1
|
Kumai T, Shinomiya H, Shibata H, Takahashi H, Kishikawa T, Okada R, Fujieda S, Sakashita M. Translational research in head and neck cancer: Molecular and immunological updates. Auris Nasus Larynx 2024; 51:391-400. [PMID: 37640594 DOI: 10.1016/j.anl.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis. Each year, approximately 880,000 patients are newly diagnosed with HNSCC worldwide, and 450,000 patients with HNSCC die. Risk factors for developing HNSCC have been identified, with cigarette smoking, alcohol consumption, and viral infections being the major factors. Owing to the prevalence of human papillomavirus infection, the number of HNSCC cases is increasing considerably. Surgery and chemoradiotherapy are the primary treatments for HNSCC. With advancements in tumor biology, patients are eligible for novel treatment modalities, namely targeted therapies, immunotherapy, and photoimmunotherapy. Because this area of research has rapidly progressed, clinicians should understand the basic biology of HNSCC to choose an appropriate therapy in the upcoming era of personalized medicine. This review summarized recent developments in tumor biology, focusing on epidemiology, genetic/epigenetic factors, the tumor microenvironment, microbiota, immunity, and photoimmunotherapy in HNSCC, as well as how these findings can be translated into clinical settings.
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Hirotaka Shinomiya
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Hirofumi Shibata
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Hideaki Takahashi
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan.
| | - Toshihiro Kishikawa
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan.
| | - Ryuhei Okada
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Masafumi Sakashita
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| |
Collapse
|
2
|
Okada Y, Suzuki H, Kaneko MK, Kato Y. Development of a Sensitive Anti-Mouse CD39 Monoclonal Antibody (C 39Mab-1) for Flow Cytometry and Western Blot Analyses. Monoclon Antib Immunodiagn Immunother 2024; 43:24-31. [PMID: 38197855 DOI: 10.1089/mab.2023.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
CD39 is involved in adenosine metabolism by converting extracellular ATP to adenosine. As extracellular adenosine plays a critical role in the immune suppression of the tumor microenvironment, the inhibition of CD39 activity by monoclonal antibodies (mAbs) is one of the important strategies for tumor therapy. This study developed specific and sensitive mAbs for mouse CD39 (mCD39) using the Cell-Based Immunization and Screening method. The established anti-mCD39 mAb, C39Mab-1 (rat IgG2a, kappa), reacted with mCD39-overexpressed Chinese hamster ovary-K1 (CHO/mCD39) by flow cytometry. The kinetic analysis using flow cytometry indicated that the dissociation constant of C39Mab-1 for CHO/mCD39 was 7.3 × 10-9 M. Furthermore, C39Mab-1 detected the lysate of CHO/mCD39 by western blot analysis. These results indicated that C39Mab-1 is useful for the detection of mCD39 in many functional studies.
Collapse
Affiliation(s)
- Yuki Okada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai Japan
| |
Collapse
|
3
|
Ouchida T, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Establishment of Anti-Dog Programmed Cell Death Ligand 1 Monoclonal Antibodies for Immunohistochemistry. Monoclon Antib Immunodiagn Immunother 2024; 43:17-23. [PMID: 38237003 DOI: 10.1089/mab.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Immune checkpoint blockade therapy has shown successful clinical outcomes in multiple human cancers. In dogs, several types of tumors resemble human tumors in many respects. Therefore, several groups have developed the anti-dog programmed cell death ligand 1 (dPD-L1) monoclonal antibodies (mAbs) and showed efficacy in several canine tumors. To examine the abundance of dPD-L1 in canine tumors, anti-dPD-L1 diagnostic mAbs for immunohistochemistry are required. In this study, we immunized the peptide in the dPD-L1 intracellular domain, and established anti-dPD-L1 mAbs, L1Mab-352 (mouse IgG1, kappa), and L1Mab-354 (mouse IgG1, kappa). In enzyme-linked immunosorbent assay, L1Mab-352 and L1Mab-354 showed high-binding affinity to the dPD-L1 peptide, and the dissociation constants (KD) were determined as 6.9 × 10-10 M and 7.2 × 10-10 M, respectively. Furthermore, L1Mab-352 and L1Mab-354 were applicable for the detection of dPD-L1 in immunohistochemical analysis in paraffin-embedded dPD-L1-overexpressed cells. These results indicated that L1Mab-352 and L1Mab-354 are useful for detecting dPD-L1 in immunohistochemical analysis.
Collapse
Affiliation(s)
- Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Suzuki H, Tanaka T, Kudo Y, Tawara M, Hirayama A, Kaneko MK, Kato Y. A Rat Anti-Mouse CD39 Monoclonal Antibody for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2023; 42:203-208. [PMID: 38126892 DOI: 10.1089/mab.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
By converting extracellular adenosine triphosphate to adenosine, CD39 is involved in adenosine metabolism. The extracellular adenosine plays a critical role in the immune suppression of the tumor microenvironment. Therefore, the inhibition of CD39 activity by monoclonal antibodies (mAbs) is thought to be one of the important strategies for tumor therapy. In this study, we developed novel mAbs for mouse CD39 (mCD39) using the Cell-Based Immunization and Screening (CBIS) method. One of the established anti-mCD39 mAbs, C39Mab-2 (rat IgG2a, lambda), reacted with mCD39-overexpressed Chinese hamster ovary-K1 (CHO/mCD39) and an endogenously mCD39-expressed cell line (SN36) by flow cytometry. The kinetic analysis using flow cytometry indicated that the dissociation constant (KD) values of C39Mab-2 for CHO/mCD39 and SN36 were 5.5 × 10-9 M and 4.9 × 10-9 M, respectively. These results indicated that C39Mab-2 is useful for the detection of mCD39 in flow cytometry.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuma Kudo
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayuki Tawara
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Aoi Hirayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Suzuki H, Ohishi T, Kaneko MK, Kato Y. A Humanized and Defucosylated Antibody against Podoplanin (humLpMab-23-f) Exerts Antitumor Activities in Human Lung Cancer and Glioblastoma Xenograft Models. Cancers (Basel) 2023; 15:5080. [PMID: 37894446 PMCID: PMC10605305 DOI: 10.3390/cancers15205080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
A cancer-specific anti-PDPN mAb, LpMab-23 (mouse IgG1, kappa), was established in our previous study. We herein produced a humanized IgG1 version (humLpMab-23) and defucosylated form (humLpMab-23-f) of an anti-PDPN mAb to increase ADCC activity. humLpMab-23 recognized PDPN-overexpressed Chinese hamster ovary (CHO)-K1 (CHO/PDPN), PDPN-positive PC-10 (human lung squamous cell carcinoma), and LN319 (human glioblastoma) cells via flow cytometry. We then demonstrated that humLpMab-23-f induced ADCC and complement-dependent cytotoxicity against CHO/PDPN, PC-10, and LN319 cells in vitro and exerted high antitumor activity in mouse xenograft models, indicating that humLpMab-23-f could be useful as an antibody therapy against PDPN-positive lung squamous cell carcinomas and glioblastomas.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan;
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi 410-0301, Shizuoka, Japan;
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan;
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan;
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
6
|
