1
|
Kong D, Cho H, Hwang S, Lee A, Lee U, Kim YB, Geum DH, Kim BS, Jung YM, Kim HY, Cho GJ, Ahn K, Oh MJ, Kim HJ, Cho HY, Park JS, Hong S. The Role of Prolactin in Amniotic Membrane Regeneration: Therapeutic Potential for Premature Rupture of Membranes. Endocrinology 2024; 165:bqae095. [PMID: 39082703 DOI: 10.1210/endocr/bqae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 08/20/2024]
Abstract
Premature rupture of membranes (PROM) is defined as rupture of fetal membranes before the onset of labor. Prolactin (PRL) is secreted by decidual membranes and accumulated significantly in the amniotic fluid during pregnancy. PRL could ameliorate inflammation and collagen degradation in fetal membranes. However, the role of PRL in amniotic membrane is not well characterized. We isolated human amniotic epithelial stem cells (hAESCs) from human fetal membranes to study the effect of PRL on proliferation, migration, and antioxidative stress. Amniotic pore culture technique (APCT) model was constructed to evaluate the tissue regeneration effect in vitro. The potential targets and pathways of PRL acting in amnion via integrated bioinformatic methods. PRL had a dose-dependent effect on hAESCs in vitro. PRL (500 ng/mL) significantly improved the viability of hAESCs and inhibited cell apoptosis, related to the upregulation of CCN2 expression and downregulation of Bax, Caspase 3, and Caspase 8. PRL accelerated migration process in hAESCs via downregulation of MMP2, MMP3, and MMP9. PRL attenuated the cellular damage and mitochondrial dysfunction induced by hydrogen peroxide in hAESCs. PRL accelerated the healing process in the APCT model significantly. The top 10 specific targets (IGF1R, SIRT1, MAP2K1, CASP8, MAPK14, MCL1, NFKB1, HIF1A, MTOR, and HSP90AA1) and signaling pathways (such as HIF signaling pathway) were selected using an integrated bioinformatics approach. PRL improves the viability and antioxidative stress function of hAESCs and the regeneration of ruptured amniotic membranes in vitro. Thus, PRL has great therapeutic potential for prevention and treatment of ruptured membranes.
Collapse
Affiliation(s)
- Deqi Kong
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Heeryun Cho
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Soowon Hwang
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ahyoung Lee
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Uk Lee
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Yun-Bae Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Dong Ho Geum
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Byung-Soo Kim
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Young Mi Jung
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ho Yeon Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kihoon Ahn
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Min-Jeong Oh
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hai-Joong Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hee Young Cho
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - SoonCheol Hong
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Luconi M, Sogorb MA, Markert UR, Benfenati E, May T, Wolbank S, Roncaglioni A, Schmidt A, Straccia M, Tait S. Human-Based New Approach Methodologies in Developmental Toxicity Testing: A Step Ahead from the State of the Art with a Feto-Placental Organ-on-Chip Platform. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15828. [PMID: 36497907 PMCID: PMC9737555 DOI: 10.3390/ijerph192315828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Developmental toxicity testing urgently requires the implementation of human-relevant new approach methodologies (NAMs) that better recapitulate the peculiar nature of human physiology during pregnancy, especially the placenta and the maternal/fetal interface, which represent a key stage for human lifelong health. Fit-for-purpose NAMs for the placental-fetal interface are desirable to improve the biological knowledge of environmental exposure at the molecular level and to reduce the high cost, time and ethical impact of animal studies. This article reviews the state of the art on the available in vitro (placental, fetal and amniotic cell-based systems) and in silico NAMs of human relevance for developmental toxicity testing purposes; in addition, we considered available Adverse Outcome Pathways related to developmental toxicity. The OECD TG 414 for the identification and assessment of deleterious effects of prenatal exposure to chemicals on developing organisms will be discussed to delineate the regulatory context and to better debate what is missing and needed in the context of the Developmental Origins of Health and Disease hypothesis to significantly improve this sector. Starting from this analysis, the development of a novel human feto-placental organ-on-chip platform will be introduced as an innovative future alternative tool for developmental toxicity testing, considering possible implementation and validation strategies to overcome the limitation of the current animal studies and NAMs available in regulatory toxicology and in the biomedical field.
