prokaryotic and eukaryotic organisms. Its function in the system has been well defined, but in recent years, additional roles are emerging, especially those related to oxidative stress. This review focuses on Glo2 by considering its genetics, molecular and structural properties, its involvement in post-translational modifications and its interaction with specific metabolic pathways. The purpose of this review is to focus attention on an enzyme that, from the most recent studies, appears to play a role in multiple regulatory pathways that may be important in certain diseases such as cancer or oxidative stress-related diseases.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Brenda Romaldi
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Emiliano Laudadio
- Department of Science and Engineering of Materials, Environment and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| |
Collapse
|
11
|
Morresi C, Vasarri M, Bellachioma L, Ferretti G, Degl′Innocenti D, Bacchetti T. Glucose Uptake and Oxidative Stress in Caco-2 Cells: Health Benefits from Posidonia oceanica (L.) Delile. Mar Drugs 2022; 20:md20070457. [PMID: 35877750 PMCID: PMC9319946 DOI: 10.3390/md20070457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
Posidonia oceanica (L.) Delile is an endemic Mediterranean marine plant of extreme ecological importance. Previous in vitro and in vivo studies have demonstrated the potential antidiabetic properties of P. oceanica leaf extract. Intestinal glucose transporters play a key role in glucose homeostasis and represent novel targets for the management of diabetes. In this study, the ability of a hydroalcoholic P. oceanica leaf extract (POE) to modulate intestinal glucose transporters was investigated using Caco-2 cells as a model of an intestinal barrier. The incubation of cells with POE significantly decreased glucose uptake by decreasing the GLUT2 glucose transporter levels. Moreover, POE had a positive effect on the barrier integrity by increasing the Zonulin-1 levels. A protective effect exerted by POE against oxidative stress induced by chronic exposure to high glucose concentrations or tert-butyl hydroperoxide was also demonstrated. This study highlights for the first time the effect of POE on glucose transport, intestinal barrier integrity, and its protective antioxidant effect in Caco-2 cells. These findings suggest that the P. oceanica phytocomplex may have a positive impact by preventing the intestinal cell dysfunction involved in the development of inflammation-related disease associated with oxidative stress.
Collapse
Affiliation(s)
- Camilla Morresi
- Department of Clinical Experimental Science and Odontostomatology-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (C.M.); (G.F.)
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Luisa Bellachioma
- Department of Life and Environmental Sciences-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (L.B.); (T.B.)
| | - Gianna Ferretti
- Department of Clinical Experimental Science and Odontostomatology-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (C.M.); (G.F.)
| | - Donatella Degl′Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
- Interuniversity Center of Marine Biology and Applied Ecology “G. Bacci” (CIBM), Viale N. Sauro 4, 57128 Livorno, Italy
- Correspondence:
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (L.B.); (T.B.)
| |
Collapse
|
12
|
Santoso P, Maliza R, Octavian R, Rita RS. Dietary fiber of jicama ( Pachyrhizus erosus L) tuber exerts hepatoprotective effect against high-sugar drinks in mice. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Jicama (Pachyrhizus erosus, family Fabaceae) is a potent medicinal plant. Although extensive studies report the health benefits of jicama extract, few studies have investigated the efficacy of its dietary fiber in preventing metabolic diseases, including liver disease. The present study aimed to elucidate whether dietary fiber obtained from the jicama tuber counteracts the development of liver disease induced by high-sugar drinks. Methods: Twenty-four adult male mice (DDY strain; 2 months old with bodyweight 22-25 g) were randomized into three groups: normal drink (ND), fed with tap water and standard chow; high-sucrose drink (HSD), fed with a high-sucrose drink and standard chow; and high-sucrose drink plus standard chow with 25% jicama fiber (HSD + JF 25%). After the mice were on their respective diets for ten weeks, the following parameters were measured: body weight, liver weight, malondialdehyde (MDA), histopathological alterations, blood glucose, and serum glutamate-pyruvate transaminase (SGPT). Results: Mice in the HSD + JF 25% group had significantly lower body weight (P < 0.01), liver weight (P<0.05), MDA (P<0.01), blood glucose (P<0.01), and SGPT (P<0.01) compared to those in the HSD group. They also had fewer histopathological alterations in the liver, as demonstrated by a lower proportion of degenerated cells and an overall lower histopathological score than those in the HSD group (P<0.05). Conclusion: Adding jicama fiber (25% of standard chow) mitigates the increase in blood glucose and body weight and histopathological changes in the liver induced by high-sucrose drinks, showing liver protective activity.