Matsuoka K, Yamada M, Fukatsu N, Goto K, Shimizu M, Kato A, Kato Y, Yukawa H, Baba Y, Sato M, Sato K. Contrast-enhanced ultrasound imaging for monitoring the efficacy of near-infrared photoimmunotherapy. EBioMedicine 2023; 95:104737. [PMID: 37558554 PMCID: PMC10505829 DOI: 10.1016/j.ebiom.2023.104737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Near-infrared photoimmunotherapy (NIR-PIT) is a promising cancer therapy combining NIR-light irradiation with an antibody and IR700DX, a light-sensitive substance, to destroy tumours. However, homogeneous irradiation is difficult because the light varies depending on the distance and tissue environment. Therefore, markers that indicate sufficient irradiation are necessary. Nanoparticles sized 10∼200 nm show enhanced permeation and retention within tumours, which is further enhanced via NIR-PIT (super enhanced permeability and retention, SUPR). We aimed to monitor the effectiveness of NIR-PIT by measuring SUPR. METHODS A xenograft mouse tumour model was established by inoculating human cancer cells in both buttocks of Balb/C-nu/nu mice, and NIR-PIT was performed on only one side. To evaluate SUPR, fluorescent signal examination was performed using QD800-fluorescent nanoparticles and NIR-fluorescent poly (d,l-lactide-co-glycolic acid) (NIR-PLGA) microparticles. Harmonic signals were evaluated using micro-bubbles of the contrast agent Sonazoid and contrast-enhanced ultrasound (CEUS) imaging. The correlation between SUPR immediately after treatment and NIR-PIT effectiveness on the day after treatment was evaluated. FINDINGS QD800 fluorescent signals persisted only in the treated tumours, and the intensity of remaining signals showed high positive correlation with the therapeutic effect. NIR-PLGA fluorescent signals and Sonazoid-derived harmonic signals remained for a longer time in the treated tumours than in the controls, and the kE value of the two-compartment model correlated with NIR-PIT effectiveness. INTERPRETATION SUPR measurement using Sonazoid and CEUS imaging could be easily adapted for clinical use as a therapeutic image-based biomarker for monitoring and confirming of NIR-PIT efficacy. FUNDING This research was supported by ARIM JAPAN of MEXT, the Program for Developing Next-generation Researchers (Japan Science and Technology Agency), KAKEN (18K15923, 21K07217) (JSPS), CREST (JPMJCR19H2, JST), and FOREST-Souhatsu (JST). Mochida Memorial Foundation for Medical and Pharmaceutical Research; Takeda Science Foundation; The Japan Health Foundation; and Princess Takamatsu Cancer Research Fund. Funders only provided financial support and had no role in the study design, data collection, data analysis, interpretation, and writing of the report.
Collapse
Affiliation(s)
- Kohei Matsuoka
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Mizuki Yamada
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Noriaki Fukatsu
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Kyoichi Goto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Japan
| | - Misae Shimizu
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Ayako Kato
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Yoshimi Kato
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Hiroshi Yukawa
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan; Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Japan; National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Life and Medical Science, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Japan; National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Life and Medical Science, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Japan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Kazuhide Sato
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Japan; Nagoya University Graduate School of Medicine, Japan; FOREST-Souhatsu, JST, Tokyo, Japan.
| |
Collapse
|
7
|
Goto N, Suzuki H, Tanaka T, Ishikawa K, Ouchida T, Kaneko MK, Kato Y. EMab-300 Detects Mouse Epidermal Growth Factor Receptor-Expressing Cancer Cell Lines in Flow Cytometry. Antibodies (Basel) 2023; 12:42. [PMID: 37489364 PMCID: PMC10366908 DOI: 10.3390/antib12030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) overexpression or its mutation mediates the sustaining proliferative signaling, which is an important hallmark of cancer. Human EGFR-targeting monoclonal antibody (mAb) therapy such as cetuximab has been approved for clinical use in patients with colorectal cancers and head and neck squamous cell carcinomas. A reliable preclinical mouse model is essential to further develop the mAb therapy against EGFR. Therefore, sensitive mAbs against mouse EGFR (mEGFR) should be established. In this study, we developed a specific and sensitive mAb for mEGFR using the Cell-Based Immunization and Screening (CBIS) method. The established anti-mEGFR mAb, EMab-300 (rat IgG1, kappa), reacted with mEGFR-overexpressed Chinese hamster ovary-K1 (CHO/mEGFR) and endogenously mEGFR-expressed cell lines, including NMuMG (a mouse mammary gland epithelial cell) and Lewis lung carcinoma cells, using flow cytometry. The kinetic analysis using flow cytometry indicated that the KD of EMab-300 for CHO/mEGFR and NMuMG was 4.3 × 10-8 M and 1.9 × 10-8 M, respectively. These results indicated that EMab-300 applies to the detection of mEGFR using flow cytometry and may be useful to obtain the proof of concept in preclinical studies.
Collapse
Affiliation(s)
- Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Kenichiro Ishikawa
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Mika K Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
8
|
Suzuki H, Kitamura K, Goto N, Ishikawa K, Ouchida T, Tanaka T, Kaneko MK, Kato Y. A Novel Anti-CD44 Variant 3 Monoclonal Antibody C 44Mab-6 Was Established for Multiple Applications. Int J Mol Sci 2023; 24:8411. [PMID: 37176118 PMCID: PMC10179237 DOI: 10.3390/ijms24098411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cluster of differentiation 44 (CD44) promotes tumor progression through the recruitment of growth factors and the acquisition of stemness, invasiveness, and drug resistance. CD44 has multiple isoforms including CD44 standard (CD44s) and CD44 variants (CD44v), which have common and unique functions in tumor development. Therefore, elucidating the function of each CD44 isoform in a tumor is essential for the establishment of CD44-targeting tumor therapy. We have established various anti-CD44s and anti-CD44v monoclonal antibodies (mAbs) through the immunization of CD44v3-10-overexpressed cells. In this study, we established C44Mab-6 (IgG1, kappa), which recognized the CD44 variant 3-encoded region (CD44v3), as determined via an enzyme-linked immunosorbent assay. C44Mab-6 reacted with CD44v3-10-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/CD44v3-10) or some cancer cell lines (COLO205 and HSC-3) via flow cytometry. The apparent KD of C44Mab-6 for CHO/CD44v3-10, COLO205, and HSC-3 was 1.5 × 10-9 M, 6.3 × 10-9 M, and 1.9 × 10-9 M, respectively. C44Mab-6 could detect the CD44v3-10 in Western blotting and stained the formalin-fixed paraffin-embedded tumor sections in immunohistochemistry. These results indicate that C44Mab-6 is useful for detecting CD44v3 in various experiments and is expected for the application of tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kaishi Kitamura
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
| | - Kenichiro Ishikawa
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
| | - Tsunenori Ouchida
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
9
|
