1
|
Limatola N, Chun JT, Schmitt JL, Lehn JM, Santella L. The Effect of Synthetic Polyamine BPA-C8 on the Fertilization Process of Intact and Denuded Sea Urchin Eggs. Cells 2024; 13:1477. [PMID: 39273047 PMCID: PMC11394060 DOI: 10.3390/cells13171477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Sea urchin eggs are covered with layers of extracellular matrix, namely, the vitelline layer (VL) and jelly coat (JC). It has been shown that sea urchin eggs' JC components serve as chemoattractants or ligands for the receptor on the fertilizing sperm to promote the acrosome reaction. Moreover, the egg's VL provides receptors for conspecific sperm to bind, and, to date, at least two sperm receptors have been identified on the surface of sea urchin eggs. Interestingly, however, according to our previous work, denuded sea urchin eggs devoid of the JC and VL do not fail to become fertilized by sperm. Instead, they are bound and penetratedby multiple sperm, raising the possibility that an alternative pathway independent of the VL-residing sperm receptor may be at work. In this research, we studied the roles of the JC and VL using intact and denuded eggs and the synthetic polyamine BPA-C8. BPA-C8 is known to bind to the negatively charged macromolecular complexes in the cells, such as the JC, VL, and the plasma membrane of echinoderm eggs, as well as to the actin filaments in fibroblasts. Our results showed that, when added to seawater, BPA-C8 significantly repressed the Ca2+ wave in the intact P. lividus eggs at fertilization. In eggs deprived of the VL and JC, BPA-C8 binds to the plasma membrane and increases fibrous structures connecting microvilli, thereby allowing the denuded eggs to revert towards monospermy at fertilization. However, the reduced Ca2+ signal in denuded eggs was nullified compared to the intact eggs because removing the JC and VL already decreased the Ca2+ wave. BPA-C8 does not cross the VL and the cell membrane of unfertilized sea urchin eggs to diffuse into the cytoplasm at variance with the fibroblasts. Indeed, the jasplakinolide-induced polymerization of subplasmalemmal actin filaments was inhibited in the eggs microinjected with BPA-C8, but not in the ones bath-incubated with the same dose of BPA-C8.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Jean-Louis Schmitt
- Laboratory of Supramolecular Chemistry, Institut de Science et d'Ingénierie Supramoléculaires ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratory of Supramolecular Chemistry, Institut de Science et d'Ingénierie Supramoléculaires ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
2
|
Limatola N, Chun JT, Schneider SC, Schmitt JL, Lehn JM, Santella L. The Effect of Acidic and Alkaline Seawater on the F-Actin-Dependent Ca 2+ Signals Following Insemination of Immature Starfish Oocytes and Mature Eggs. Cells 2023; 12:740. [PMID: 36899875 PMCID: PMC10000582 DOI: 10.3390/cells12050740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
In starfish, the addition of the hormone 1-methyladenine (1-MA) to immature oocytes (germinal vesicle, GV-stage) arrested at the prophase of the first meiotic division induces meiosis resumption (maturation), which makes the mature eggs able to respond to the sperm with a normal fertilization response. The optimal fertilizability achieved during the maturation process results from the exquisite structural reorganization of the actin cytoskeleton in the cortex and cytoplasm induced by the maturing hormone. In this report, we have investigated the influence of acidic and alkaline seawater on the structure of the cortical F-actin network of immature oocytes of the starfish (Astropecten aranciacus) and its dynamic changes upon insemination. The results have shown that the altered seawater pH strongly affected the sperm-induced Ca2+ response and the polyspermy rate. When immature starfish oocytes were stimulated with 1-MA in acidic or alkaline seawater, the maturation process displayed a strong dependency on pH in terms of the dynamic structural changes of the cortical F-actin. The resulting alteration of the actin cytoskeleton, in turn, affected the pattern of Ca2+ signals at fertilization and sperm penetration.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Suzanne C. Schneider
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Louis Schmitt
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
3
|
Santella L, Chun JT. Structural actin dynamics during oocyte maturation and fertilization. Biochem Biophys Res Commun 2022; 633:13-16. [DOI: 10.1016/j.bbrc.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
|
4
|
Limatola N, Chun JT, Santella L. Species-Specific Gamete Interaction during Sea Urchin Fertilization: Roles of the Egg Jelly and Vitelline Layer. Cells 2022; 11:2984. [PMID: 36230946 PMCID: PMC9563080 DOI: 10.3390/cells11192984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
