1
|
Przybyszewska-Podstawka A, Czapiński J, Kałafut J, Rivero-Müller A. Synthetic circuits based on split Cas9 to detect cellular events. Sci Rep 2023; 13:14988. [PMID: 37696879 PMCID: PMC10495424 DOI: 10.1038/s41598-023-41367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023] Open
Abstract
Synthetic biology involves the engineering of logic circuit gates that process different inputs to produce specific outputs, enabling the creation or control of biological functions. While CRISPR has become the tool of choice in molecular biology due to its RNA-guided targetability to other nucleic acids, it has not been frequently applied to logic gates beyond those controlling the guide RNA (gRNA). In this study, we present an adaptation of split Cas9 to generate logic gates capable of sensing biological events, leveraging a Cas9 reporter (EGxxFP) to detect occurrences such as cancer cell origin, epithelial to mesenchymal transition (EMT), and cell-cell fusion. First, we positioned the complementing halves of split Cas9 under different promoters-one specific to cancer cells of epithelial origin (phCEA) and the other a universal promoter. The use of self-assembling inteins facilitated the reconstitution of the Cas9 halves. Consequently, only cancer cells with an epithelial origin activated the reporter, exhibiting green fluorescence. Subsequently, we explored whether this system could detect biological processes such as epithelial to mesenchymal transition (EMT). To achieve this, we designed a logic gate where one half of Cas9 is expressed under the phCEA, while the other is activated by TWIST1. The results showed that cells undergoing EMT effectively activated the reporter. Next, we combined the two inputs (epithelial origin and EMT) to create a new logic gate, where only cancer epithelial cells undergoing EMT activated the reporter. Lastly, we applied the split-Cas9 logic gate as a sensor of cell-cell fusion, both in induced and naturally occurring scenarios. Each cell type expressed one half of split Cas9, and the induction of fusion resulted in the appearance of multinucleated syncytia and the fluorescent reporter. The simplicity of the split Cas9 system presented here allows for its integration into various cellular processes, not only as a sensor but also as an actuator.
Collapse
Affiliation(s)
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
| |
Collapse
|
2
|
Kałafut J, Czerwonka A, Anameriç A, Przybyszewska-Podstawka A, Misiorek JO, Rivero-Müller A, Nees M. Shooting at Moving and Hidden Targets-Tumour Cell Plasticity and the Notch Signalling Pathway in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:6219. [PMID: 34944837 PMCID: PMC8699303 DOI: 10.3390/cancers13246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alinda Anameriç
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Julia O. Misiorek
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
- Western Finland Cancer Centre (FICAN West), Institute of Biomedicine, University of Turku, 20101 Turku, Finland
| |
Collapse
|
3
|
Shi F, Ma M, Zhai R, Ren Y, Li K, Wang H, Xu C, Huang X, Wang N, Zhou F, Yao W. Overexpression of heat shock protein 70 inhibits epithelial-mesenchymal transition and cell migration induced by transforming growth factor-β in A549 cells. Cell Stress Chaperones 2021; 26:505-513. [PMID: 33598875 PMCID: PMC8065086 DOI: 10.1007/s12192-021-01196-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/07/2023] Open
Abstract
Heat shock protein 70 (HSP70) is a key member of the HSP family that contributes to a pre-cancerous environment; however, its role in lung cancer remains poorly understood. The present study used geranylgeranylacetone (GGA) to induce HSP70 expression, and transforming growth factor-β (TGF-β) was used to construct an epithelial-mesenchymal transition (EMT) model by stimulating A549 cells in vitro. Western Blot was performed to detect protein levels of NADPH oxidase 4 (NOX4) and the EMT-associated proteins E-cadherin and vimentin both before and after HSP70 expression. Cell morphological changes were observed, and the effect of HSP70 on cell migration ability was detected via the wound healing. The results demonstrated that GGA at 50 and 200 μmol/L could significantly induce HSP70 expression in A549 cells (P < 0.05). Furthermore, HSP70 induced by 200 μmol/L GGA significantly inhibited the changes of E-cadherin, vimentin, and cell morphology induced by TGF-β (P < 0.05), while HSP70 induced by 50 μmol/L GGA did not. The results of the wound healing assay indicated that 200 μmol/L GGA significantly inhibited A549 cell migration induced by TGF-β. Taken together, the results of the present study demonstrated that overexpression of HSP70 inhibited the TGF-β induced EMT process and changed the cell morphology and migratory ability induced by TGF-β in A549 cells.
Collapse
Affiliation(s)
- Fengxian Shi
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mingze Ma
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ruonan Zhai
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yanan Ren
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ke Li
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hang Wang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Chunyan Xu
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaowen Huang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Na Wang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fang Zhou
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Wu Yao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
4
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
5
|
Wang Y, Zhong Y, Zhang C, Liao J, Wang G. PM2.5 downregulates MicroRNA-139-5p and induces EMT in Bronchiolar Epithelium Cells by targeting Notch1. J Cancer 2020; 11:5758-5767. [PMID: 32913469 PMCID: PMC7477455 DOI: 10.7150/jca.46976] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/19/2020] [Indexed: 12/30/2022] Open
Abstract
PM2.5 was closely linked to lung cancer worldwide. However, the mechanism involved in PM2.5 induced lung cancer is still largely unknown. In this study, we performed chronic PM2.5 stimulation animal and cells model to investigate the carcinogenetic mechanisms of PM2.5 by targeting EMT through Notch1 signal pathway. Next, we focused on the miRNA involved in PM2.5 induced Notch1 pathway activation. We found chronic PM2.5 could induce EMT event in vivo and in vitro, while reducing miR-139-5p expression and activating Notch1 pathway meanwhile. And blocking Notch1 signal pathway by specific small molecule inhibitor could reverse PM2.5 induced EMT. Then, overexpression of miR-139-5p downregulated the expression of Notch1 protein in untreated 16HBE cells. Importantly, overexpression of miR-139-5p blocked Notch1 pathway activation and inhibited EMT event in PM2.5 treated cells. These results indicate that PM2.5 induces EMT event through Notch1 signal pathway and miR-139-5p is a novel regulator of PM2.5-induced EMT by targeting Notch1. Our conclusion is that overexpression of miR-139-5p can down-regulate the expression of Notch1 and reverse the occurrence of malignant lung events induced by chronic exposure to PM2.5.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Yijue Zhong
- Department of Geriatrics, Jiangsu Provincial Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Jiping Liao
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|