1
|
Lu C, Liu D, Wu Q, Zeng J, Xiong Y, Luo T. EphA2 blockage ALW-II-41-27 alleviates atherosclerosis by remodeling gut microbiota to regulate bile acid metabolism. NPJ Biofilms Microbiomes 2024; 10:108. [PMID: 39426981 PMCID: PMC11490535 DOI: 10.1038/s41522-024-00585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Coronary artery disease (CAD), a critical condition resulting from systemic inflammation, metabolic dysfunction, and gut microbiota dysbiosis, poses a global public health challenge. ALW-II-41-27, a specific inhibitor of the EphA2 receptor, has shown anti-inflammatory prosperities. However, the impact of ALW-II-41-27 on atherosclerosis has not been elucidated. This study aimed to examine the roles of pharmacologically inhibiting EphA2 and the underlying mechanism in ameliorating atherosclerosis. ALW-II-41-27 was administered to apoE-/- mice fed a high-fat diet via intraperitoneal injection. We first discovered that ALW-II-41-27 led to a significant reduction in atherosclerotic plaques, evidenced by reduced lipid and macrophage accumulation, alongside an increase in collagen and smooth muscle cell content. ALW-II-41-27 also significantly lowered plasma and hepatic cholesterol levels, as well as the colonic inflammation. Furthermore, gut microbiota was analyzed by metagenomics and plasma metabolites by untargeted metabolomics. ALW-II-41-27-treated mice enriched Enterococcus, Akkermansia, Eggerthella and Lactobaccilus, accompanied by enhanced secondary bile acids production. To explore the causal link between ALW-II-41-27-associated gut microbiota and atherosclerosis, fecal microbiota transplantation was employed. Mice that received ALW-II-41-27-treated mouse feces exhibited the attenuated atherosclerotic plaque. In clinical, lower plasma DCA and HDCA levels were determined in CAD patients using quantitative metabolomics and exhibited a negative correlation with higher monocytes EphA2 expression. Our findings underscore the potential of ALW-II-41-27 as a novel therapeutic agent for atherosclerosis, highlighting its capacity to modulate gut microbiota composition and bile acid metabolism, thereby offering a promising avenue for CAD.
Collapse
Affiliation(s)
- Cong Lu
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Liu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiao Wu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Zeng
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Xiong
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tiantian Luo
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Lanser DM, Bennett AB, Vu K, Gelli A. Macropinocytosis as a potential mechanism driving neurotropism of Cryptococcus neoformans. Front Cell Infect Microbiol 2023; 13:1331429. [PMID: 38149006 PMCID: PMC10750359 DOI: 10.3389/fcimb.2023.1331429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Cryptococcus neoformans can invade the central nervous system by crossing the blood-brain barrier via a transcellular mechanism that relies on multiple host factors. In this narrative, we review the evidence that a direct interplay between C. neoformans and brain endothelial cells forms the basis for invasion and transmigration across the brain endothelium. Adherence and internalization of C. neoformans is dependent on transmembrane proteins, including a hyaluronic acid receptor and an ephrin receptor tyrosine kinase. We consider the role of EphA2 in facilitating the invasion of the central nervous system by C. neoformans and highlight experimental evidence supporting macropinocytosis as a potential mechanism of internalization and transcytosis. How macropinocytosis might be conclusively demonstrated in the context of C. neoformans is also discussed.
Collapse
Affiliation(s)
| | | | | | - Angie Gelli
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Peixoto J, Príncipe C, Pestana A, Osório H, Pinto MT, Prazeres H, Soares P, Lima RT. Using a Dual CRISPR/Cas9 Approach to Gain Insight into the Role of LRP1B in Glioblastoma. Int J Mol Sci 2023; 24:11285. [PMID: 37511044 PMCID: PMC10379115 DOI: 10.3390/ijms241411285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
LRP1B remains one of the most altered genes in cancer, although its relevance in cancer biology is still unclear. Recent advances in gene editing techniques, particularly CRISPR/Cas9 systems, offer new opportunities to evaluate the function of large genes, such as LRP1B. Using a dual sgRNA CRISPR/Cas9 gene editing approach, this study aimed to assess the impact of disrupting LRP1B in glioblastoma cell biology. Four sgRNAs were designed for the dual targeting of two LRP1B exons (1 and 85). The U87 glioblastoma (GB) cell line was transfected with CRISPR/Cas9 PX459 vectors. To assess LRP1B-gene-induced alterations and expression, PCR, Sanger DNA sequencing, and qRT-PCR were carried out. Three clones (clones B9, E6, and H7) were further evaluated. All clones presented altered cellular morphology, increased cellular and nuclear size, and changes in ploidy. Two clones (E6 and H7) showed a significant decrease in cell growth, both in vitro and in the in vivo CAM assay. Proteomic analysis of the clones' secretome identified differentially expressed proteins that had not been previously associated with LRP1B alterations. This study demonstrates that the dual sgRNA CRISPR/Cas9 strategy can effectively edit LRP1B in GB cells, providing new insights into the impact of LRP1B deletions in GBM biology.