Collapse
Affiliation(s)
- Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Viale Medaglie d’Oro 305, 00136 Rome, Italy
| | - Miguel A. Sogorb
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Susanne Wolbank
- Ludwig Boltzmann Institut for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Alessandra Roncaglioni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Astrid Schmidt
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Marco Straccia
- FRESCI by Science&Strategy SL, C/Roure Monjo 33, Vacarisses, 08233 Barcelona, Spain
| | - Sabrina Tait
- Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
3
|
Silini AR, Ramuta TŽ, Pires AS, Banerjee A, Dubus M, Gindraux F, Kerdjoudj H, Maciulatis J, Weidinger A, Wolbank S, Eissner G, Giebel B, Pozzobon M, Parolini O, Kreft ME. Methods and criteria for validating the multimodal functions of perinatal derivatives when used in oncological and antimicrobial applications. Front Bioeng Biotechnol 2022; 10:958669. [PMID: 36312547 PMCID: PMC9607958 DOI: 10.3389/fbioe.2022.958669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Perinatal derivatives or PnDs refer to tissues, cells and secretomes from perinatal, or birth-associated tissues. In the past 2 decades PnDs have been highly investigated for their multimodal mechanisms of action that have been exploited in various disease settings, including in different cancers and infections. Indeed, there is growing evidence that PnDs possess anticancer and antimicrobial activities, but an urgent issue that needs to be addressed is the reproducible evaluation of efficacy, both in vitro and in vivo. Herein we present the most commonly used functional assays for the assessment of antitumor and antimicrobial properties of PnDs, and we discuss their advantages and disadvantages in assessing the functionality. This review is part of a quadrinomial series on functional assays for the validation of PnDs spanning biological functions such as immunomodulation, anticancer and antimicrobial, wound healing, and regeneration.
Collapse
Affiliation(s)
- Antonietta R. Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Taja Železnik Ramuta
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Salomé Pires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marie Dubus
- Université de Reims Champagne Ardenne, EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon and Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Justinas Maciulatis
- The Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Günther Eissner
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Department of Women’s and Children’s Health, University of Padova, Fondazione Istituto di Ricerca Pediatrica Città Della Speranza, Padoa, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica Del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Mateja Erdani Kreft,
| |
Collapse
|
4
|
Bhunia S, O'Brien S, Ling Y, Huang Z, Wu P, Yang Y. New approaches suggest term and preterm human fetal membranes may have distinct biomechanical properties. Sci Rep 2022; 12:5109. [PMID: 35332209 PMCID: PMC8948223 DOI: 10.1038/s41598-022-09005-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/04/2022] [Indexed: 12/28/2022] Open
Abstract
Preterm prelabour rupture of membranes is the leading cause of preterm birth and its associated infant mortality and morbidity. However, its underlying mechanism remains unknown. We utilized two novel biomechanical assessment techniques, ball indentation and Optical Coherence Elastography (OCE), to compare the mechanical properties and behaviours of term (≥ 37 weeks) and preterm (33-36 weeks) human fetal membranes from ruptured and non-ruptured regions. We defined the expression levels of collagen, sulfated glycosaminoglycans (sGAG), matrix metalloproteinase (MMP-9, MMP-13), fibronectin, and interleukin-1β (IL-1β) within membranes by biochemical analysis, immunohistochemical staining and Western blotting, both with and without simulated fetal movement forces on membrane rupture with a new loading system. Preterm membranes showed greater heterogeneity in mechanical properties/behaviours between ruptured and non-ruptured regions compared with their term counterparts (displacement rate: 36% vs. 15%; modulus: 125% vs. 34%; thickness: 93% vs. 30%; collagen content: 98% vs. 29%; sGAG: 85% vs 25%). Furthermore, simulated fetal movement forces triggered higher MMP-9, MMP-13 and IL-1β expression in preterm than term membranes, while nifedipine attenuated the observed increases in expression. In conclusion, the distinct biomechanical profiles of term and preterm membranes and the abnormal biochemical expression and activation by external forces in preterm membranes may provide insights into mechanisms of preterm rupture of membranes.
