1
|
Shi X, Feng M, Nakada D. Metabolic dependencies of acute myeloid leukemia stem cells. Int J Hematol 2024; 120:427-438. [PMID: 38750343 DOI: 10.1007/s12185-024-03789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy primarily driven by an immature population of AML cells termed leukemia stem cells (LSCs) that are implicated in AML development, chemoresistance, and relapse. An emerging area of research in AML focuses on identifying and targeting the aberrant metabolism in LSCs. Dysregulated metabolism is involved in sustaining functional properties of LSCs, impeding myeloid differentiation, and evading programmed cell death, both in the process of leukemogenesis and in response to chemotherapy. This review discusses recent discoveries regarding the aberrant metabolic processes of AML LSCs that have begun to change the therapeutic landscape of AML.
Collapse
Affiliation(s)
- Xiangguo Shi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Mengdie Feng
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daisuke Nakada
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Mirabilii S, Piedimonte M, Conte E, Mirabilii D, Rossi FM, Bomben R, Zucchetto A, Gattei V, Tafuri A, Ricciardi MR. Low Cell Bioenergetic Metabolism Characterizes Chronic Lymphocytic Leukemia Patients with Unfavorable Genetic Factors and with a Better Response to BTK Inhibition. Curr Issues Mol Biol 2024; 46:5085-5099. [PMID: 38920977 PMCID: PMC11202558 DOI: 10.3390/cimb46060305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is an indolent malignancy characterized by the accumulation of quiescent mature B cells. However, these cells are transcriptionally and translationally active, implicating an active metabolism. The recent literature suggests that CLL cells have an oxidative-type phenotype. Given the role of cell metabolism, which is able to influence the outcome of treatments, in other neoplasms, we aimed to assess its prognostic role in CLL patients by determining the ex vivo bioenergetic metabolic profile of CLL cells, evaluating the correlation with the patient clinical/biological characteristics and the in vivo response to BTK inhibitor treatment. Clustering analysis of primary samples identified two groups, characterized by low (CLL low) or high (CLL high) bioenergetic metabolic rates. Compared to the CLL high, CLL with lower bioenergetic metabolic rates belonged to patients characterized by a statistically significant higher white blood cell count and by unfavorable molecular genetics. More importantly, patients in the CLL low cluster displayed a better and more durable response to the BTK inhibitor ibrutinib, thus defining a bioenergetic metabolic subgroup that can benefit the most from this therapy.
Collapse
Affiliation(s)
- Simone Mirabilii
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (M.P.); (E.C.); (A.T.)
| | - Monica Piedimonte
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (M.P.); (E.C.); (A.T.)
| | - Esmeralda Conte
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (M.P.); (E.C.); (A.T.)
| | | | - Francesca Maria Rossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., 33081 Aviano, Italy; (F.M.R.); (R.B.); (A.Z.); (V.G.)
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., 33081 Aviano, Italy; (F.M.R.); (R.B.); (A.Z.); (V.G.)
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., 33081 Aviano, Italy; (F.M.R.); (R.B.); (A.Z.); (V.G.)
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., 33081 Aviano, Italy; (F.M.R.); (R.B.); (A.Z.); (V.G.)
| | - Agostino Tafuri
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (M.P.); (E.C.); (A.T.)
| | - Maria Rosaria Ricciardi
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (M.P.); (E.C.); (A.T.)
| |
Collapse
|
3
|
Hanafy RM, Demian SR, Abou-Shamaa LA, Ghallab O, Osman EM. In-vitro Modulation of mTOR-HIF-1α Axis by TLR7/8 Agonist (Resiquimod) in B-Chronic Lymphocytic Leukemia. Indian J Hematol Blood Transfus 2023; 39:537-545. [PMID: 37786827 PMCID: PMC10542076 DOI: 10.1007/s12288-023-01649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/20/2023] [Indexed: 10/04/2023] Open
Abstract
Targeting toll-like receptors (TLRs), via TLR agonists, has been implicated in the regulation of immunometabolism. B-chronic lymphocytic leukemia (B-CLL) represents a suitable model for B-cell derived malignancies with shifted metabolic adaptations. Several signaling pathways have been found to be critical in metabolic reprogramming of CLL, including mechanistic target of rapamycin- hypoxia inducible factor-1α (mTOR- HIF-1α) pathway, the main metabolic regulator of glycolysis. Here, we investigated the effect of TLR7/8 agonist (Resiquimod) on the expression of mTOR and HIF-1α in patients with CLL. B cells were purified using Rosettesep Human B cell Enrichment Cocktail (Stem cell Technologies, Vancouver, BC, Canada#15,024) from peripheral venous blood of CLL patients (n = 20) and healthy individuals (n = 15). Isolated B cells were then cultured in both presence and absence of Resiquimod. Gene expression of mTOR and HIF-1α were assessed using qRT-PCR. Resiquimod significantly decreased mTOR and HIF-1α gene expression in both CLL (p < 0.001and p < 0.001, respectively) and Normal B cells (p = 0.004 and p = 0.001, respectively). Resiquimod may reprogram immunometabolism of malignant B-CLL cells via down-regulation of key glycolytic metabolic actors, mTOR and HIF-1α genes. Accordingly, Resiquimod may be an adjuvant as a therapeutic tool for CLL, which needs to be studied further. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-023-01649-y.