Collapse
Grants
- PTDC/MEC-ONC/31520/2017 FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- POCI-01-0145-FEDER-028779 (PTDC/BIA-MIC/28779/2017) FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- project "Institute for Research and Innovation in Health Sciences" (UID/BIM/04293/2019) FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- "Cancer Research on Therapy Resistance: From Basic Mechanisms to Novel Targets"-NORTE-01-0145-FEDER-000051 Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF
- The Porto Comprehensive Cancer Center" with the reference NORTE-01-0145-FEDER-072678 - Consórcio PORTO.CCC - Porto.Comprehensive Cancer Center Raquel Seruca European Regional Development Fund
- ROTEIRO/0028/2013; LISBOA-01-0145-FEDER-022125 Portuguese Mass Spectrometry Network, integrated in the National Roadmap of Research Infra-structures of Strategic Relevance
Collapse
Affiliation(s)
- Joana Peixoto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
| | - Catarina Príncipe
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Ana Pestana
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
| | - Hugo Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Marta Teixeira Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Hugo Prazeres
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Paula Soares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Raquel T Lima
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
4
|
Malespín-Bendaña W, Ferreira RM, Pinto MT, Figueiredo C, Alpízar-Alpízar W, Une C, Figueroa-Protti L, Ramírez V. Helicobacter pylori infection induces abnormal expression of pro-angiogenic gene ANGPT2 and miR-203a in AGS gastric cell line. Braz J Microbiol 2023; 54:791-801. [PMID: 36877445 PMCID: PMC10235401 DOI: 10.1007/s42770-023-00940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023] Open
Abstract
Helicobacter pylori colonizes the stomach and induces an inflammatory response that can develop into gastric pathologies including cancer. The infection can alter the gastric vasculature by the deregulation of angiogenic factors and microRNAs. In this study, we investigate the expression level of pro-angiogenic genes (ANGPT2, ANGPT1, receptor TEK), and microRNAs (miR-135a, miR-200a, miR-203a) predicted to regulate those genes, using H. pylori co-cultures with gastric cancer cell lines. In vitro infections of different gastric cancer cell lines with H. pylori strains were performed, and the expression of ANGPT1, ANGPT2, and TEK genes, and miR-135a, miR-200a, and miR-203a, was quantified after 24 h of infection (h.p.i.). We performed a time course experiment of H. pylori 26695 infections in AGS cells at 6 different time points (3, 6, 12, 28, 24, and 36 h.p.i.). The angiogenic response induced by supernatants of non-infected and infected cells at 24 h.p.i. was evaluated in vivo, using the chicken chorioallantoic membrane (CAM) assay. In response to infection, ANGPT2 mRNA was upregulated at 24 h.p.i, and miR-203a was downregulated in AGS cells co-cultured with different H. pylori strains. The time course of H. pylori 26695 infection in AGS cells showed a gradual decrease of miR-203a expression concomitant with an increase of ANGPT2 mRNA and protein expression. Expression of ANGPT1 and TEK mRNA or protein could not be detected in any of the infected or non-infected cells. CAM assays showed that the supernatants of AGS-infected cells with 26695 strain induced a significantly higher angiogenic and inflammatory response. Our results suggest that H. pylori could contribute to the process of carcinogenesis by downregulating miR-203a, which further promotes angiogenesis in gastric mucosa by increasing ANGPT2 expression. Further investigation is needed to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Wendy Malespín-Bendaña
- Institute of Health Research (INISA), University of Costa Rica, 11501-2060, San José, Costa Rica.