Collapse
Affiliation(s)
- Sudeshna Bhunia
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Shaughn O'Brien
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK.,Academic Department of Obstetrics and Gynaecology, University Hospital of North Midlands, Stoke-on-Trent, ST4 6QG, UK
| | - Yuting Ling
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Pensée Wu
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK. .,Academic Department of Obstetrics and Gynaecology, University Hospital of North Midlands, Stoke-on-Trent, ST4 6QG, UK. .,School of Medicine, Keele University, Staffordshire, ST5 5BG, UK.
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK.
| |
Collapse
|
5
|
Pichlsberger M, Jerman UD, Obradović H, Tratnjek L, Macedo AS, Mendes F, Fonte P, Hoegler A, Sundl M, Fuchs J, Schoeberlein A, Kreft ME, Mojsilović S, Lang-Olip I. Systematic Review of the Application of Perinatal Derivatives in Animal Models on Cutaneous Wound Healing. Front Bioeng Biotechnol 2021; 9:742858. [PMID: 34631683 PMCID: PMC8498585 DOI: 10.3389/fbioe.2021.742858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Knowledge of the beneficial effects of perinatal derivatives (PnD) in wound healing goes back to the early 1900s when the human fetal amniotic membrane served as a biological dressing to treat burns and skin ulcerations. Since the twenty-first century, isolated cells from perinatal tissues and their secretomes have gained increasing scientific interest, as they can be obtained non-invasively, have anti-inflammatory, anti-cancer, and anti-fibrotic characteristics, and are immunologically tolerated in vivo. Many studies that apply PnD in pre-clinical cutaneous wound healing models show large variations in the choice of the animal species (e.g., large animals, rodents), the choice of diabetic or non-diabetic animals, the type of injury (full-thickness wounds, burns, radiation-induced wounds, skin flaps), the source and type of PnD (placenta, umbilical cord, fetal membranes, cells, secretomes, tissue extracts), the method of administration (topical application, intradermal/subcutaneous injection, intravenous or intraperitoneal injection, subcutaneous implantation), and the type of delivery systems (e.g., hydrogels, synthetic or natural biomaterials as carriers for transplanted cells, extracts or secretomes). This review provides a comprehensive and integrative overview of the application of PnD in wound healing to assess its efficacy in preclinical animal models. We highlight the advantages and limitations of the most commonly used animal models and evaluate the impact of the type of PnD, the route of administration, and the dose of cells/secretome application in correlation with the wound healing outcome. This review is a collaborative effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the preclinical application of PnD in wound healing.
Collapse
Affiliation(s)
- Melanie Pichlsberger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Hristina Obradović
- Group for Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Sofia Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Francisca Mendes
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Fonte
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Center for Marine Sciences (CCMar), Faculty of Sciences and Technology, University of Algarve, Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Faro, Portugal
| | - Anja Hoegler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Monika Sundl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Julia Fuchs
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Weidinger A, Poženel L, Wolbank S, Banerjee A. Sub-Regional Differences of the Human Amniotic Membrane and Their Potential Impact on Tissue Regeneration Application. Front Bioeng Biotechnol 2021; 8:613804. [PMID: 33520964 PMCID: PMC7839410 DOI: 10.3389/fbioe.2020.613804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
For more than 100 years, the human amniotic membrane (hAM) has been used in multiple tissue regeneration applications. The hAM consists of cells with stem cell characteristics and a rich layer of extracellular matrix. Undoubtedly, the hAM with viable cells has remarkable properties such as the differentiation potential into all three germ layers, immuno-modulatory, and anti-fibrotic properties. At first sight, the hAM seems to be one structural entity. However, by integrating its anatomical location, the hAM can be divided into placental, reflected, and umbilical amniotic membrane. Recent studies show that cells of these amniotic sub-regions differ considerably in their properties such as morphology, structure, and content/release of certain bioactive factors. The aim of this review is to summarize these findings and discuss the relevance of these different properties for tissue regeneration. In summary, reflected amnion seems to be more immuno-modulatory and could have a higher reprogramming efficiency, whereas placental amnion seems to be pro-inflammatory, pro-angiogenic, with higher proliferation and differentiation capacity (e.g., chondrogenic and osteogenic), and could be more suitable for certain graft constructions. Therefore, we suggest that the respective hAM sub-region should be selected in consideration of its desired outcome. This will help to optimize and fine-tune the clinical application of the hAM.