Kudo Y, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Development of a Novel Anti-CD44 Variant 5 Monoclonal Antibody C 44Mab-3 for Multiple Applications against Pancreatic Carcinomas. Antibodies (Basel) 2023; 12:antib12020031. [PMID: 37218897 DOI: 10.3390/antib12020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Pancreatic cancer exhibits a poor prognosis due to the lack of early diagnostic biomarkers and the resistance to conventional chemotherapy. CD44 has been known as a cancer stem cell marker and plays tumor promotion and drug resistance roles in various cancers. In particular, the splicing variants are overexpressed in many carcinomas and play essential roles in the cancer stemness, invasiveness or metastasis, and resistance to treatments. Therefore, the understanding of each CD44 variant's (CD44v) function and distribution in carcinomas is essential for the establishment of CD44-targeting tumor therapy. In this study, we immunized mice with CD44v3-10-overexpressed Chinese hamster ovary (CHO)-K1 cells and established various anti-CD44 monoclonal antibodies (mAbs). One of the established clones (C44Mab-3; IgG1, kappa) recognized peptides of the variant-5-encoded region, indicating that C44Mab-3 is a specific mAb for CD44v5. Moreover, C44Mab-3 reacted with CHO/CD44v3-10 cells or pancreatic cancer cell lines (PK-1 and PK-8) by flow cytometry. The apparent KD of C44Mab-3 for CHO/CD44v3-10 and PK-1 was 1.3 × 10-9 M and 2.6 × 10-9 M, respectively. C44Mab-3 could detect the exogenous CD44v3-10 and endogenous CD44v5 in Western blotting and stained the formalin-fixed paraffin-embedded pancreatic cancer cells but not normal pancreatic epithelial cells in immunohistochemistry. These results indicate that C44Mab-3 is useful for detecting CD44v5 in various applications and is expected to be useful for the application of pancreatic cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yuma Kudo
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Mika K Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
10
|
Tawara M, Suzuki H, Goto N, Tanaka T, Kaneko MK, Kato Y. A Novel Anti-CD44 Variant 9 Monoclonal Antibody C 44Mab-1 Was Developed for Immunohistochemical Analyses against Colorectal Cancers. Curr Issues Mol Biol 2023; 45:3658-3673. [PMID: 37185762 PMCID: PMC10137259 DOI: 10.3390/cimb45040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Cluster of differentiation 44 (CD44) is a type I transmembrane glycoprotein and has been shown to be a cell surface marker of cancer stem-like cells in various cancers. In particular, the splicing variants of CD44 (CD44v) are overexpressed in cancers and play critical roles in cancer stemness, invasiveness, and resistance to chemotherapy and radiotherapy. Therefore, the understanding of the function of each CD44v is indispensable for CD44-targeting therapy. CD44v9 contains the variant 9-encoded region, and its expression predicts poor prognosis in patients with various cancers. CD44v9 plays critical roles in the malignant progression of tumors. Therefore, CD44v9 is a promising target for cancer diagnosis and therapy. Here, we developed sensitive and specific monoclonal antibodies (mAbs) against CD44 by immunizing mice with CD44v3-10-overexpressed Chinese hamster ovary-K1 (CHO/CD44v3-10) cells. We first determined their critical epitopes using enzyme-linked immunosorbent assay and characterized their applications as flow cytometry, western blotting, and immunohistochemistry. One of the established clones, C44Mab-1 (IgG1, kappa), reacted with a peptide of the variant 9-encoded region, indicating that C44Mab-1 recognizes CD44v9. C44Mab-1 could recognize CHO/CD44v3-10 cells or colorectal cancer cell lines (COLO201 and COLO205) in flow cytometric analysis. The apparent dissociation constant (KD) of C44Mab-1 for CHO/CD44v3-10, COLO201, and COLO205 was 2.5 × 10-8 M, 3.3 × 10-8 M, and 6.5 × 10-8 M, respectively. Furthermore, C44Mab-1 was able to detect the CD44v3-10 in western blotting and the endogenous CD44v9 in immunohistochemistry using colorectal cancer tissues. These results indicated that C44Mab-1 is useful for detecting CD44v9 not only in flow cytometry or western blotting but also in immunohistochemistry against colorectal cancers.
Collapse
Affiliation(s)
- Mayuki Tawara
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
11
|
Suzuki H, Ozawa K, Tanaka T, Kaneko MK, Kato Y. Development of a Novel Anti-CD44 Variant 7/8 Monoclonal Antibody, C44Mab-34, for Multiple Applications against Oral Carcinomas. Biomedicines 2023; 11:biomedicines11041099. [PMID: 37189717 DOI: 10.3390/biomedicines11041099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Cluster of differentiation 44 (CD44) has been investigated as a cancer stem cell (CSC) marker as it plays critical roles in tumor malignant progression. The splicing variants are overexpressed in many carcinomas, especially squamous cell carcinomas, and play critical roles in the promotion of tumor metastasis, the acquisition of CSC properties, and resistance to treatments. Therefore, each CD44 variant (CD44v) function and distribution in carcinomas should be clarified for the establishment of novel tumor diagnosis and therapy. In this study, we immunized mouse with a CD44 variant (CD44v3–10) ectodomain and established various anti-CD44 monoclonal antibodies (mAbs). One of the established clones (C44Mab-34; IgG1, kappa) recognized a peptide that covers both variant 7- and variant 8-encoded regions, indicating that C44Mab-34 is a specific mAb for CD44v7/8. Moreover, C44Mab-34 reacted with CD44v3–10-overexpressed Chinese hamster ovary-K1 (CHO) cells or the oral squamous cell carcinoma (OSCC) cell line (HSC-3) by flow cytometry. The apparent KD of C44Mab-34 for CHO/CD44v3–10 and HSC-3 was 1.4 × 10−9 and 3.2 × 10−9 M, respectively. C44Mab-34 could detect CD44v3–10 in Western blotting and stained the formalin-fixed paraffin-embedded OSCC in immunohistochemistry. These results indicate that C44Mab-34 is useful for detecting CD44v7/8 in various applications and is expected to be useful in the application of OSCC diagnosis and therapy.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Kazuki Ozawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
12
|
Ito T, Nakamura S, Kadomatsu Y, Ueno H, Kato T, Ozeki N, Fukumoto K, Chen-Yoshikawa TF. Impact of Pleural Thickness on Occurrence of Postoperative Complications in Patients with Malignant Pleural Mesothelioma. Ann Surg Oncol 2023; 30:1574-1583. [PMID: 36371580 DOI: 10.1245/s10434-022-12790-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The rates of postoperative mortality and morbidity are high in patients with malignant pleural mesothelioma (MPM). Therefore, it is important to identify variables that increase the risk of postoperative complications. Pleural thickness has recently been identified as a prognostic indicator in patients with MPM. The aim of this study was to investigate clinical variables, including pleural thickness, that contribute to postoperative complications in patients with MPM. PATIENTS AND METHODS A total of 47 patients who underwent surgical excision of MPM between 2005 and 2021 were enrolled in this study. Correlations between postoperative complications within 90 days of surgery and preoperative clinical factors were investigated. RESULTS A total of 27 patients underwent extrapleural pneumonectomy (EPP), and the remaining 20 underwent pleurectomy/decortication (P/D). Macroscopic complete resections were obtained in all but three patients. Of the 47 patients, 23 (49%) experienced postoperative complications of grade 3 or worse. The major complication in patients with EPP was respiratory failure (n = 6), whereas the major complication in patients with P/D was prolonged air leakage (n = 7). Univariate logistic regression analysis found a correlation between postoperative complications and age, surgical side, and pleural thickness, while multivariate logistic regression analysis found surgical side (p = 0.04, 95% Cl 1.10-21.71, OR 4.90) and pleural thickness (p = 0.03, 95% Cl 1.21-23.00, OR 5.26) to significantly influence the occurrence of postoperative complications. CONCLUSIONS Pleural thickness has a significant effect on the occurrence of postoperative complications. Patients with thick pleura on the right side are at greater risk of postoperative complications.