| | - Rui M Ferreira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto (i3S), Porto, Portugal
| | - Marta T Pinto
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto (i3S), Porto, Portugal
| | - Ceu Figueiredo
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto (i3S), Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Warner Alpízar-Alpízar
- Center for Research On Microscopic Structures (CIEMic), University of Costa Rica, San José, Costa Rica
- Department of Biochemistry, School of Medicine, University of Costa Rica, San José, Costa Rica
| | - Clas Une
- Institute of Health Research (INISA), University of Costa Rica, 11501-2060, San José, Costa Rica
| | - Lucía Figueroa-Protti
- Center for Research On Microscopic Structures (CIEMic), University of Costa Rica, San José, Costa Rica
- Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Vanessa Ramírez
- Institute of Health Research (INISA), University of Costa Rica, 11501-2060, San José, Costa Rica
- Department Public Nutrition, School of Nutrition, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
5
|
Wu Z, Wang W, Zhang K, Fan M, Lin R. Epigenetic and Tumor Microenvironment for Prognosis of Patients with Gastric Cancer. Biomolecules 2023; 13:biom13050736. [PMID: 37238607 DOI: 10.3390/biom13050736] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Epigenetics studies heritable or inheritable mechanisms that regulate gene expression rather than altering the DNA sequence. However, no research has investigated the link between TME-related genes (TRGs) and epigenetic-related genes (ERGs) in GC. METHODS A complete review of genomic data was performed to investigate the relationship between the epigenesis tumor microenvironment (TME) and machine learning algorithms in GC. RESULTS Firstly, TME-related differential expression of genes (DEGs) performed non-negative matrix factorization (NMF) clustering analysis and determined two clusters (C1 and C2). Then, Kaplan-Meier curves for overall survival (OS) and progression-free survival (PFS) rates suggested that cluster C1 predicted a poorer prognosis. The Cox-LASSO regression analysis identified eight hub genes (SRMS, MET, OLFML2B, KIF24, CLDN9, RNF43, NETO2, and PRSS21) to build the TRG prognostic model and nine hub genes (TMPO, SLC25A15, SCRG1, ISL1, SOD3, GAD1, LOXL4, AKR1C2, and MAGEA3) to build the ERG prognostic model. Additionally, the signature's area under curve (AUC) values, survival rates, C-index scores, and mean squared error (RMS) curves were evaluated against those of previously published signatures, which revealed that the signature identified in this study performed comparably. Meanwhile, based on the IMvigor210 cohort, a statistically significant difference in OS between immunotherapy and risk scores was observed. It was followed by LASSO regression analysis which identified 17 key DEGs and a support vector machine (SVM) model identified 40 significant DEGs, and based on the Venn diagram, eight co-expression genes (ENPP6, VMP1, LY6E, SHISA6, TMEM158, SYT4, IL11, and KLK8) were discovered. CONCLUSION The study identified some hub genes that could be useful in predicting prognosis and management in GC.
Collapse
Affiliation(s)
- Zenghong Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kun Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengke Fan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Mota R, Lima RT, Flores C, Silva JF, Cruz B, Alves B, Pinto MT, Adessi A, Pereira SB, De Philippis R, Soares P, Tamagnini P. Assessing the Antitumor Potential of Variants of the Extracellular Carbohydrate Polymer from Synechocystis Δ sigF Mutant. Polymers (Basel) 2023; 15:1382. [PMID: 36987163 PMCID: PMC10057057 DOI: 10.3390/polym15061382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer is a leading cause of death worldwide with a huge societal and economic impact. Clinically effective and less expensive anticancer agents derived from natural sources can help to overcome limitations and negative side effects of chemotherapy and radiotherapy. Previously, we showed that the extracellular carbohydrate polymer of a Synechocystis ΔsigF overproducing mutant displayed a strong antitumor activity towards several human tumor cell lines, by inducing high levels of apoptosis through p53 and caspase-3 activation. Here, the ΔsigF polymer was manipulated to obtain variants that were tested in a human melanoma (Mewo) cell line. Our results demonstrated that high molecular mass fractions were important for the polymer bioactivity, and that the reduction of the peptide content generated a variant with enhanced in vitro antitumor activity. This variant, and the original ΔsigF polymer, were further tested in vivo using the chick chorioallantoic membrane (CAM) assay. Both polymers significantly decreased xenografted CAM tumor growth and affected tumor morphology, by promoting less compact tumors, validating their antitumor potential in vivo. This work contributes with strategies for the design and testing tailored cyanobacterial extracellular polymers and further strengths the relevance of evaluating this type of polymers for biotechnological/biomedical applications.
Collapse
Affiliation(s)
- Rita Mota
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (R.M.); (R.T.L.); (C.F.); (J.F.S.); (B.C.); (B.A.); (M.T.P.); (S.B.P.); (P.S.)
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Raquel T. Lima
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (R.M.); (R.T.L.); (C.F.); (J.F.S.); (B.C.); (B.A.); (M.T.P.); (S.B.P.); (P.S.)