In sea urchins, the sequence of the cellular and molecular events characterizing the fertilization process has been intensively studied. We have learned that to activate the egg, the fertilizing sperm must undergo morphological modifications (the acrosome reaction, AR) upon reaching the outer gelatinous layer enveloping the egg (egg jelly), which triggers the polymerization of F-actin on the sperm head to form the acrosomal process. The AR exposes bindin, an adhesive sperm protein essential for the species-specific interaction with the cognate receptor on the egg vitelline layer. To investigate the specific roles of the egg jelly and vitelline layer at fertilization of sea urchin eggs, Paracentrotus lividus eggs were incubated in acidic seawater, which removes the egg jelly, i.e., experimental conditions that should prevent the occurrence of the AR, and inseminated in the same medium. At variance with the prevailing view, our results have shown that these dejellied P. lividus eggs can still interact with sperm in acidic seawater, albeit with altered fertilization responses. In particular, the eggs deprived of the vitelline layer reacted with multiple sperm but with altered Ca2+ signals. The results have provided experimental evidence that the plasma membrane, and not the vitelline layer, is where the specific recognition between gametes occurs. The vitelline layer works in unfertilized eggs to prevent polyspermy.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
5
|
Limatola N, Chun JT, Santella L. Regulation of the Actin Cytoskeleton-Linked Ca 2+ Signaling by Intracellular pH in Fertilized Eggs of Sea Urchin. Cells 2022; 11:1496. [PMID: 35563801 PMCID: PMC9100012 DOI: 10.3390/cells11091496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
In sea urchin, the immediate contact of the acrosome-reacted sperm with the egg surface triggers a series of structural and ionic changes in the egg cortex. Within one minute after sperm fuses with the egg plasma membrane, the cell membrane potential changes with the concurrent increases in intracellular Ca2+ levels. The consequent exocytosis of the cortical granules induces separation of the vitelline layer from the egg plasma membrane. While these cortical changes are presumed to prevent the fusion of additional sperm, the subsequent late phase (between 1 and 4 min after fertilization) is characterized by reorganization of the egg cortex and microvilli (elongation) and by the metabolic shift to activate de novo protein and DNA syntheses. The latter biosynthetic events are crucial for embryonic development. Previous studies suggested that the early phase of fertilization was not a prerequisite for these changes in the second phase since the increase in the intracellular pH induced by the exposure of unfertilized sea urchin eggs to ammonia seawater could start metabolic egg activation in the absence of the cortical granule exocytosis. In the present study, we have demonstrated that the incubation of unfertilized eggs in ammonia seawater induced considerable elongations of microvilli (containing actin filaments) as a consequence of the intracellular pH increase, which increased the egg's receptivity to sperm and made the eggs polyspermic at fertilization despite the elevation of the fertilization envelope (FE). These eggs also displayed compromised Ca2+ signals at fertilization, as the amplitude of the cortical flash was significantly reduced and the elevated intracellular Ca2+ level declined much faster. These results have also highlighted the importance of the increased internal pH in regulating Ca2+ signaling and the microvillar actin cytoskeleton during the late phase of the fertilization process.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
6
|
Shmukler YB, Nikishin DA. Non-Neuronal Transmitter Systems in Bacteria, Non-Nervous Eukaryotes, and Invertebrate Embryos. Biomolecules 2022; 12:271. [PMID: 35204771 PMCID: PMC8961645 DOI: 10.3390/biom12020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
In 1921, Otto Loewi published his report that ushered in the era of chemical transmission of biological signals. January 2021 marked the 90th anniversary of the birth of Professor Gennady A. Buznikov, who was the first to study the functions of transmitters in embryogenesis. A year earlier it was 60 years since his first publication in this field. These data are a venerable occasion for a review of current knowledge on the mechanisms related to classical transmitters such as 5-hydroxytryptamine, acetylcholine, catecholamines, etc., in animals lacking neural elements and prenervous invertebrate embryos.