Collapse
Affiliation(s)
- Toshinari Ito
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shota Nakamura
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yuka Kadomatsu
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Harushi Ueno
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taketo Kato
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ozeki
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichi Fukumoto
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
13
|
Development of a Novel Anti-CD44 Variant 6 Monoclonal Antibody C 44Mab-9 for Multiple Applications against Colorectal Carcinomas. Int J Mol Sci 2023; 24:ijms24044007. [PMID: 36835416 PMCID: PMC9965047 DOI: 10.3390/ijms24044007] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
CD44 is a cell surface glycoprotein, and its isoforms are produced by the alternative splicing with the standard and variant exons. The CD44 variant exon-containing isoforms (CD44v) are overexpressed in carcinomas. CD44v6 is one of the CD44v, and its overexpression predicts poor prognosis in colorectal cancer (CRC) patients. CD44v6 plays critical roles in CRC adhesion, proliferation, stemness, invasiveness, and chemoresistance. Therefore, CD44v6 is a promising target for cancer diagnosis and therapy for CRC. In this study, we established anti-CD44 monoclonal antibodies (mAbs) by immunizing mice with CD44v3-10-overexpressed Chinese hamster ovary (CHO)-K1 cells. We then characterized them using enzyme-linked immunosorbent assay, flow cytometry, western blotting, and immunohistochemistry. One of the established clones (C44Mab-9; IgG1, kappa) reacted with a peptide of the variant 6-encoded region, indicating that C44Mab-9 recognizes CD44v6. Furthermore, C44Mab-9 reacted with CHO/CD44v3-10 cells or CRC cell lines (COLO201 and COLO205) by flow cytometry. The apparent dissociation constant (KD) of C44Mab-9 for CHO/CD44v3-10, COLO201, and COLO205 was 8.1 × 10-9 M, 1.7 × 10-8 M, and 2.3 × 10-8 M, respectively. C44Mab-9 detected the CD44v3-10 in western blotting, and partially stained the formalin-fixed paraffin-embedded CRC tissues in immunohistochemistry. Collectively, C44Mab-9 is useful for detecting CD44v6 in various applications.
Collapse
|
14
|
Yamada M, Matsuoka K, Sato M, Sato K. Recent Advances in Localized Immunomodulation Technology: Application of NIR-PIT toward Clinical Control of the Local Immune System. Pharmaceutics 2023; 15:pharmaceutics15020561. [PMID: 36839882 PMCID: PMC9967863 DOI: 10.3390/pharmaceutics15020561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Current immunotherapies aim to modulate the balance among different immune cell populations, thereby controlling immune reactions. However, they often cause immune overactivation or over-suppression, which makes them difficult to control. Thus, it would be ideal to manipulate immune cells at a local site without disturbing homeostasis elsewhere in the body. Recent technological developments have enabled the selective targeting of cells and tissues in the body. Photo-targeted specific cell therapy has recently emerged among these. Near-infrared photoimmunotherapy (NIR-PIT) has surfaced as a new modality for cancer treatment, which combines antibodies and a photoabsorber, IR700DX. NIR-PIT is in testing as an international phase III clinical trial for locoregional recurrent head and neck squamous cell carcinoma (HNSCC) patients (LUZERA-301, NCT03769506), with a fast-track designation by the United States Food and Drug Administration (US-FDA). In Japan, NIR-PIT for patients with recurrent head and neck cancer was conditionally approved in 2020. Although NIR-PIT is commonly used for cancer therapy, it could also be exploited to locally eliminate certain immune cells with antibodies for a specific immune cell marker. This strategy can be utilized for anti-allergic therapy. Herein, we discuss the recent technological advances in local immunomodulation technology. We introduce immunomodulation technology with NIR-PIT and demonstrate an example of the knockdown of regulatory T cells (Tregs) to enhance local anti-tumor immune reactions.
Collapse
Affiliation(s)
- Mizuki Yamada
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Kohei Matsuoka
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Kazuhide Sato
- B3 Unit Frontier, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, Nagoya 466-8550, Japan
- FOREST-Souhatsu, CREST, JST, Tokyo 102-0076, Japan
- Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +81-052-744-2167; Fax: +81-052-744-2176
| |
Collapse
|
15
|
Stevens AR, Hadis M, Milward M, Ahmed Z, Belli A, Palin W, Davies DJ. Photobiomodulation in Acute Traumatic Brain Injury: A Systematic Review and Meta-Analysis. J Neurotrauma 2023; 40:210-227. [PMID: 35698294 DOI: 10.1089/neu.2022.0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photobiomodulation (PBM) is a therapeutic modality that has gained increasing interest in neuroscience applications, including acute traumatic brain injury (TBI). Its proposed mechanisms for therapeutic effect when delivered to the injured brain include antiapoptotic and anti-inflammatory effects. This systematic review summarizes the available evidence for the value of PBM in improving outcomes in acute TBI and presents a meta-analysis of the pre-clinical evidence for neurological severity score (NSS) and lesion size in animal models of TBI. A systematic review of the literature was performed, with searches and data extraction performed independently in duplicate by two authors. Eighteen published articles were identified for inclusion: seventeen pre-clinical studies of in vivo animal models and one clinical study in human patients. The available human study supports safety and feasibility of PBM in acute moderate TBI. For pre-clinical studies, meta-analysis for NSS and lesion size were found to favor intervention versus control. Subgroup analysis based on PBM parameter variables for these outcomes was performed. Favorable parameters were identified as: wavelengths in the region of 665 nm and 810 nm; time to first administration of PBM ≤4 h; total number of daily treatments ≤3. No differences were identified between pulsed and continuous wave modes or energy delivery. Mechanistic substudies within included in vivo studies are presented and were found to support hypotheses of antiapoptotic, anti-inflammatory, and pro-proliferative effects, and a modulation of cellular metabolism. This systematic review provides substantial meta-analysis evidence of the benefits of PBM on functional and histological outcomes of TBI in in vivo mammalian models. Study design and PBM parameters should be closely considered for future human clinical studies.
Collapse
Affiliation(s)
- Andrew Robert Stevens
- Department of Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, and University of Birmingham, Edgbaston, Birmingham, United Kingdom.,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, United Kingdom.,Phototherapy Research Group, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Mohammed Hadis
- Phototherapy Research Group, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Michael Milward
- Phototherapy Research Group, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Zubair Ahmed
- Department of Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, and University of Birmingham, Edgbaston, Birmingham, United Kingdom.,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, United Kingdom.,Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Antonio Belli
- Department of Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, and University of Birmingham, Edgbaston, Birmingham, United Kingdom.,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, United Kingdom.,Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - William Palin
- Phototherapy Research Group, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - David James Davies
- Department of Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, and University of Birmingham, Edgbaston, Birmingham, United Kingdom.,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, United Kingdom.,Phototherapy Research Group, School of Dentistry, University of Birmingham, Birmingham, United Kingdom.,Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
16
|
Mohiuddin TM, Zhang C, Sheng W, Al-Rawe M, Zeppernick F, Meinhold-Heerlein I, Hussain AF. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int J Mol Sci 2023; 24:2655. [PMID: 36768976 PMCID: PMC9916513 DOI: 10.3390/ijms24032655] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed molecular targeted cancer treatment, which selectively kills cancer cells or immune-regulatory cells and induces therapeutic host immune responses by administrating a cancer targeting moiety conjugated with IRdye700. The local exposure to near-infrared (NIR) light causes a photo-induced ligand release reaction, which causes damage to the target cell, resulting in immunogenic cell death (ICD) with little or no side effect to the surrounding normal cells. Moreover, NIR-PIT can generate an immune response in distant metastases and inhibit further cancer attack by combing cancer cells targeting NIR-PIT and immune regulatory cells targeting NIR-PIT or other cancer treatment modalities. Several recent improvements in NIR-PIT have been explored such as catheter-driven NIR light delivery, real-time monitoring of cancer, and the development of new target molecule, leading to NIR-PIT being considered as a promising cancer therapy. In this review, we discuss the progress of NIR-PIT, their mechanism and design strategies for cancer treatment. Furthermore, the overall possible targeting molecules for NIR-PIT with their application for cancer treatment are briefly summarised.