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FMUP - Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carlos Flores
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (R.M.); (R.T.L.); (C.F.); (J.F.S.); (B.C.); (B.A.); (M.T.P.); (S.B.P.); (P.S.)
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Juliana F. Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (R.M.); (R.T.L.); (C.F.); (J.F.S.); (B.C.); (B.A.); (M.T.P.); (S.B.P.); (P.S.)
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FCUP - Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Beatriz Cruz
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (R.M.); (R.T.L.); (C.F.); (J.F.S.); (B.C.); (B.A.); (M.T.P.); (S.B.P.); (P.S.)
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FCUP - Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Bárbara Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (R.M.); (R.T.L.); (C.F.); (J.F.S.); (B.C.); (B.A.); (M.T.P.); (S.B.P.); (P.S.)
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- School of Allied Health Sciences of Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Marta T. Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (R.M.); (R.T.L.); (C.F.); (J.F.S.); (B.C.); (B.A.); (M.T.P.); (S.B.P.); (P.S.)
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Alessandra Adessi
- DAGRI - Department of Agriculture, Food, Environment and Forestry, University of Florence, Via Maragliano 77, 50144 Firenze, Italy; (A.A.); (R.D.P.)
| | - Sara B. Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (R.M.); (R.T.L.); (C.F.); (J.F.S.); (B.C.); (B.A.); (M.T.P.); (S.B.P.); (P.S.)
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Roberto De Philippis
- DAGRI - Department of Agriculture, Food, Environment and Forestry, University of Florence, Via Maragliano 77, 50144 Firenze, Italy; (A.A.); (R.D.P.)
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (R.M.); (R.T.L.); (C.F.); (J.F.S.); (B.C.); (B.A.); (M.T.P.); (S.B.P.); (P.S.)
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FMUP - Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (R.M.); (R.T.L.); (C.F.); (J.F.S.); (B.C.); (B.A.); (M.T.P.); (S.B.P.); (P.S.)
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FCUP - Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
Shin JM, Han MS, Park JH, Lee SH, Kim TH, Lee SH. The EphA1 and EphA2 Signaling Modulates the Epithelial Permeability in Human Sinonasal Epithelial Cells and the Rhinovirus Infection Induces Epithelial Barrier Dysfunction via EphA2 Receptor Signaling. Int J Mol Sci 2023; 24:ijms24043629. [PMID: 36835041 PMCID: PMC9962399 DOI: 10.3390/ijms24043629] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Deficiencies in epithelial barrier integrity are involved in the pathogenesis of chronic rhinosinusitis (CRS). This study aimed to investigate the role of ephrinA1/ephA2 signaling on sinonasal epithelial permeability and rhinovirus-induced epithelial permeability. This role in the process of epithelial permeability was evaluated by stimulating ephA2 with ephrinA1 and inactivating ephA2 with ephA2 siRNA or inhibitor in cells exposed to rhinovirus infection. EphrinA1 treatment increased epithelial permeability, which was associated with decreased expression of ZO-1, ZO-2, and occludin. These effects of ephrinA1 were attenuated by blocking the action of ephA2 with ephA2 siRNA or inhibitor. Furthermore, rhinovirus infection upregulated the expression levels of ephrinA1 and ephA2, increasing epithelial permeability, which was suppressed in ephA2-deficient cells. These results suggest a novel role of ephrinA1/ephA2 signaling in epithelial barrier integrity in the sinonasal epithelium, suggesting their participation in rhinovirus-induced epithelial dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | - Sang Hag Lee
- Correspondence: ; Tel.: +82-2-920-5486; Fax: +82-2-925-5233
| |
Collapse
|
8
|
Xie R, Yuan M, Jiang Y. The Pan-Cancer Crosstalk Between the EFNA Family and Tumor Microenvironment for Prognosis and Immunotherapy of Gastric Cancer. Front Cell Dev Biol 2022; 10:790947. [PMID: 35309935 PMCID: PMC8924469 DOI: 10.3389/fcell.2022.790947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background: EFNA1-5 have important physiological functions in regulating tumorigenesis and metastasis. However, correlating EFNA genes in the tumor immune microenvironment (TIME), and the prognosis of patients with gastric cancer remains to be determined. Methods: Using public databases, the expression of EFNA1-5 in pan-cancer and gastric cancer was comprehensively analyzed using UCSC Xena, the Oncomine dataset and UALCAN. We further completed survival analysis by Kaplan-Meier plotter to evaluate the prognosis of the high and low expression groups of the EFNAs gene in patients with gastric cancer. The TIMER tool was used to reveal the correlation between immune cell infiltration and genes of interest. Spearman correlation was used to find an association between the EFNA genes and tumor stem cells, TIME, microsatellite instability (MSI) or tumor mutational burden (TMB). We also used cBioportal, GeneMANIA and STRINGS to explore the types of changes in