Collapse
Affiliation(s)
- Yuri B. Shmukler
- Lab of the Problems of Regeneration, N. K. Koltzov Institute of Developmental Biology RAS, Moscow 119334, Russia;
| | | |
Collapse
|
7
|
Limatola N, Chun JT, Cherraben S, Schmitt JL, Lehn JM, Santella L. Effects of Dithiothreitol on Fertilization and Early Development in Sea Urchin. Cells 2021; 10:3573. [PMID: 34944081 PMCID: PMC8700669 DOI: 10.3390/cells10123573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 01/20/2023] Open
Abstract
The vitelline layer (VL) of a sea urchin egg is an intricate meshwork of glycoproteins that intimately ensheathes the plasma membrane. During fertilization, the VL plays important roles. Firstly, the receptors for sperm reside on the VL. Secondly, following cortical granule exocytosis, the VL is elevated and transformed into the fertilization envelope (FE), owing to the assembly and crosslinking of the extruded materials. As these two crucial stages involve the VL, its alteration was expected to affect the fertilization process. In the present study, we addressed this question by mildly treating the eggs with a reducing agent, dithiothreitol (DTT). A brief pretreatment with DTT resulted in partial disruption of the VL, as judged by electron microscopy and by a novel fluorescent polyamine probe that selectively labelled the VL. The DTT-pretreated eggs did not elevate the FE but were mostly monospermic at fertilization. These eggs also manifested certain anomalies at fertilization: (i) compromised Ca2+ signaling, (ii) blocked translocation of cortical actin filaments, and (iii) impaired cleavage. Some of these phenotypic changes were reversed by restoring the DTT-exposed eggs in normal seawater prior to fertilization. Our findings suggest that the FE is not the decisive factor preventing polyspermy and that the integrity of the VL is nonetheless crucial to the egg's fertilization response.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Sawsen Cherraben
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Jean-Louis Schmitt
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Jean-Marie Lehn
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| |
Collapse
|
8
|
Santella L, Limatola N, Chun JT. Cellular and molecular aspects of oocyte maturation and fertilization: a perspective from the actin cytoskeleton. ZOOLOGICAL LETTERS 2020; 6:5. [PMID: 32313685 PMCID: PMC7158055 DOI: 10.1186/s40851-020-00157-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/26/2020] [Indexed: 05/06/2023]
Abstract
ABSTRACT Much of the scientific knowledge on oocyte maturation, fertilization, and embryonic development has come from the experiments using gametes of marine organisms that reproduce by external fertilization. In particular, echinoderm eggs have enabled the study of structural and biochemical changes related to meiotic maturation and fertilization owing to the abundant availability of large and transparent oocytes and eggs. Thus, in vitro studies of oocyte maturation and sperm-induced egg activation in starfish are carried out under experimental conditions that resemble those occurring in nature. During the maturation process, immature oocytes of starfish are released from the prophase of the first meiotic division, and acquire the competence to be fertilized through a highly programmed sequence of morphological and physiological changes at the oocyte surface. In addition, the changes in the cortical and nuclear regions are essential for normal and monospermic fertilization. This review summarizes the current state of research on the cortical actin cytoskeleton in mediating structural and physiological changes during oocyte maturation and sperm and egg activation in starfish and sea urchin. The common denominator in these studies with echinoderms is that exquisite rearrangements of the egg cortical actin filaments play pivotal roles in gamete interactions, Ca2+ signaling, exocytosis of cortical granules, and control of monospermic fertilization. In this review, we also compare findings from studies using invertebrate eggs with what is known about the contributions made by the actin cytoskeleton in mammalian eggs. Since the cortical actin cytoskeleton affects microvillar morphology, movement, and positioning of organelles and vesicles, and the topography of the egg surface, these changes have impacts on the fertilization process, as has been suggested by recent morphological studies on starfish oocytes and eggs using scanning electron microscopy. Drawing the parallelism between vitelline layer of echinoderm eggs and the zona pellucida of mammalian eggs, we also discuss the importance of the egg surface in mediating monospermic fertilization. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| | - Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| |
Collapse
|