Collapse
|
17
|
Kato T, Furusawa A, Okada R, Inagaki F, Wakiyama H, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H. Near-Infrared Photoimmunotherapy Targeting Podoplanin-Expressing Cancer Cells and Cancer-Associated Fibroblasts. Mol Cancer Ther 2023; 22:75-88. [PMID: 36223542 PMCID: PMC9812859 DOI: 10.1158/1535-7163.mct-22-0313] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that uses an antibody-IRDye700DX (IR700) conjugate that binds to a target followed by the application of NIR light that results in dramatic changes in solubility of the conjugate leading to rapid cell membrane damage and highly immunogenic cell death. NIR-PIT has been used clinically in treating advanced head and neck cancers using an anti-EGFR antibody-IR700 conjugate and has been conditionally approved for clinical use in Japan. NIR-PIT can be employed using a wide range of targeting antibodies. Podoplanin (PDPN), also known as gp38, is a 38 kDa type-1 transmembrane protein associated with lymphatic vessels. In cancer cells and cancer-associated fibroblasts (CAFs), PDPN expression has been widely reported and correlates with poor outcomes in several cancer types. In this study, we evaluated the efficacy of PDPN-targeted NIR-PIT in syngenetic mouse models of cancer. PDPN-targeted NIR-PIT destroyed PDPN-expressing cancer cells and CAFs selectively, suppressing tumor progression and prolonging survival with minimal damage to lymphatic vessels compared with the control group. Interestingly, PDPN-targeted NIR-PIT also exerted a therapeutic effect by targeting CAFs in tumor models which do not express in cancer cells. Furthermore, increased cytotoxic T cells in the tumor bed after PDPN-targeted NIR-PIT were observed, suggesting enhanced host antitumor immunity. Thus, PDPN-targeted NIR-PIT is a promising new cancer therapy strategy for PDPN-expressing cancer cells and CAFs.
Collapse
Affiliation(s)
- Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Fuyuki Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| |
Collapse
|
18
|
Zhang X, Yu F, Wang Z, Jiang T, Song X, Yu F. Fluorescence probes for lung carcinoma diagnosis and clinical application. SENSORS & DIAGNOSTICS 2023; 2:1077-1096. [DOI: 10.1039/d3sd00029j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This review provides an overview of the most recent developments in fluorescence probe technology for the accurate detection and clinical therapy of lung carcinoma.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Department of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Feifei Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhenkai Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xinyu Song
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medicine University, Guangzhou 510120, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
19
|
Wei D, Qi J, Hamblin MR, Wen X, Jiang X, Yang H. Near-infrared photoimmunotherapy: design and potential applications for cancer treatment and beyond. Am J Cancer Res 2022; 12:7108-7131. [PMID: 36276636 PMCID: PMC9576624 DOI: 10.7150/thno.74820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment modality based on a target-specific photosensitizer conjugate (TSPC) composed of an NIR phthalocyanine photosensitizer and an antigen-specific recognition system. NIR-PIT has predominantly been used for targeted therapy of tumors via local irradiation with NIR light, following binding of TSPC to antigen-expressing cells. Physical stress-induced membrane damage is thought to be a major mechanism underlying NIR-PIT-triggered photokilling. Notably, NIR-PIT can rapidly induce immunogenic cell death and activate the adaptive immune response, thereby enabling its combination with immune checkpoint inhibitors. Furthermore, NIR-PIT-triggered “super-enhanced permeability and retention” effects can enhance drug delivery into tumors. Supported by its potential efficacy and safety, NIR-PIT is a rapidly developing therapeutic option for various cancers. Hence, this review seeks to provide an update on the (i) broad range of target molecules suitable for NIR-PIT, (ii) various types of receptor-selective ligands for designing the TSPC “magic bullet,” (iii) NIR light parameters, and (iv) strategies for enhancing the efficacy of NIR-PIT. Moreover, we review the potential application of NIR-PIT, including the specific design and efficacy in 19 different cancer types, and its clinical studies. Finally, we summarize possible NIR-PIT applications in noncancerous conditions, including infection, pain, itching, metabolic disease, autoimmune disease, and tissue engineering.
Collapse
Affiliation(s)
- Danfeng Wei
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.,NHC Key Lab of Transplant Engineering and Immunology, Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, Chengdu 610041, China
| | - Jinxin Qi
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Xiang Wen
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- NHC Key Lab of Transplant Engineering and Immunology, Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, Chengdu 610041, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University
| |
Collapse
|
20
|
Takahashi K, Yasui H, Taki S, Shimizu M, Koike C, Taki K, Yukawa H, Baba Y, Kobayashi H, Sato K. Near-infrared-induced drug release from antibody-drug double conjugates exerts a cytotoxic photo-bystander effect. Bioeng Transl Med 2022; 7:e10388. [PMID: 36176626 PMCID: PMC9471993 DOI: 10.1002/btm2.10388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/21/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022] Open
Abstract
Ideal cancer treatments specifically target and eradicate tumor cells without affecting healthy cells. Therefore, antibody-based therapies that specifically target cancer antigens can be considered ideal cancer therapies. Antibodies linked with small-molecule drugs (i.e., antibody-drug conjugates [ADCs]) are widely used in clinics as antibody-based therapeutics. However, because tumors express antigens heterogeneously, greater target specificity and stable binding of noncleavable linkers in ADCs limit their antitumor effects. To overcome this problem, strategies, including decreasing the binding strength, conjugating more drugs, and targeting tumor stroma, have been applied, albeit with limited success. Thus, further technological advancements are required to remotely control the ADCs. Here, we described a drug that is photo-releasable from an ADC created via simple double conjugation and its antitumor effects both on target and nontarget tumor cells. Specifically, noncleavable T-DM1 was conjugated with IR700DX to produce T-DM1-IR700. Although T-DM1-IR700 itself is noncleavable, with NIR-light irradiation, it can release DM1-derivatives which elicited antitumor effect in vitro mixed culture and in vivo mixed tumor model which are mimicking heterogeneous tumor-antigen expression same as real clinical tumors. This cytotoxic photo-bystander effect occurred in various types mixed cultures in vitro, and changing antibodies also exerted photo-bystander effects, suggesting that this technology can be used for targeting various specific cancer antigens. These findings can potentially aid the development of strategies to address challenges associated with tumor expression of heterogeneous antigen.