Collapse
Affiliation(s)
- Putra Santoso
- Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University, Padang West Sumatra 25163, Indonesia
| | - Rita Maliza
- Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University, Padang West Sumatra 25163, Indonesia
| | - Riski Octavian
- Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University, Padang West Sumatra 25163, Indonesia
| | - Rauza Sukma Rita
- Biochemistry Department, Faculty of Medicine, Andalas University, Padang West Sumatra 25163 Indonesia
| |
Collapse
|
13
|
Потеряева ОН, Усынин ИФ. [Dysfunctional high-density lipoproteins in diabetes mellitus]. PROBLEMY ENDOKRINOLOGII 2022; 68:69-77. [PMID: 36104968 PMCID: PMC9762443 DOI: 10.14341/probl13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/09/2023]
Abstract
The risk of cardiovascular disease (CVD) in persons with type 2 diabetes mellitus (DM2) increases two to four times. One of the main factors increasing cardiovascular risk is dyslipidemia, which includes abnormalities in all lipoproteins, including high-density lipoproteins (HDL). The development of DM2 is accompanied not only by a decrease in the level of HDL, but also by significant changes in their structure. This leads to the transformation of native HDL into so-called dysfunctional or diabetic HDL, which loses their antiatherogenic, cardioprotective, anti-inflammatory and anti-diabetic properties. In poorly controlled diabetes mellitus HDL can not only lose its beneficial functions, but also acquire proatherogenic, proinflammatory ones. Diabetic HDL can contribute to the accumulation of such unfavorable qualities as increased proliferation, migration, and invasion of cancer cells. Given that HDL, in addition to participation in cholesterol transport, performs important regulatory functions in the body, there is reason to assume that structural modifications of HDL (oxidation, glycation, triglyceride enrichment, loss of HDL-associated enzymes, etc.) are one of the causes of vascular complications of diabetes.
Collapse
Affiliation(s)
- О. Н. Потеряева
- Научно-исследовательский институт биохимии Федерального исследовательского центра фундаментальной и трансляционной медицины
| | - И. Ф. Усынин
- Научно-исследовательский институт биохимии Федерального исследовательского центра фундаментальной и трансляционной медицины
| |
Collapse
|
14
|
Cheng K, Guo Q, Yang W, Wang Y, Sun Z, Wu H. Mapping Knowledge Landscapes and Emerging Trends of the Links Between Bone Metabolism and Diabetes Mellitus: A Bibliometric Analysis From 2000 to 2021. Front Public Health 2022; 10:918483. [PMID: 35719662 PMCID: PMC9204186 DOI: 10.3389/fpubh.2022.918483] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
BackgroundDiabetes mellitus (DM) have become seriously threatens to human health and life quality worldwide. As a systemic metabolic disease, multiple studies have revealed that DM is related to metabolic bone diseases and always induces higher risk of fracture. In view of this, the links between bone metabolism (BM) and DM (BMDM) have gained much attention and numerous related papers have been published. Nevertheless, no prior studies have yet been performed to analyze the field of BMDM research through bibliometric approach. To fill this knowledge gap, we performed a comprehensive bibliometric analysis of the global scientific publications in this field.MethodsArticles and reviews regarding BMDM published between 2000 and 2021 were obtained from the Web of Science after manually screening. VOSviewer 1.6.16, CiteSpace V 5.8.R3, Bibliometrix, and two online analysis platforms were used to conduct the bibliometric and visualization analyses.ResultsA total of 2,525 documents including 2,255 articles and 270 reviews were retrieved. Our analysis demonstrated a steady increasing trend in the number of publications over the past 22 years (R2 = 0.989). The United States has occupied the leading position with the largest outputs and highest H-index. University of California San Francisco contributed the most publications, and Schwartz AV was the most influential author. Collaboration among institutions from different countries was relatively few. The journals that published the most BMDM-related papers were Bone and Osteoporosis International. Osteoporosis and related fractures are the main bone metabolic diseases of greatest concern in this field. According to co-cited references