Collapse
Affiliation(s)
- Rana M. Hanafy
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Soheir R. Demian
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Lobna A. Abou-Shamaa
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - O. Ghallab
- Internal Medicine Department (Hematology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman M. Osman
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Dolinska M, Cai H, Månsson A, Shen J, Xiao P, Bouderlique T, Li X, Leonard E, Chang M, Gao Y, Medina JP, Kondo M, Sandhow L, Johansson AS, Deneberg S, Söderlund S, Jädersten M, Ungerstedt J, Tobiasson M, Östman A, Mustjoki S, Stenke L, Le Blanc K, Hellström-Lindberg E, Lehmann S, Ekblom M, Olsson-Strömberg U, Sigvardsson M, Qian H. Characterization of the bone marrow niche in patients with chronic myeloid leukemia identifies CXCL14 as a new therapeutic option. Blood 2023; 142:73-89. [PMID: 37018663 PMCID: PMC10651879 DOI: 10.1182/blood.2022016896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/08/2023] [Accepted: 02/26/2023] [Indexed: 04/07/2023] Open
Abstract
Although tyrosine kinase inhibitors (TKIs) are effective in treating chronic myeloid leukemia (CML), they often fail to eradicate the leukemia-initiating stem cells (LSCs), causing disease persistence and relapse. Evidence indicates that LSC persistence may be because of bone marrow (BM) niche protection; however, little is known about the underlying mechanisms. Herein, we molecularly and functionally characterize BM niches in patients with CML at diagnosis and reveal the altered niche composition and function in these patients. Long-term culture initiating cell assay showed that the mesenchymal stem cells from patients with CML displayed an enhanced supporting capacity for normal and CML BM CD34+CD38- cells. Molecularly, RNA sequencing detected dysregulated cytokine and growth factor expression in the BM cellular niches of patients with CML. Among them, CXCL14 was lost in the BM cellular niches in contrast to its expression in healthy BM. Restoring CXCL14 significantly inhibited CML LSC maintenance and enhanced their response to imatinib in vitro, and CML engraftment in vivo in NSG-SGM3 mice. Importantly, CXCL14 treatment dramatically inhibited CML engraftment in patient-derived xenografted NSG-SGM3 mice, even to a greater degree than imatinib, and this inhibition persisted in patients with suboptimal TKI response. Mechanistically, CXCL14 upregulated inflammatory cytokine signaling but downregulated mTOR signaling and oxidative phosphorylation in CML LSCs. Together, we have discovered a suppressive role of CXCL14 in CML LSC growth. CXCL14 might offer a treatment option targeting CML LSCs.