Collapse
Affiliation(s)
- Kazuomi Takahashi
- Department of Respiratory MedicineNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
| | - Hirotoshi Yasui
- Department of Respiratory MedicineNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
| | - Shunichi Taki
- Department of Respiratory MedicineNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
| | - Misae Shimizu
- Nagoya University Institute for Advanced ResearchAdvanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 UnitShowa‐kuNagoyaJapan
| | - Chiaki Koike
- Nagoya University Institute for Advanced ResearchAdvanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 UnitShowa‐kuNagoyaJapan
| | - Kentaro Taki
- Division for Medical Research EngineeringNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
| | - Hiroshi Yukawa
- Nagoya University Institute for Advanced ResearchAdvanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 UnitShowa‐kuNagoyaJapan
- Institute of Nano‐Life‐Systems, Institutes of Innovation for Future SocietyNagoya UniversityNagoyaJapan
- Department of Biomolecular EngineeringNagoya University Graduate School of EngineeringNagoyaJapan
| | - Yoshinobu Baba
- Institute of Nano‐Life‐Systems, Institutes of Innovation for Future SocietyNagoya UniversityNagoyaJapan
- Department of Biomolecular EngineeringNagoya University Graduate School of EngineeringNagoyaJapan
| | - Hisataka Kobayashi
- Molecular Imaging ProgramNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Kazuhide Sato
- Department of Respiratory MedicineNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
- Nagoya University Institute for Advanced ResearchAdvanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 UnitShowa‐kuNagoyaJapan
- Institute of Nano‐Life‐Systems, Institutes of Innovation for Future SocietyNagoya UniversityNagoyaJapan
- FOREST‐Souhatsu, CREST, JSTChiyoda‐kuTokyoJapan
- Nagoya University Institute for Advanced Research, S‐YLCJapan
| |
Collapse
|
21
|
Luo M, Yukawa H, Sato K, Tozawa M, Tokunaga M, Kameyama T, Torimoto T, Baba Y. Multifunctional Magnetic CuS/Gd 2O 3 Nanoparticles for Fluorescence/Magnetic Resonance Bimodal Imaging-Guided Photothermal-Intensified Chemodynamic Synergetic Therapy of Targeted Tumors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34365-34376. [PMID: 35876015 PMCID: PMC9354791 DOI: 10.1021/acsami.2c06503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Chemodynamic therapy (CDT), which consumes endogenous hydrogen peroxide (H2O2) to generate reactive oxygen species (ROS) and causes oxidative damage to tumor cells, shows tremendous promise for advanced cancer treatment. However, the rate of ROS generation based on the Fenton reaction is prone to being restricted by inadequate H2O2 and unattainable acidity in the hypoxic tumor microenvironment. We herein report a multifunctional nanoprobe (BCGCR) integrating bimodal imaging and photothermal-enhanced CDT of the targeted tumor, which is produced by covalent conjugation of bovine serum albumin-stabilized CuS/Gd2O3 nanoparticles (NPs) with the Cy5.5 fluorophore and the tumor-targeting ligand RGD. BCGCR exhibits intense near-infrared (NIR) fluorescence and acceptable r1 relaxivity (∼15.3 mM-1 s-1) for both sensitive fluorescence imaging and high-spatial-resolution magnetic resonance imaging of tumors in living mice. Moreover, owing to the strong NIR absorbance from the internal CuS NPs, BCGCR can generate localized heat and displays a high photothermal conversion efficiency (30.3%) under 980 nm laser irradiation, which enables photothermal therapy and further intensifies ROS generation arising from the Cu-induced Fenton-like reaction for enhanced CDT. This synergetic effect shows such an excellent therapeutic efficacy that it can ablate xenografted tumors in vivo. We believe that this strategy will be beneficial to exploring other advanced nanomaterials for the clinical application of multimodal imaging-guided synergetic cancer therapies.
Collapse
Affiliation(s)
- Minchuan Luo
- Nanobio
Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular
Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroshi Yukawa
- Nanobio
Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular
Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa, Inage-ku, Chiba 263-8555, Japan
- Nagoya
University Institute for Advanced Research, Advanced Analytical and
Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
- Development
of Quantum-Nano Cancer Photoimmunotherapy for Clinical Application
of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
| | - Kazuhide Sato
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Nagoya
University Institute for Advanced Research, Advanced Analytical and
Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
- Nagoya
University
Institute for Advanced Research, S-YLC, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Makoto Tozawa
- Material
Design Chemistry, Department of Materials Chemistry, Graduate School
of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masato Tokunaga
- Nanobio
Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular
Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tatsuya Kameyama
- Material
Design Chemistry, Department of Materials Chemistry, Graduate School
of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tsukasa Torimoto
- Material
Design Chemistry, Department of Materials Chemistry, Graduate School
of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Nanobio
Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular
Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
22
|
Kudo Y, Suzuki H, Kaneko MK, Kato Y. Development of a Monoclonal Antibody PMab-295 Against Elephant Podoplanin. Monoclon Antib Immunodiagn Immunother 2022; 41:194-201. [PMID: 35917562 DOI: 10.1089/mab.2022.0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Podoplanin (PDPN) is an essential marker of lung type I alveolar cells, kidney podocytes, and lymphatic endothelial cells. Monoclonal antibodies (mAbs) that can specifically recognize PDPN in immunohistochemistry are important to analyze the development of tissues and the pathogenesis of diseases, including cancers. We have developed anti-PDPN mAbs against many animal species; however, mAbs that can recognize elephant-derived membrane proteins and distinguish the specific cell types in immunohistochemistry are limited. In this study, a novel anti-elephant PDPN (elePDPN) mAb, PMab-295 (IgG1, kappa), was established using the peptide immunization method. PMab-295 recognized both elePDPN-overexpressed Chinese hamster ovary (CHO)-K1 cells and endogenous elePDPN-expressed LACF-NaNaI cells by flow cytometry and western blotting. Kinetic analyses using flow cytometry showed that the KD of PMab-295 for CHO/elePDPN was 1.5 × 10-8 M. Furthermore, PMab-295 detected elePDPN-expressing cells using immunohistochemistry. These results showed the usefulness of PMab-295 to investigate the molecular function of elePDPN and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yuma Kudo
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
23
|
Near-Infrared Photoimmunotherapy for Thoracic Cancers: A Translational Perspective. Biomedicines 2022; 10:biomedicines10071662. [PMID: 35884975 PMCID: PMC9312913 DOI: 10.3390/biomedicines10071662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022] Open
Abstract
The conventional treatment of thoracic tumors includes surgery, anticancer drugs, radiation, and cancer immunotherapy. Light therapy for thoracic tumors has long been used as an alternative; conventional light therapy also called photodynamic therapy (PDT) has been used mainly for early-stage lung cancer. Recently, near-infrared photoimmunotherapy (NIR-PIT), which is a completely different concept from conventional PDT, has been developed and approved in Japan for the treatment of recurrent and previously treated head and neck cancer because of its specificity and effectiveness. NIR-PIT can apply to any target by changing to different antigens. In recent years, it has become clear that various specific and promising targets are highly expressed in thoracic tumors. In combination with these various specific targets, NIR-PIT is expected to be an ideal therapeutic approach for thoracic tumors. Additionally, techniques are being developed to further develop NIR-PIT for clinical practice. In this review, NIR-PIT is introduced, and its potential therapeutic applications for thoracic cancers are described.