result, “high glucose environment,” “glycation end-product” and “sodium-glucose co-transporter” have been recognized as the current research focus in this domain. The keywords co-occurrence analysis indicated that “diabetic osteoporosis,” “osteoarthritis,” “fracture risk,” “meta-analysis,” “osteogenic differentiation,” “bone regeneration,” “osteogenesis,” and “trabecular bone score” might remain the research hotspots and frontiers in the near future.ConclusionAs a cross-discipline research field, the links between bone metabolism and diabetes mellitus are attracting increased attention. Osteoporosis and related fractures are the main bone metabolic diseases of greatest concern in this field. These insights may be helpful for clinicians to recognize diabetic osteopenia and provide more attention and support to such patients.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Kunming Cheng
| | - Qiang Guo
- Department of Orthopaedic Surgery, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Weiguang Yang
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- *Correspondence: Zaijie Sun
| | - Haiyang Wu
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Haiyang Wu
| |
Collapse
|
15
|
Studies on testicular ultrastructural and hormonal changes in type-2 diabetic rats treated with highly active antiretroviral therapy conjugated silver nanoparticles. Life Sci 2022; 298:120498. [PMID: 35341824 DOI: 10.1016/j.lfs.2022.120498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 11/24/2022]
Abstract
AIM This study investigated the impact of highly active antiretroviral therapy (HAART) loaded silver nanoparticles (AgNPs) as HAART-AgNPs on the sperm count, viability, serum hormonal profile, insulin-like growth factor I (IGF-1), and testicular ultrastructure. METHODS Thirty-six adult male Sprague-Dawley rats were allocated into diabetic and non-diabetic groups (n = 18). The rats in the diabetic group were induced experimental type 2 diabetes using fructose and streptozotocin (frt-STZ). Animals in both groups were subdivided into three groups each, A-C and DF (n = 6), and received distilled water, HAART, and HAART-AgNP, respectively. FINDINGS Treatment with HAART-AgNP displayed a significant increase (p < 0.05) in serum gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testicular IGF-1 in diabetic rats. Also, electron microscopy revealed ameliorated testicular ultrastructure upon administration of HAART-AgNP in diabetic rats that were previously marked with architectural and cellular alterations. In addition, treatment with HAART-AgNP significantly reduced (p < 0.05) the blood glucose levels of diabetic rats. In contrast, the treatment of non-diabetic rats with HAART caused a significant decrease (p < 0.05) in the sperm count, serum GnRH, and testicular IGF-1, however, this treatment induced ultrastructural changes and a significant increase (p < 0.05) in serum testosterone levels in diabetic and non-diabetic rats. SIGNIFICANCE This study has demonstrated the beneficial impact of HAART-AgNP on the hypothalamic-pituitary-gonadal axis, IGF-1, and testicular architecture in male frt-STZ induced diabetic rats. This nanoconjugate could be a potential nano-drug candidate to cater for testicular dysfunction and metabolic derangements while managing HIV-infected male individuals.
Collapse
|
16
|
Abstract
Paraoxonase 2 (PON2) is a ubiquitously expressed intracellular enzyme that is known to have a protective role from oxidative stress. Clinical studies have also demonstrated the significance of PON2 in the manifestation of cardiovascular and several other diseases, and hence, it is considered an important biomarker. Recent findings of its expression in brain tissue suggest its potential protective effect on oxidative stress and neuroinflammation. Polymorphisms of PON2 in humans are a risk factor in many pathological conditions, suggesting a possible mechanism of its anti-oxidative property probably through lactonase activity. However, exogenous factors may also modulate the expression and activity of PON2. Hence, this review aims to report the mechanism by which PON2 expression is regulated and its role in oxidative stress disorders such as neurodegeneration and tumor formation. The role of PON2 owing to its lactonase activity in bacterial infectious diseases and association of PON2 polymorphism with pathological conditions are also highlighted.