Collapse
MESH Headings
- Animals
- Mice
- Bone Marrow/metabolism
- Chemokines, CXC/metabolism
- Chemokines, CXC/pharmacology
- Chemokines, CXC/therapeutic use
- Cytokines/metabolism
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Neoplastic Stem Cells/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction
Collapse
Affiliation(s)
- Monika Dolinska
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Huan Cai
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Alma Månsson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Jingyi Shen
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Pingnan Xiao
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Thibault Bouderlique
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Xidan Li
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Elory Leonard
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Chang
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Yuchen Gao
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Juan Pablo Medina
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Makoto Kondo
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Lakshmi Sandhow
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Anne-Sofie Johansson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Deneberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Stina Söderlund
- Division of Hematology, Department of Medical Science, University Hospital, Uppsala, Sweden
| | - Martin Jädersten
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Ungerstedt
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Tobiasson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Leif Stenke
- Division of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Katarina Le Blanc
- Division of Clinical Immunology & Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Sören Lehmann
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- Division of Hematology, Department of Medical Science, University Hospital, Uppsala, Sweden
| | - Marja Ekblom
- Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Ulla Olsson-Strömberg
- Division of Hematology, Department of Medical Science, University Hospital, Uppsala, Sweden
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund University, Lund, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Derwich A, Sykutera M, Bromińska B, Rubiś B, Ruchała M, Sawicka-Gutaj N. The Role of Activation of PI3K/AKT/mTOR and RAF/MEK/ERK Pathways in Aggressive Pituitary Adenomas-New Potential Therapeutic Approach-A Systematic Review. Int J Mol Sci 2023; 24:10952. [PMID: 37446128 PMCID: PMC10341524 DOI: 10.3390/ijms241310952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pituitary tumors (PT) are mostly benign, although occasionally they demonstrate aggressive behavior, invasion of surrounding tissues, rapid growth, resistance to conventional treatments, and multiple recurrences. The pathogenesis of PT is still not fully understood, and the factors responsible for its invasiveness, aggressiveness, and potential for metastasis are unknown. RAF/MEK/ERK and mTOR signaling are significant pathways in the regulation of cell growth, proliferation, and survival, its importance in tumorigenesis has been highlighted. The aim of our review is to determine the role of the activation of PI3K/AKT/mTOR and RAF/MEK/ERK pathways in the pathogenesis of pituitary tumors. Additionally, we evaluate their potential in a new therapeutic approach to provide alternative therapies and improved outcomes for patients with aggressive pituitary tumors that do not respond to standard treatment. We perform a systematic literature search using the PubMed, Embase, and Scopus databases (search date was 2012-2023). Out of the 529 screened studies, 13 met the inclusion criteria, 7 related to the PI3K/AKT/mTOR pathway, and 7 to the RAF/MEK/ERK pathway (one study was used in both analyses). Understanding the specific factors involved in PT tumorigenesis provides opportunities for targeted therapies. We also review the possible new targeted therapies and the use of mTOR inhibitors and TKI in PT management. Although the RAF/MEK/ERK and PI3K/AKT/mTOR pathways play a pivotal role in the complex signaling network along with many interactions, further research is urgently needed to clarify the exact functions and the underlying mechanisms of these signaling pathways in the pathogenesis of pituitary adenomas and their role in its invasiveness and aggressive clinical outcome.
Collapse
Affiliation(s)
- Aleksandra Derwich
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Monika Sykutera
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Barbara Bromińska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| |
Collapse
|
6
|
Clinical Implications of mTOR Expression in Papillary Thyroid Cancer—A Systematic Review. Cancers (Basel) 2023; 15:cancers15061665. [PMID: 36980552 PMCID: PMC10046096 DOI: 10.3390/cancers15061665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Papillary thyroid cancer (PTC) comprises approximately 80% of all thyroid malignancies. Although several etiological factors, such as age, gender, and irradiation, are already known to be involved in the development of PTC, the genetics of cancerogenesis remain undetermined. The mTOR pathway regulates several cellular processes that are critical for tumorigenesis. Activated mTOR is involved in the development and progression of PTC. Therefore, we performed a systematic review of papers studying the expression of the mTOR gene and protein and its relationship with PTC risk and clinical outcome. A systematic literature search was performed using PubMed, Embase, and Scopus databases (the search date was 2012–2022). Studies investigating the expression of mTOR in the peripheral blood or tissue of patients with PTC were deemed eligible for inclusion. Seven of the 286 screened studies met the inclusion criteria for mTOR gene expression and four for mTOR protein expression. We also analyzed the data on mTOR protein expression in PTC. We analyzed the association of mTOR expression with papillary thyroid cancer clinicopathological features, such as the TNM stage, BRAF V600E mutation, sex distribution, lymph node and distant metastases, and survival prognosis. Understanding specific factors involved in PTC tumorigenesis provides opportunities for targeted therapies. We also reviewed the possible new targeted therapies and the use of mTOR inhibitors in PTC. This topic requires further research with novel techniques to translate the achieved results to clinical application.