Collapse
|
24
|
Fukushima H, Turkbey B, Pinto PA, Furusawa A, Choyke PL, Kobayashi H. Near-Infrared Photoimmunotherapy (NIR-PIT) in Urologic Cancers. Cancers (Basel) 2022; 14:2996. [PMID: 35740662 PMCID: PMC9221010 DOI: 10.3390/cancers14122996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a novel molecularly-targeted therapy that selectively kills cancer cells by systemically injecting an antibody-photoabsorber conjugate (APC) that binds to cancer cells, followed by the application of NIR light that drives photochemical transformations of the APC. APCs are synthesized by selecting a monoclonal antibody that binds to a receptor on a cancer cell and conjugating it to IRDye700DX silica-phthalocyanine dye. Approximately 24 h after APC administration, NIR light is delivered to the tumor, resulting in nearly-immediate necrotic cell death of cancer cells while causing no harm to normal tissues. In addition, NIR-PIT induces a strong immunologic effect, activating anti-cancer immunity that can be further boosted when combined with either immune checkpoint inhibitors or immune suppressive cell-targeted (e.g., regulatory T cells) NIR-PIT. Currently, a global phase III study of NIR-PIT in recurrent head and neck squamous cell carcinoma is ongoing. The first APC and NIR laser systems were approved for clinical use in September 2020 in Japan. In the near future, the clinical applications of NIR-PIT will expand to other cancers, including urologic cancers. In this review, we provide an overview of NIR-PIT and its possible applications in urologic cancers.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Baris Turkbey
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Peter A. Pinto
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA;
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| |
Collapse
|
25
|
Monaco H, Yokomizo S, Choi HS, Kashiwagi S. Quickly evolving near‐infrared photoimmunotherapy provides multifaceted approach to modern cancer treatment. VIEW 2022. [DOI: 10.1002/viw.20200110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Hailey Monaco
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
- Department of Radiological Sciences Tokyo Metropolitan University Arakawa Tokyo Japan
| | - Hak Soo Choi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
26
|
Furumoto H, Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H. Endoscopic Applications of Near-Infrared Photoimmunotherapy (NIR-PIT) in Cancers of the Digestive and Respiratory Tracts. Biomedicines 2022; 10:846. [PMID: 35453596 PMCID: PMC9027987 DOI: 10.3390/biomedicines10040846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and promising therapy that specifically destroys target cells by irradiating antibody-photo-absorber conjugates (APCs) with NIR light. APCs bind to target molecules on the cell surface, and when exposed to NIR light, cause disruption of the cell membrane due to the ligand release reaction and dye aggregation. This leads to rapid cell swelling, blebbing, and rupture, which leads to immunogenic cell death (ICD). ICD activates host antitumor immunity, which assists in killing still viable cancer cells in the treated lesion but is also capable of producing responses in untreated lesions. In September 2020, an APC and laser system were conditionally approved for clinical use in unresectable advanced head and neck cancer in Japan, and are now routine in appropriate patients. However, most tumors have been relatively accessible in the oral cavity or neck. Endoscopes offer the opportunity to deliver light deeper within hollow organs of the body. In recent years, the application of endoscopic therapy as an alternative to surgery for the treatment of cancer has expanded, providing significant benefits to inoperable patients. In this review, we will discuss the potential applications of endoscopic NIR-PIT, especially in thoracic and gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (H.F.); (T.K.); (H.W.); (A.F.); (P.L.C.)
| |
Collapse
|
27
|
Suzuki H, Kaneko MK, Kato Y. Roles of Podoplanin in Malignant Progression of Tumor. Cells 2022; 11:575. [PMID: 35159384 PMCID: PMC8834262 DOI: 10.3390/cells11030575] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Podoplanin (PDPN) is a cell-surface mucin-like glycoprotein that plays a critical role in tumor development and normal development of the lung, kidney, and lymphatic vascular systems. PDPN is overexpressed in several tumors and is involved in their malignancy. PDPN induces platelet aggregation through binding to platelet receptor C-type lectin-like receptor 2. Furthermore, PDPN modulates signal transductions that regulate cell proliferation, differentiation, migration, invasion, epithelial-to-mesenchymal transition, and stemness, all of which are crucial for the malignant progression of tumor. In the tumor microenvironment (TME), PDPN expression is upregulated in the tumor stroma, including cancer-associated fibroblasts (CAFs) and immune cells. CAFs play significant roles in the extracellular matrix remodeling and the development of immunosuppressive TME. Additionally, PDPN functions as a co-inhibitory molecule on T cells, indicating its involvement with immune evasion. In this review, we describe the mechanistic basis and diverse roles of PDPN in the malignant progression of tumors and discuss the possibility of the clinical application of PDPN-targeted cancer therapy, including cancer-specific monoclonal antibodies, and chimeric antigen receptor T technologies.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| |
Collapse
|
28
|
Khalifa S, Khairy R, Khaled E, El Sheikh S, Abdlaziz A. Utility of a highly specific and sensitive podoplanin/D2-40, calretinin, thyroid transcription factor-1, and carcinoembryonic antigen/CD66e immunohistochemical panel in differentiating malignant pleural mesothelioma from metastatic adenocarcinoma: An Egyptian experience. J Microsc Ultrastruct 2022. [DOI: 10.4103/jmau.jmau_51_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Sato K. Bioluminescence Imaging for Evaluation of Antitumor Effect In Vitro and In Vivo in Mice Xenografted Tumor Models. Methods Mol Biol 2022; 2524:307-315. [PMID: 35821482 DOI: 10.1007/978-1-0716-2453-1_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioluminescence imaging (BLI) enables real-time imaging in vitro and in vivo; it is widely used in laboratories. In vitro, the bioluminescence is commonly used as a reporter for the transfection. In vivo, BLI is employed to evaluate cell expression, migration, and proliferation inside animal bodies and visualize specific cells in various fields. Here, this chapter introduces BLI protocols for assaying the efficacy of in vivo BLI in monitoring cancer treatment using mice orthotopic models.
Collapse
Affiliation(s)
- Kazuhide Sato
- Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Nagoya University Institute for Advanced Research, B3-Unit, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), S-YLC, Nagoya, Japan.
- FOREST-Souhatsu, CREST, JST, Nagoya, Japan.
| |
Collapse
|
30
|
Taki S, Matsuoka K, Nishinaga Y, Takahashi K, Yasui H, Koike C, Shimizu M, Sato M, Sato K. Spatiotemporal depletion of tumor-associated immune checkpoint PD-L1 with near-infrared photoimmunotherapy promotes antitumor immunity. J Immunother Cancer 2021; 9:jitc-2021-003036. [PMID: 34725216 PMCID: PMC8559243 DOI: 10.1136/jitc-2021-003036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Background Near-infrared photoimmunotherapy (NIR-PIT) is a new modality for treating cancer, which uses antibody-photoabsorber (IRDye700DX) conjugates that specifically bind to target tumor cells. This conjugate is then photoactivated by NIR light, inducing rapid necrotic cell death. NIR-PIT needs a highly expressed targeting antigen on the cells because of its reliance on antibodies. However, using antibodies limits this useful technology to only those patients whose tumors express high levels of a specific antigen. Thus, to propose an alternative strategy, we modified this phototechnology to augment the anticancer immune system by targeting the almost low-expressed immune checkpoint molecules on tumor cells. Methods We used programmed death-ligand 1 (PD-L1), an immune checkpoint molecule, as the target for NIR-PIT. Although the expression of PD-L1 on tumor cells is usually low, PD-L1 is almost expressed on tumor cells. Intratumoral depletion with PD-L1-targeted NIR-PIT was tested in mouse syngeneic tumor models. Results Although PD-L1-targeted NIR-PIT showed limited effect on tumor cells in vitro, the therapy induced sufficient antitumor effects in vivo, which were thought to be mediated by the ‘photoimmuno’ effect and antitumor immunity augmentation. Moreover, PD-L1-targeted NIR-PIT induced antitumor effect on non-NIR light-irradiated tumors. Conclusions Local PD-L1-targeted NIR-PIT enhanced the antitumor immune reaction through a direct photonecrotic effect, thereby providing an alternative approach to targeted cancer immunotherapy and expanding the scope of cancer therapeutics.