Collapse
Affiliation(s)
- Fauzia Parween
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
17
|
Parween F, Gupta RD. Insights into the role of paraoxonase 2 in human pathophysiology. J Biosci 2022; 47:4. [PMID: 35092416 PMCID: PMC8721187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/10/2021] [Indexed: 09/18/2023]
Abstract
Paraoxonase 2 (PON2) is a ubiquitously expressed intracellular enzyme that is known to have a protective role from oxidative stress. Clinical studies have also demonstrated the significance of PON2 in the manifestation of cardiovascular and several other diseases, and hence, it is considered an important biomarker. Recent findings of its expression in brain tissue suggest its potential protective effect on oxidative stress and neuroinflammation. Polymorphisms of PON2 in humans are a risk factor in many pathological conditions, suggesting a possible mechanism of its anti-oxidative property probably through lactonase activity. However, exogenous factors may also modulate the expression and activity of PON2. Hence, this review aims to report the mechanism by which PON2 expression is regulated and its role in oxidative stress disorders such as neurodegeneration and tumor formation. The role of PON2 owing to its lactonase activity in bacterial infectious diseases and association of PON2 polymorphism with pathological conditions are also highlighted.
Collapse
Affiliation(s)
- Fauzia Parween
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
18
|
Parween F, Hossain MS, Singh KP, Gupta RD. Association between human paraoxonase 2 protein and efficacy of acetylcholinesterase inhibiting drugs used against Alzheimer's disease. PLoS One 2021; 16:e0258879. [PMID: 34714861 PMCID: PMC8555796 DOI: 10.1371/journal.pone.0258879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
Serum Paraoxonase 2 (PON2) level is a potential biomarker owing to its association with a number of pathophysiological conditions such as atherosclerosis and cardiovascular disease. Since cholinergic deficiency is closely linked with Alzheimer's disease (AD) progression, acetylcholinesterase inhibitors (AChEIs) are the treatment of choice for patients with AD. However, there is a heterogenous response to these drugs and mostly the subjects do not respond to the treatment. Gene polymorphism, the simultaneous occurrence of two or more discontinuous alleles in a population, could be one of the important factors for this. Hence, we hypothesized that PON2 and its polymorphic forms may be hydrolyzing the AChEIs differently, and thus, different patients respond differently. To investigate this, two AChEIs, donepezil hydrochloride (DHC) and pyridostigmine bromide (PB), were selected. Human PON2 wildtype gene and four mutants, two catalytic sites, and two polymorphic sites were cloned, recombinantly expressed, and purified for in vitro analysis. Enzyme activity and AChE activity were measured to quantitate the amount of DHC and PB hydrolyzed by the wildtype and the mutant proteins. Herein, PON2 esterase activity and AChE inhibitor efficiency were found to be inversely related. A significant difference in enzyme activity of the catalytic site mutants was observed as compared to the wildtype, and subsequent AChE activity showed that esterase activity of PON2 is responsible for the hydrolysis of DHC and PB. Interestingly, PON2 polymorphic site mutants showed increased esterase activity; therefore, this could be the reason for the ineffectiveness of the drugs. Thus, our data suggested that the esterase activity of PON2 was mainly responsible for the hydrolysis of AChEI, DHC, and PB, and that might be responsible for the variation in individual response to AChEI therapy.