these genes and the protein interactions. Finally, we described the TIME based on QUANTISEQ algorithm, predicted the relationship between the EFNA genes and half-maximal inhibitory concentration (IC50), and analyzed the relationship between the EFNA family genes and immune checkpoints. Results: The expression of EFNA1, EFNA3, EFNA4, and EFNA5 was elevated in pan-cancer. Compared with normal adjacent tissues, EFNA1, EFNA3, and EFNA4 were up-regulated in gastric cancer. In terms of the influence on the survival of patients, the expression of EFNA3 and EFNA4 were related to overall survival (OS) and disease-free survival (DFS) for patients with gastric cancer. High expression of EFNA5 often predicted poor OS and DFS. In gastric cancer, the expression of EFNA3 and EFNA4 showed a significant negative correlation with B cells. The higher the expression of EFNA5, the higher the abundance of B cells, CD4+T cells and macrophages. CD8+T cells, dendritic cells infiltration and EFNA1-4 expression were negatively correlated. The infiltration of CD4+T cells, macrophages and neutrophils was negatively correlated with the expression of EFNA1, EFNA3, and EFNA4. TMB and MSI were positively correlated with EFNA3/EFNA4 expression. In the tumor microenvironment and drug sensitivity, EFNA3/4/5 also showed a significant correlation. In addition, we explored the relationship between the EFNA family genes and the immune microenvironment (B cells, M2 macrophages, monocytes, CD8+ T cells, regulatory T cells, myeloid dendritic cells, natural killer cells, non-regulatory CD4+ T cells), immune checkpoint (PDCD1, PDCD1LG2, CD274, CTLA4), and IC50 of common chemotherapeutic drugs for gastric cancer (5-fluorouracil, cisplatin, docetaxel and gemcitabine). Conclusions: Our study provides new ideas for tumor treatment and prognosis from the perspective of TIME, and nominates EFNA1-5 to become potential therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Rongrong Xie
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengping Yuan
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Wei G, Dong Y, He Z, Qiu H, Wu Y, Chen Y. Identification of hub genes and construction of an mRNA-miRNA-lncRNA network of gastric carcinoma using integrated bioinformatics analysis. PLoS One 2021; 16:e0261728. [PMID: 34968391 PMCID: PMC8718005 DOI: 10.1371/journal.pone.0261728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Background Gastric carcinoma (GC) is one of the most common cancer globally. Despite its worldwide decline in incidence and mortality over the past decades, gastric cancer still has a poor prognosis. However, the key regulators driving this process and their exact mechanisms have not been thoroughly studied. This study aimed to identify hub genes to improve the prognostic prediction of GC and construct a messenger RNA-microRNA-long non-coding RNA(mRNA-miRNA-lncRNA) regulatory network. Methods The GSE66229 dataset, from the Gene Expression Omnibus (GEO) database, and The Cancer Genome Atlas (TCGA) database were used for the bioinformatic analysis. Differential gene expression analysis methods and Weighted Gene Co-expression Network Analysis (WGCNA) were used to identify a common set of differentially co-expressed genes in GC. The genes were validated using samples from TCGA database and further validation using the online tools GEPIA database and Kaplan-Meier(KM) plotter database. Gene set enrichment analysis(GSEA) was used to identify hub genes related to signaling pathways in GC. The RNAInter database and Cytoscape software were used to construct an mRNA-miRNA-lncRNA network. Results A total of 12 genes were identified as the common set of differentially co-expressed genes in GC. After verification of these genes, 3 hub genes, namely CTHRC1, FNDC1, and INHBA, were found to be upregulated in tumor and associated with poor GC patient survival. In addition, an mRNA-miRNA-lncRNA regulatory network was established, which included 12 lncRNAs, 5 miRNAs, and the 3 hub genes. Conclusions In summary, the identification of these hub genes and the establishment of the mRNA-miRNA-lncRNA regulatory network provide new insights into the underlying mechanisms of gastric carcinogenesis. In addition, the identified hub genes, CTHRC1, FNDC1, and INHBA, may serve as novel prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Gang Wei
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Youhong Dong
- Department of Clinical Oncology, The First People’s Hospital of Xiangyang, Xiangyang, China
| | - Zhongshi He
- Department of Clinical Oncology, The First People’s Hospital of Xiangyang, Xiangyang, China
| | - Hu Qiu
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong Wu
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
10
|
Lee SH, Kang SH, Han MS, Kwak JW, Kim HG, Lee TH, Lee DB, Kim TH. The Expression of ephrinA1/ephA2 Receptor Increases in Chronic Rhinosinusitis and ephrinA1/ephA2 Signaling Affects Rhinovirus-Induced Innate Immunity in Human Sinonasal Epithelial Cells. Front Immunol 2021; 12:793517. [PMID: 34975898 PMCID: PMC8716742 DOI: 10.3389/fimmu.2021.793517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