Collapse
|
7
|
Fooks K, Galicia-Vazquez G, Gife V, Schcolnik-Cabrera A, Nouhi Z, Poon WWL, Luo V, Rys RN, Aloyz R, Orthwein A, Johnson NA, Hulea L, Mercier FE. EIF4A inhibition targets bioenergetic homeostasis in AML MOLM-14 cells in vitro and in vivo and synergizes with cytarabine and venetoclax. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:340. [PMID: 36482393 PMCID: PMC9733142 DOI: 10.1186/s13046-022-02542-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an aggressive hematological cancer resulting from uncontrolled proliferation of differentiation-blocked myeloid cells. Seventy percent of AML patients are currently not cured with available treatments, highlighting the need of novel therapeutic strategies. A promising target in AML is the mammalian target of rapamycin complex 1 (mTORC1). Clinical inhibition of mTORC1 is limited by its reactivation through compensatory and regulatory feedback loops. Here, we explored a strategy to curtail these drawbacks through inhibition of an important effector of the mTORC1signaling pathway, the eukaryotic initiation factor 4A (eIF4A). METHODS We tested the anti-leukemic effect of a potent and specific eIF4A inhibitor (eIF4Ai), CR-1-31-B, in combination with cytosine arabinoside (araC) or the BCL2 inhibitor venetoclax. We utilized the MOLM-14 human AML cell line to model chemoresistant disease both in vitro and in vivo. In eIF4Ai-treated cells, we assessed for changes in survival, apoptotic priming, de novo protein synthesis, targeted intracellular metabolite content, bioenergetic profile, mitochondrial reactive oxygen species (mtROS) and mitochondrial membrane potential (MMP). RESULTS eIF4Ai exhibits anti-leukemia activity in vivo while sparing non-malignant myeloid cells. In vitro, eIF4Ai synergizes with two therapeutic agents in AML, araC and venetoclax. EIF4Ai reduces mitochondrial membrane potential (MMP) and the rate of ATP synthesis from mitochondrial respiration and glycolysis. Furthermore, eIF4i enhanced apoptotic priming while reducing the expression levels of the antiapoptotic factors BCL2, BCL-XL and MCL1. Concomitantly, eIF4Ai decreases intracellular levels of specific metabolic intermediates of the tricarboxylic acid cycle (TCA cycle) and glucose metabolism, while enhancing mtROS. In vitro redox stress contributes to eIF4Ai cytotoxicity, as treatment with a ROS scavenger partially rescued the viability of eIF4A inhibition. CONCLUSIONS We discovered that chemoresistant MOLM-14 cells rely on eIF4A-dependent cap translation for survival in vitro and in vivo. EIF4A drives an intrinsic metabolic program sustaining bioenergetic and redox homeostasis and regulates the expression of anti-apoptotic proteins. Overall, our work suggests that eIF4A-dependent cap translation contributes to adaptive processes involved in resistance to relevant therapeutic agents in AML.
Collapse
Affiliation(s)
- Katie Fooks
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| | | | - Victor Gife
- grid.414216.40000 0001 0742 1666Maisonneuve-Rosemont Hospital Research Centre, Montreal, Canada ,grid.14848.310000 0001 2292 3357Present Address: Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Canada
| | | | - Zaynab Nouhi
- grid.414216.40000 0001 0742 1666Maisonneuve-Rosemont Hospital Research Centre, Montreal, Canada
| | - William W. L. Poon
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| | - Vincent Luo
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| | - Ryan N. Rys
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, Canada
| | - Raquel Aloyz
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Alexandre Orthwein
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada ,grid.189967.80000 0001 0941 6502Present Address: Department of Radiation Oncology, Emory School of Medicine, Atlanta, USA
| | - Nathalie A. Johnson
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Laura Hulea
- grid.414216.40000 0001 0742 1666Maisonneuve-Rosemont Hospital Research Centre, Montreal, Canada ,grid.14848.310000 0001 2292 3357Present Address: Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Canada ,grid.14848.310000 0001 2292 3357Département de Médecine, Université de Montréal, Montreal, Canada
| | - Francois E. Mercier
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Lu P, Wang G, Lu X, Qiao P, Jin Y, Yu J, Chen Q, Wang H. Elevated matrix metalloproteinase 9 supports peripheral nerve regeneration via promoting Schwann cell migration. Exp Neurol 2022; 352:114020. [DOI: 10.1016/j.expneurol.2022.114020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
|
9
|
Abstract
Metabolic reprogramming is one of the main characteristics of malignant tumors, which is due to the flexible changes of cell metabolism that can meet the needs of cell growth and maintain the homeostasis of tissue environments. Cancer cells can obtain metabolic adaptation through a variety of endogenous and exogenous signaling pathways, which can not only promote the growth of malignant cancer cells, but also start the transformation process of cells to adapt to tumor microenvironment. Studies show that m6A RNA methylation is widely involved in the metabolic recombination of tumor cells. In eukaryotes, m6A methylation is the most abundant modification in mRNA, which is involved in almost all the RNA cycle stages, including regulation the transcription, maturation, translation, degradation and stability of mRNA. M6A RNA methylation can be involved in the regulation of physiological and pathological processes, including cancer. In this review, we discuss the role of m6A RNA methylation modification plays in tumor metabolism-related molecules and pathways, aiming to show the importance of targeting m6A in regulating tumor metabolism.