Collapse
Affiliation(s)
- Fauzia Parween
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Md. Summon Hossain
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Kshetra Pal Singh
- Defence Research and Development Establishment (DRDO), Gwalior, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
- * E-mail:
| |
Collapse
|
19
|
Ali A, Kuo W, Kuo C, Lo J, Chen MYC, Daddam JR, Ho T, Viswanadha VP, Shibu MA, Huang C. E3 ligase activity of Carboxyl terminus of Hsc70 interacting protein (CHIP) in Wharton's jelly derived mesenchymal stem cells improves their persistence under hyperglycemic stress and promotes the prophylactic effects against diabetic cardiac damages. Bioeng Transl Med 2021; 6:e10234. [PMID: 34589606 PMCID: PMC8459600 DOI: 10.1002/btm2.10234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 01/28/2023] Open
Abstract
Recent studies indicate that umbilical cord stem cells are cytoprotective against several disorders. One critical limitation in using stem cells is reduction in their viability under stressful conditions, such as diabetes. However, the molecular intricacies responsible for diabetic conditions are not fully elucidated. In this study, we found that high glucose (HG) conditions induced loss of chaperone homeostasis, stabilized PTEN, triggered the downstream signaling cascade, and induced apoptosis and oxidative stress in Wharton's jelly derived mesenchymal stem cells (WJMSCs). Increased Carboxyl terminus of Hsc70 interacting protein (CHIP) expression promoted phosphatase and tensin homolog (PTEN) degradation via the ubiquitin-proteasome system and shortened its half-life during HG stress. Docking studies confirmed the interaction of CHIP with PTEN and FOXO3a with the Bim promoter region. Further, it was found that the chaperone system is involved in CHIP-mediated PTEN proteasomal degradation. CHIP depletion stabilizes PTEN whereas PTEN inhibition showed an inverse effect. CHIP overactivation suppressed the binding of FOXO3a with bim. Coculturing CHIP overexpressed WJMSCs suppressed HG-induced apoptosis and oxidative stress in embryo derived cardiac cell lines. CHIP overexpressing and PTEN silenced WJMSCs ameliorated diabetic effects in streptozotocin (STZ) induced diabetic rats and further improved their body weight and heart weight, and rescued from hyperglycemia-induced cardiac injury. Considering these, the current study suggests that CHIP confers resistance to apoptosis and acts as a potentiation factor in WJMSCs to provide protection from degenerative effects of diabetes.
Collapse
Affiliation(s)
- Ayaz Ali
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan
| | - Wei‐Wen Kuo
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan
- Ph.D. Program for Biotechnology Industry, China Medical UniversityTaichungTaiwan
| | - Chia‐Hua Kuo
- Laboratory of Exercise BiochemistryUniversity of TaipeiTaipeiTaiwan
| | - Jeng‐Fan Lo
- Institute of Oral Biology, National Yang‐Ming UniversityTaipeiTaiwan
| | | | - Jayasimha R. Daddam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
| | - Tsung‐Jung Ho
- Department of Chinese MedicineHualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi UniversityHualienTaiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
| | | | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
| | - Chih‐Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University Hospital, China Medical UniversityTaichungTaiwan
- Department of BiotechnologyAsia UniversityTaichungTaiwan
- Center of General Education, Buddhist Tzu Chi Medical FoundationTzu Chi University of Science and TechnologyHualienTaiwan
| |
Collapse
|
20
|
Kosmachevskaya OV, Novikova NN, Topunov AF. Carbonyl Stress in Red Blood Cells and Hemoglobin. Antioxidants (Basel) 2021; 10:253. [PMID: 33562243 PMCID: PMC7914924 DOI: 10.3390/antiox10020253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The paper overviews the peculiarities of carbonyl stress in nucleus-free mammal red blood cells (RBCs). Some functional features of RBCs make them exceptionally susceptible to reactive carbonyl compounds (RCC) from both blood plasma and the intracellular environment. In the first case, these compounds arise from the increased concentrations of glucose or ketone bodies in blood plasma, and in the second-from a misbalance in the glycolysis regulation. RBCs are normally exposed to RCC-methylglyoxal (MG), triglycerides-in blood plasma of diabetes patients. MG modifies lipoproteins and membrane proteins of RBCs and endothelial cells both on its own and with reactive oxygen species (ROS). Together, these phenomena may lead to arterial hypertension, atherosclerosis, hemolytic anemia, vascular occlusion, local ischemia, and hypercoagulation phenotype formation. ROS, reactive nitrogen species (RNS), and RCC might also damage hemoglobin (Hb), the most common protein in the RBC cytoplasm. It was Hb with which non-enzymatic glycation was first shown in living systems under physiological conditions. Glycated HbA1c is used as a very reliable and useful diagnostic marker. Studying the impacts of MG, ROS, and RNS on the physiological state of RBCs and Hb is of undisputed importance for basic and applied science.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | | | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
21
|
Human Paraoxonase-2 (PON2): Protein Functions and Modulation. Antioxidants (Basel) 2021; 10:antiox10020256. [PMID: 33562328 PMCID: PMC7915308 DOI: 10.3390/antiox10020256] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
PON1, PON2, and PON3 belong to a family of lactone hydrolyzing enzymes endowed with various substrate specificities. Among PONs, PON2 shows the highest hydrolytic activity toward many acyl-homoserine lactones (acyl-HL) involved in bacterial quorum-sensing signaling. Accordingly, defense against pathogens, such as Brevundimonas aeruginosa (B. aeruginosa), was postulated to be the principal function of PON2. However, recent findings have highlighted the importance of PON2 in oxidative stress control, inhibition of apoptosis, and the progression of various types of malignancies. This review focuses on all of these aspects of PON2.