Collapse
Affiliation(s)
- Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Laura Poženel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| |
Collapse
|
7
|
Padron JG, Saito Reis CA, Kendal-Wright CE. The Role of Danger Associated Molecular Patterns in Human Fetal Membrane Weakening. Front Physiol 2020; 11:602. [PMID: 32625109 PMCID: PMC7311766 DOI: 10.3389/fphys.2020.00602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
The idea that cellular stress (including that precipitated by stretch), plays a significant role in the mechanisms initiating parturition, has gained considerable traction over the last decade. One key consequence of this cellular stress is the increased production of Danger Associated Molecular Patterns (DAMPs). This diverse family of molecules are known to initiate inflammation through their interaction with Pattern Recognition Receptors (PRRs) including, Toll-like receptors (TLRs). TLRs are the key innate immune system surveillance receptors that detect Pathogen Associated Molecular Patterns (PAMPs) during bacterial and viral infection. This is also seen during Chorioamnionitis. The activation of TLR commonly results in the activation of the pro-inflammatory transcription factor Nuclear Factor Kappa-B (NF-kB) and the downstream production of pro-inflammatory cytokines. It is thought that in the human fetal membranes both DAMPs and PAMPs are able, perhaps via their interaction with PRRs and the induction of their downstream inflammatory cascades, to lead to both tissue remodeling and weakening. Due to the high incidence of infection-driven Pre-Term Birth (PTB), including those that have preterm Premature Rupture of the Membranes (pPROM), the role of TLR in fetal membranes with Chorioamnionitis has been the subject of considerable study. Most of the work in this field has focused on the effect of PAMPs on whole pieces of fetal membrane and the resultant inflammatory cascade. This is important to understand, in order to develop novel prevention, detection, and therapeutic approaches, which aim to reduce the high number of mothers suffering from infection driven PTB, including those with pPROM. Studying the role of sterile inflammation driven by these endogenous ligands (DAMPs) activating PRRs system in the mesenchymal and epithelial cells in the amnion is important. These cells are key for the maintenance of the integrity and strength of the human fetal membranes. This review aims to (1) summarize the knowledge to date pertinent to the role of DAMPs and PRRs in fetal membrane weakening and (2) discuss the clinical potential brought by a better understanding of these pathways by pathway manipulation strategies.
Collapse
Affiliation(s)
- Justin G Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chelsea A Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | - Claire E Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States.,Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
8
|
Javadov S, Kozlov AV, Camara AKS. Mitochondria in Health and Diseases. Cells 2020; 9:cells9051177. [PMID: 32397376 PMCID: PMC7290976 DOI: 10.3390/cells9051177] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are subcellular organelles evolved by endosymbiosis of bacteria with eukaryotic cells characteristics. They are the main source of ATP in the cell and play a pivotal role in cell life and cell death. Mitochondria are engaged in the pathogenesis of human diseases and aging directly or indirectly through a broad range of signaling pathways. However, despite an increased interest in mitochondria over the past decades, the mechanisms of mitochondria-mediated cell/organ dysfunction in response to pathological stimuli remain unknown. The Special Issue, “Mitochondria in Health and Diseases,” organized by Cells includes 24 review and original articles that highlight the latest achievements in elucidating the role of mitochondria under physiological (healthy) conditions and, in various cell/animal models of human diseases and, in patients. Altogether, the Special Issue summarizes and discusses different aspects of mitochondrial metabolism and function that open new avenues in understanding mitochondrial biology.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA
- Correspondence: (S.J.); (A.V.K.); (A.K.S.C.)
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
- Correspondence: (S.J.); (A.V.K.); (A.K.S.C.)
| | - Amadou K. S. Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.J.); (A.V.K.); (A.K.S.C.)
| |
Collapse
|