Collapse
Affiliation(s)
- Yuanyuan An
- Gynecological Mini-Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou Street, Dongcheng District, Beijing, 100006 China
| | - Hua Duan
- Gynecological Mini-Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou Street, Dongcheng District, Beijing, 100006 China
| |
Collapse
|
10
|
Abstract
The mechanistic/mammalian target of rapamycin (mTOR), a serine/threonine kinase, is a central regulator for human physiological activity. Deregulated mTOR signaling is implicated in a variety of disorders, such as cancer, obesity, diabetes, and neurodegenerative diseases. The papers published in this special issue summarize the current understanding of the mTOR pathway and its role in the regulation of tissue regeneration, regulatory T cell differentiation and function, and different types of cancer including hematologic malignancies, skin, prostate, breast, and head and neck cancer. The findings highlight that targeting the mTOR pathway is a promising strategy to fight against certain human diseases.
Collapse
|
11
|
Anselmi L, Bertuccio SN, Lonetti A, Prete A, Masetti R, Pession A. Insights on the Interplay between Cells Metabolism and Signaling: A Therapeutic Perspective in Pediatric Acute Leukemias. Int J Mol Sci 2020; 21:ijms21176251. [PMID: 32872391 PMCID: PMC7503381 DOI: 10.3390/ijms21176251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Nowadays, thanks to extensive studies and progress in precision medicine, pediatric leukemia has reached an extremely high overall survival rate. Nonetheless, a fraction of relapses and refractory cases is still present, which are frequently correlated with poor prognosis. Although several molecular features of these diseases are known, still the field of energy metabolism, which is widely studied in adult, has not been frequently explored in childhood leukemias. Metabolic reprogramming is a hallmark of cancer and is deeply connected with other genetic and signaling aberrations generally known to be key features of both acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). This review aims to clear the current knowledge on metabolic rewiring in pediatric ALL and AML, also highlighting the influence of the main signaling pathways and suggesting potential ideas to further exploit this field to discover new prognostic biomarkers and, above all, beneficial therapeutic options.
Collapse
Affiliation(s)
- Laura Anselmi
- Pediatric Hematology and Oncology Unit, S.Orsola-Malpighi Hospital, University of Bologna, 40126 Bologna, Italy;
| | - Salvatore Nicola Bertuccio
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, 40126 Bologna, Italy; (A.P.); (R.M.); (A.P.)
- Correspondence:
| | - Annalisa Lonetti
- Giorgio Prodi Interdepartmental Cancer Research Centre, University of Bologna, 40126 Bologna, Italy;
| | - Arcangelo Prete
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, 40126 Bologna, Italy; (A.P.); (R.M.); (A.P.)
| | - Riccardo Masetti
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, 40126 Bologna, Italy; (A.P.); (R.M.); (A.P.)
| | - Andrea Pession
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, 40126 Bologna, Italy; (A.P.); (R.M.); (A.P.)
- Giorgio Prodi Interdepartmental Cancer Research Centre, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
12
|
Han W, Shi J, Cao J, Dong B, Guan W. Emerging Roles and Therapeutic Interventions of Aerobic Glycolysis in Glioma. Onco Targets Ther 2020; 13:6937-6955. [PMID: 32764985 PMCID: PMC7371605 DOI: 10.2147/ott.s260376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Glioma is the most common type of intracranial malignant tumor, with a great recurrence rate due to its infiltrative growth, treatment resistance, intra- and intertumoral genetic heterogeneity. Recently, accumulating studies have illustrated that activated aerobic glycolysis participated in various cellular and clinical activities of glioma, thus influencing the efficacy of radiotherapy and chemotherapy. However, the glycolytic process is too complicated and ambiguous to serve as a novel therapy for glioma. In this review, we generalized the implication of key enzymes, glucose transporters (GLUTs), signalings and transcription factors in the glycolytic process of glioma. In addition, we summarized therapeutic interventions via the above aspects and discussed promising clinical applications for glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| |
Collapse
|