Collapse
|
22
|
Graceffa V. Therapeutic Potential of Reactive Oxygen Species: State of the Art and Recent Advances. SLAS Technol 2020; 26:140-158. [PMID: 33345675 DOI: 10.1177/2472630320977450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the last decade, several studies have proven that when at low concentration reactive oxygen species (ROS) show an adaptive beneficial effect and posited the idea that they can be utilized as inexpensive and convenient inducers of tissue regeneration. On the other hand, the recent discovery that cancer cells are more sensitive to oxidative damage paved the way for their use in the selective killing of tumor cells, and sensors to monitor ROS production during cancer treatment are under extensive investigation. Nevertheless, although ROS-activated signaling pathways are well established, less is known about the mechanisms underlying the switch from an anabolic to a cytotoxic response. Furthermore, a high variability in biological response is observed between different modalities of administration, cell types, donor ages, eventual concomitant diseases, and external microenvironment. On the other hand, available preclinical studies are scarce, whereas the quest for the most suitable systems for in vivo delivery is still elusive. Furthermore, new strategies to control the temporal pattern of ROS release need to be developed, if considering their tumorigenic potential. This review initially discusses ROS mechanisms of action and their potential application in stem cell biology, tissue engineering, and cancer therapy. It then outlines the state of art of ROS-based drugs and identifies challenges faced in translating ROS research into clinical practice.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Bellanode, Sligo, Ireland.,Department of Life Sciences, Institute of Technology Sligo, Bellanode, Sligo, Ireland
| |
Collapse
|
23
|
Yang T, Yang H, Heng C, Wang H, Chen S, Hu Y, Jiang Z, Yu Q, Wang Z, Qian S, Wang J, Wang T, Du L, Lu Q, Yin X. Amelioration of non-alcoholic fatty liver disease by sodium butyrate is linked to the modulation of intestinal tight junctions in db/db mice. Food Funct 2020; 11:10675-10689. [PMID: 33216087 DOI: 10.1039/d0fo01954b] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intestinal microenvironment, a potential factor that contributes to the development of non-alcoholic fatty liver disease (NALFD) and type 2 diabetes (T2DM), has a close relationship with intestinal tight junctions (TJs). Here, we show that the disruption of intestinal TJs in the intestines of 16-week-old db/db mice and in high glucose (HG)-cultured Caco-2 cells can both be improved by sodium butyrate (NaB) in a dose-dependent manner in vitro and in vivo. Accompanying the improved intestinal TJs, NaB not only relieved intestine inflammation of db/db mice and HG and LPS co-cultured Caco-2 cells but also restored intestinal Takeda G-protein-coupled (TGR5) expression, resulting in up-regulated serum GLP-1 levels. Subsequently, the GLP-1 analogue Exendin-4 was used to examine the improvement of lipid accumulation in HG and free fatty acid (FFA) co-cultured HepG2 cells. Finally, we used 16-week-old db/db mice to examine the hepatoprotective effects of NaB and its producing strain Clostridium butyricum. Our data showed that NaB and Clostridium butyricum treatment significantly reduced the levels of blood glucose and serum transaminase and markedly reduced T2DM-induced histological alterations of the liver, together with improved liver inflammation and lipid accumulation. These findings suggest that NaB and Clostridium butyricum are a potential adjuvant treatment strategy for T2DM-induced NAFLD; their hepatoprotective effect was linked to the modulation of intestinal TJs, causing the restoration of glucose and lipid metabolism and the improvement of inflammation in hepatocytes.