EphA2 receptor and its ephrin ligands are involved in virus infection, epithelial permeability, and chemokine secretion. We hypothesized that ephrinA1/ephA2 signaling participates in rhinovirus (RV)-induced antiviral immune response in sinonasal mucosa of patients with chronic rhinosinusitis (CRS). Therefore, we investigated the expression of ephrinA1/ephA2 in normal and inflamed sinonasal mucosa and evaluated whether they regulate chemokine secretion and the production of antiviral immune mediators including interferons (IFNs) in RV-infected human primary sinonasal epithelial cells. For this purpose, the expression and distribution of ephrinA1/ephA2 in sinonasal mucosa were evaluated with RT-qPCR, immunofluorescence, and western blot. Their roles in chemokine secretion and the production of antiviral immune mediators such as type I and III IFNs, and interferon stimulated genes were evaluated by stimulating ephA2 with ephrinA1 and inactivating ephA2 with ephA2 siRNA or inhibitor in cells exposed to RV and poly(I:C). We found that ephrinA1/ephA2 were expressed in normal mucosa and their levels increased in inflamed sinonasal mucosa of CRS patients. RV infection or poly(I:C) treatment induced chemokine secretion which were attenuated by blocking the action of ephA2 with ephA2 siRNA or inhibitor. The production of antiviral immune mediators enhanced by rhinovirus or poly (I:C) is increased by blocking ephA2 compared with that of cells stimulated by either rhinovirus or poly(I:C) alone. In addition, blocking ephA2 attenuated RV replication in cultured cells. Taken together, these results describe a novel role of ephrinA1/ephA2 signaling in antiviral innate immune response in sinonasal epithelium, suggesting their participation in RV-induced development and exacerbations of CRS.
Collapse
Affiliation(s)
- Sang Hag Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Caulerpin Mitigates Helicobacter pylori-Induced Inflammation via Formyl Peptide Receptors. Int J Mol Sci 2021; 22:ijms222313154. [PMID: 34884957 PMCID: PMC8658387 DOI: 10.3390/ijms222313154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
The identification of novel strategies to control Helicobacter pylori (Hp)-associated chronic inflammation is, at present, a considerable challenge. Here, we attempt to combat this issue by modulating the innate immune response, targeting formyl peptide receptors (FPRs), G-protein coupled receptors that play key roles in both the regulation and the resolution of the innate inflammatory response. Specifically, we investigated, in vitro, whether Caulerpin—a bis-indole alkaloid isolated from algae of the genus Caulerpa—could act as a molecular antagonist scaffold of FPRs. We showed that Caulerpin significantly reduces the immune response against Hp culture filtrate, by reverting the FPR2-related signaling cascade and thus counteracting the inflammatory reaction triggered by Hp peptide Hp(2–20). Our study suggests Caulerpin to be a promising therapeutic or adjuvant agent for the attenuation of inflammation triggered by Hp infection, as well as its related adverse clinical outcomes.
Collapse
|
12
|
Engineering injectable vascularized tissues from the bottom-up: Dynamics of in-gel extra-spheroid dermal tissue assembly. Biomaterials 2021; 279:121222. [PMID: 34736148 DOI: 10.1016/j.biomaterials.2021.121222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
Modular tissue engineering approaches open up exciting perspectives for the biofabrication of vascularized tissues from the bottom-up, using micro-sized units such as spheroids as building blocks. While several techniques for 3D spheroid formation from multiple cell types have been reported, strategies to elicit the extra-spheroid assembly of complex vascularized tissues are still scarce. Here we describe an injectable approach to generate vascularized dermal tissue, as an example application, from spheroids combining fibroblasts and endothelial progenitors (OEC) in a xeno-free (XF) setting. Short-term cultured spheroids (1 day) were selected over mature spheroids (7 days), as they showed significantly higher angiogenic sprouting potential. Embedding spheroids in fibrin was crucial for triggering cell migration into the external milieu, while providing a 3D framework for in-gel extra-spheroid morphogenesis. Migrating fibroblasts proliferated and produced endogenous ECM forming a dense tissue, while OEC self-assembled into stable capillaries with lumen and basal lamina. Massive in vitro interconnection between sprouts from neighbouring spheroids rapidly settled an intricate vascular plexus. Upon injection into the chorioallantoic membrane of chick embryos, fibrin-entrapped pre-vascularized XF spheroids developed into a macrotissue with evident host vessel infiltration. After only 4 days, perfused chimeric capillaries with human cells were present in proximal areas, showing fast and functional inosculation between host and donor vessels. This method for generating dense vascularized tissue from injectable building blocks is clinically relevant and potentially useful for a range of applications.
Collapse
|
13
|
Abdi E, Latifi-Navid S, Abedi Sarvestani F, Esmailnejad MH. Emerging therapeutic targets for gastric cancer from a host- Helicobacter pylori interaction perspective. Expert Opin Ther Targets 2021; 25:685-699. [PMID: 34410200 DOI: 10.1080/14728222.2021.1971195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Gastric cancer (GC) has the higher genetic, cytologic, and architectural heterogeneity compared to other gastrointestinal cancers. By inducing gastric inflammation, Helicobacter pylori (HP) may lead to GC through combining bacterial factors with host factors. In this regard, identification of the major therapeutic targets against the host-HP interactions plays a critical role in GC prevention, diagnosis, and treatment. AREAS COVERED This study offers new insights into the promising therapeutic targets against the angiogenesis, invasion, or metastasis of GC from a host-HP interaction perspective. To this end, MEDLINE, EMBASE, LILACS, AIM, and IndMed databases were searched for relevant articles since 1992. EXPERT OPINION Wnt signaling and COX pathway have a well-documented history in the genesis of GC by HP and might be considered as the most promising targets for early GC treatment. Destroying HP may decrease the risk of GC, but it cannot fully hinder the GC development induced by HP infection. Therefore, targeting HP-activated pathways, especially COX-2/Wnt/beta-catenin/VEGF, TLR2/TLR9/COX-2, COX2-PGE2, and NF-κB/COX-2, as well as EPHA2, MMPs, and miR-543/SIRT1 axis, can be an effective measure in the early treatment of GC. However, different clinical trials and large, multi-center cohorts are required to validate these potentially effective targets for GC therapy.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | | |
Collapse
|
14
|
Hajeebu S, Ngembus NJ, Bandi PS, Panigrahy PK, Heindl S. Machine Learning as a Tool in Investigating the Possible Role of Microbiome in Development and Treatment of Cancer. Cureus 2021; 13:e17415. [PMID: 34589326 PMCID: PMC8459918 DOI: 10.7759/cureus.17415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
In recent times, cancer has become a leading cause of death worldwide, and a need for new therapeutic methods to save lives has become an inevitable necessity. Microbiome and its composition have been a key area of interest among the scientific community. Microbiota appears to hold the key to the therapeutic outcome of cancer by modulating the anti-tumor activity of drugs. Furthermore, the genetic composition of the microbiota and its matching gene sequences in the oncogene has added a new dimension to cancer research. However, it requires adaptive learning techniques and high computational power to bring this research to light empirically. This paper explores the role of machine learning (ML), a subset of artificial intelligence (AI), as a tool to investigate the possible role of the microbiome in the detection and treatment of cancer.