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cianfruglia L, Morresi C, Bacchetti T, Armeni T, Ferretti G. Protection of Polyphenols against Glyco-Oxidative Stress: Involvement of Glyoxalase Pathway. Antioxidants (Basel) 2020; 9:antiox9101006. [PMID: 33081239 PMCID: PMC7602851 DOI: 10.3390/antiox9101006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic high glucose (HG) exposure increases methylglyoxal (MGO)-derived advanced glycation end-products (AGEs) and is involved in the onset of pathological conditions, such as diabetes, atherosclerosis and chronic-degenerative diseases. Under physiologic conditions the harmful effects of MGO are contrasted by glyoxalase system that is implicated in the detoxification of Reactive Carbonyl Species (RCS) and maintain the homeostasis of the redox environment of the cell. Polyphenols are the most abundant antioxidants in the diet and present various health benefits. Aims of the study were to investigate the effects of HG-chronic exposure on glyco-oxidation and glyoxalase system in intestinal cells, using CaCo-2 cells. Moreover, we studied the effect of apple polyphenols on glyco-oxidative stress. Our data demonstrated that HG-treatment triggers glyco-oxidation stress with a significant increase in intracellular Reactive Oxygen Species (ROS), lipid peroxidation, AGEs, and increase of Glyoxalase I (GlxI) activity. On the contrary, Glyoxalase II (GlxII) activity was lower in HG-treated cells. We demonstrate that apple polyphenols exert a protective effect against oxidative stress and dicarbonyl stress. The increase of total antioxidant capacity and glutathione (GSH) levels in HG-treated cells in the presence of apple polyphenols was associated with a decrease of GlxI activity.
Collapse
Affiliation(s)
- Laura Cianfruglia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (L.C.); (G.F.)
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
- Correspondence: (T.B.); (T.A.)
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (L.C.); (G.F.)
- Correspondence: (T.B.); (T.A.)
| | - Gianna Ferretti
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (L.C.); (G.F.)
| |
Collapse
|
25
|
Lee YY, Choo OS, Kim YJ, Gil ES, Jang JH, Kang Y, Choung YH. Atorvastatin prevents hearing impairment in the presence of hyperlipidemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118850. [PMID: 32918982 DOI: 10.1016/j.bbamcr.2020.118850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
It is known that hyperlipidemia is a risk factor for sensorineural hearing loss. However, the biological mechanisms underlying hyperlipidemia and hearing impairment have not been completely elucidated in the cochlea. Based on our previous study of human subjects, elderly people taking drugs for hyperlipidemia showed better hearing than those not taking any medications. We hypothesized that drugs for hyperlipidemia, such as statins, may have the potential to prevent hearing impairment. The aim of this study was to investigate the correlation between hyperlipidemia and hearing impairment and the hearing preservation effect of atorvastatin using a hyperlipidemic mouse model with diet-induced obesity (DIO). Here, we demonstrate that DIO mice had a significant hearing impairment as well as increased levels of reactive oxygen species (ROS) and hair cell death due to reduced levels of pAKT and superoxide dismutase 2 (SOD2). However, these changes were significantly prevented by atorvastatin. Oxidative stress-induced intrinsic apoptosis was decreased by the high expression of Nrf2 and antioxidant genes, which improved mitochondrial function and ROS via activation of the PI3K-pAKT pathway by atorvastatin. Therefore, atorvastatin has the potential to prevent hearing impairment via redox balance in the presence of hyperlipidemia.
Collapse
Affiliation(s)
- Yun Yeong Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Gyunggi-do 443-749, Republic of Korea
| | - Oak-Sung Choo
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Gyunggi-do 443-749, Republic of Korea
| | - Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Gyunggi-do 443-749, Republic of Korea
| | - Eun Sol Gil
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Gyunggi-do 443-749, Republic of Korea; Department of Biomedical Science, Ajou University Graduate School of Medicine, Suwon, Gyunggi-do 443-749, Republic of Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Gyunggi-do 443-749, Republic of Korea
| | - Yup Kang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Gyunggi-do 443-749, Republic of Korea; Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do 443-749, Republic of Korea.
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Gyunggi-do 443-749, Republic of Korea; Department of Biomedical Science, Ajou University Graduate School of Medicine, Suwon, Gyunggi-do 443-749, Republic of Korea.
| |
Collapse
|