Collapse
Affiliation(s)
- Sreehita Hajeebu
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ngonack J Ngembus
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pushyami Satya Bandi
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Stacey Heindl
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
15
|
The Extracellular Small Leucine-Rich Proteoglycan Biglycan Is a Key Player in Gastric Cancer Aggressiveness. Cancers (Basel) 2021; 13:cancers13061330. [PMID: 33809543 PMCID: PMC8001774 DOI: 10.3390/cancers13061330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Approximately 80% of gastric cancer patients are diagnosed at advanced stages with an average five-year survival rate of less than 30%. Alterations of the extracellular matrix proteins have been largely demonstrated in all steps of the disease. Thus, studies for the identification of novel prognostic biomarkers and efficient therapeutic strategies are urgently needed. In this study, we report the oncogenic role of biglycan, an extracellular proteoglycan, in gastric carcinogenesis. Biglycan was able to modulate gastric cancer aggressive features as cell survival, migration, and angiogenesis. Additionally, high levels of biglycan expression correlates with tumorigenic gene signatures and they are associated with poor patient prognosis in advanced stages of the disease. These results point biglycan as a key player in gastric cancer aggressiveness and further studies should be done to investigate the therapeutic potential of biglycan to tackle gastric cancer progression. Abstract Biglycan (BGN gene), an extracellular proteoglycan, has been described to be associated with cancer aggressiveness. The purpose of this study was to clarify the clinical value of biglycan as a biomarker in multiple independent GC cohorts and determine the in vitro and in vivo role of biglycan in GC malignant features. We found that BGN is commonly over-expressed in all analyzed cohorts, being associated with disease relapse and poor prognosis in patients with advanced stages of disease. In vitro and in vivo experiments demonstrated that biglycan knock-out GC cells display major phenotypic changes with a lower cell survival, migration, and angiogenic potential when compared with biglycan expressing cells. Biglycan KO GC cells present increased levels of PARP1 and caspase-3 cleavage and a decreased expression of mesenchymal markers. Importantly, biglycan deficient GC cells that were supplemented with exogenous biglycan were able to restore biological features, such as survival, clonogenic and migratory capacities. Our in vitro and in vivo findings were validated in human GC samples, where BGN expression was associated with several oncogenic gene signatures that were associated with apoptosis, cell migration, invasion, and angiogenesis. This study provided new insights on biglycan role in GC that should be taken in consideration as a key cellular regulator with major impact in tumor progression and patients’ clinical outcome.
Collapse
|
16
|
Yang J, Zhou X, Liu X, Ling Z, Ji F. Role of the Gastric Microbiome in Gastric Cancer: From Carcinogenesis to Treatment. Front Microbiol 2021; 12:641322. [PMID: 33790881 PMCID: PMC8005548 DOI: 10.3389/fmicb.2021.641322] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
The development of sequencing technology has expanded our knowledge of the human gastric microbiome, which is now known to play a critical role in the maintenance of homeostasis, while alterations in microbial community composition can promote the development of gastric diseases. Recently, carcinogenic effects of gastric microbiome have received increased attention. Gastric cancer (GC) is one of the most common malignancies worldwide with a high mortality rate. Helicobacter pylori is a well-recognized risk factor for GC. More than half of the global population is infected with H. pylori, which can modulate the acidity of the stomach to alter the gastric microbiome profile, leading to H. pylori-associated diseases. Moreover, there is increasing evidence that bacteria other than H. pylori and their metabolites also contribute to gastric carcinogenesis. Therefore, clarifying the contribution of the gastric microbiome to the development and progression of GC can lead to improvements in prevention, diagnosis, and treatment. In this review, we discuss the current state of knowledge regarding changes in the microbial composition of the stomach caused by H. pylori infection, the carcinogenic effects of H. pylori and non-H. pylori bacteria in GC, as well as the potential therapeutic role of gastric microbiome in H. pylori infection and GC.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Bakhti SZ, Latifi-Navid S, Gholizade Tobnagh S, Yazdanbod K, Yazdanbod A. Which genotype of Helicobacter pylori—cagA or cagE—Is better associated with gastric Cancer risk? Lessons from an extremely high-risk area in Iran. INFECTION GENETICS AND EVOLUTION 2020; 85:104431. [DOI: 10.1016/j.meegid.2020.104431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
|
18
|
Mechanisms of the Epithelial-Mesenchymal Transition and Tumor Microenvironment in Helicobacter pylori-Induced Gastric Cancer. Cells 2020; 9:cells9041055. [PMID: 32340207 PMCID: PMC7225971 DOI: 10.3390/cells9041055] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the most common human pathogens, affecting half of the world’s population. Approximately 20% of the infected patients develop gastric ulcers or neoplastic changes in the gastric stroma. An infection also leads to the progression of epithelial–mesenchymal transition within gastric tissue, increasing the probability of gastric cancer development. This paper aims to review the role of H. pylori and its virulence factors in epithelial–mesenchymal transition associated with malignant transformation within the gastric stroma. The reviewed factors included: CagA (cytotoxin-associated gene A) along with induction of cancer stem-cell properties and interaction with YAP (Yes-associated protein pathway), tumor necrosis factor α-inducing protein, Lpp20 lipoprotein, Afadin protein, penicillin-binding protein 1A, microRNA-29a-3p, programmed cell death protein 4, lysosomal-associated protein transmembrane 4β, cancer-associated fibroblasts, heparin-binding epidermal growth factor (HB-EGF), matrix metalloproteinase-7 (MMP-7), and cancer stem cells (CSCs). The review summarizes the most recent findings, providing insight into potential molecular targets and new treatment strategies for gastric cancer.
Collapse
|