Collapse
Affiliation(s)
- Shunichi Taki
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Kohei Matsuoka
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Yuko Nishinaga
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Kazuomi Takahashi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Hirotoshi Yasui
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Chiaki Koike
- Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, Nagoya University Institute for Advanced Research, Nagoya, AICHI, Japan
| | - Misae Shimizu
- Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, Nagoya University Institute for Advanced Research, Nagoya, AICHI, Japan
| | - Mitsuo Sato
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Kazuhide Sato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan .,Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, Nagoya University Institute for Advanced Research, Nagoya, AICHI, Japan.,FOREST-Souhatsu, CREST, JST, Tokyo, Japan.,Nagoya University Institute for Advanced Research, S-YLC, Nagoya University, Nagoya, AICHI, Japan
| |
Collapse
|
31
|
Takahashi K, Taki S, Yasui H, Nishinaga Y, Isobe Y, Matsui T, Shimizu M, Koike C, Sato K. HER2 targeting near-infrared photoimmunotherapy for a CDDP-resistant small-cell lung cancer. Cancer Med 2021; 10:8808-8819. [PMID: 34729945 PMCID: PMC8683547 DOI: 10.1002/cam4.4381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/17/2023] Open
Abstract
Background Human epidermal growth factor receptor 2 (HER2) is tyrosine kinase receptor that belongs to the ErbB family and is overexpressed on the membrane surface of various cancer cells, including small cell lung cancer (SCLC); however, no HER2 targeted therapy for SCLC have yet been established. Near‐infrared photoimmunotherapy (NIR‐PIT) is a novel cancer therapy based on photo‐absorber, IRDye‐700DX (IR700), ‐antibody conjugates, and near‐infrared (NIR) light. Methods We used HER2‐positive SCLC parental cell lines (SBC‐3) and its chemoresistant cell lines, and examined therapeutic efficacy of HER2 targeting NIR‐PIT using anti HER2 antibody trastuzumab. Results We found that HER2 expression was upregulated on chemoresistant cell lines, especially cisplatin‐resistance (SBC‐3/CDDP). In vitro, the rate of cell death increased with the amount of NIR‐light irradiation, and it was significantly higher in SBC‐3/CDDP than in SBC‐3. In vivo, tumor growth was more suppressed in SBC‐3/CDDP group than in SBC‐3 group, and survival period tended to be prolonged. Conclusion In this study, we demonstrated that HER2 targeting NIR‐PIT using trastuzumab is promising therapy for HER2‐positive SCLC, and is more effective when HER2 expression is upregulated due to CDDP resistance, suggesting that the HER2 expression level positively corelated with the efficacy of NIR‐PIT.
Collapse
Affiliation(s)
- Kazuomi Takahashi
- Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunichi Taki
- Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirotoshi Yasui
- Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Nishinaga
- Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Isobe
- Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshinori Matsui
- Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Misae Shimizu
- B3 Unit, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, Nagoya, Japan
| | - Chiaki Koike
- B3 Unit, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, Nagoya, Japan
| | - Kazuhide Sato
- Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.,B3 Unit, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, Nagoya, Japan.,JST, CREST, FOREST-Souhatsu, Tokyo, Japan.,S-YLC, Nagoya University Institute for Advanced Research, Nagoya, Japan
| |
Collapse
|
32
|
Matsuoka K, Sato M, Sato K. Hurdles for the wide implementation of photoimmunotherapy. Immunotherapy 2021; 13:1427-1438. [PMID: 34693721 DOI: 10.2217/imt-2021-0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a molecularly targeted treatment for cancers achieved by injecting a conjugate of IRDye700DX® (IR700), a water-soluble silicon phthalocyanine derivative in the near infrared, and a monoclonal antibody that targets cancer cell antigens. NIR-PIT is a highly specific treatment with few side effects that results in rapid immunogenic cell death. Despite it being a very effective and innovative therapy, there are a few challenges preventing full implementation in clinical practice. These include the limits of near infrared light penetration, selection of targets, concerns about tumor lysis syndrome and drug costs. However, NIR-PIT has been approved by the regulatory authorities in Japan, allowing for exploration of how to mitigate challenges while maximizing the benefits of this treatment modality.
Collapse
Affiliation(s)
- Kohei Matsuoka
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan
| | - Mitsuo Sato
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan
| | - Kazuhide Sato
- Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, 464-0814, Japan.,Nagoya University Institute for Advanced Research, Advanced Analytical & Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Nagoya, Japan.,FOREST-Souhatsu, CREST, JST, Tokyo, 102-8666, Japan.,Nagoya University Institute for Advanced Research, S-YLC, Nagoya, 464-8601, Japan
| |
Collapse
|
33
|
Sudo H, Tsuji AB, Sugyo A, Kaneko MK, Kato Y, Nagatsu K, Suzuki H, Higashi T. Preclinical Evaluation of Podoplanin-Targeted Alpha-Radioimmunotherapy with the Novel Antibody NZ-16 for Malignant Mesothelioma. Cells 2021; 10:cells10102503. [PMID: 34685483 PMCID: PMC8533940 DOI: 10.3390/cells10102503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/11/2023] Open
Abstract
The prognosis of advanced mesothelioma is poor. Podoplanin (PDPN) is highly expressed in most malignant mesothelioma. This study aimed to evaluate the potential alpha-radioimmunotherapy (RIT) with a newly developed anti-PDPN antibody, NZ-16, compared with a previous antibody, NZ-12. METHODS The in vitro properties of radiolabeled antibodies were evaluated by cell binding and competitive inhibition assays using PDPN-expressing H226 mesothelioma cells. The biodistribution of 111In-labeled antibodies was studied in tumor-bearing mice. The absorbed doses were estimated based on biodistribution data. Tumor volumes and body weights of mice treated with 90Y- and 225Ac-labeled NZ-16 were measured for 56 days. Histologic analysis was conducted. RESULTS The radiolabeled NZ-16 specifically bound to H226 cells with higher affinity than NZ-12. The biodistribution studies showed higher tumor uptake of radiolabeled NZ-16 compared with NZ-12, providing higher absorbed doses to tumors. RIT with 225Ac- and 90Y-labeled NZ-16 had a significantly higher antitumor effect than RIT with 90Y-labeled NZ-12. 225Ac-labeled NZ-16 induced a larger amount of necrotic change and showed a tendency to suppress tumor volumes and prolonged survival than 90Y-labeled NZ-16. There is no obvious adverse effect. CONCLUSIONS Alpha-RIT with the newly developed NZ-16 is a promising therapeutic option for malignant mesothelioma.
Collapse
Affiliation(s)
- Hitomi Sudo
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (iQMS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan; (H.S.); (A.S.); (T.H.)
| | - Atsushi B. Tsuji
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (iQMS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan; (H.S.); (A.S.); (T.H.)
- Correspondence: ; Tel.: +81-43-382-3704
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (iQMS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan; (H.S.); (A.S.); (T.H.)
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; (M.K.K.); (Y.K.)
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; (M.K.K.); (Y.K.)
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kotaro Nagatsu
- Department of Advanced Nuclear Medicine Science, Institute for Quantum Medical Science (iQMS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan; (K.N.); (H.S.)
| | - Hisashi Suzuki
- Department of Advanced Nuclear Medicine Science, Institute for Quantum Medical Science (iQMS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan; (K.N.); (H.S.)
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (iQMS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan; (H.S.); (A.S.); (T.H.)
| |
Collapse
|
34
|
Wakiyama H, Kato T, Furusawa A, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy of cancer; possible clinical applications. NANOPHOTONICS 2021; 10:3135-3151. [PMID: 36405499 PMCID: PMC9646249 DOI: 10.1515/nanoph-2021-0119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 05/07/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that uses an antibody-photo-absorber conjugate (APC) composed of a targeting monoclonal antibody conjugated with a photoactivatable phthalocyanine-derivative dye, IRDye700DX (IR700). APCs injected into the body can bind to cancer cells where they are activated by local exposure to NIR light typically delivered by a NIR laser. NIR light alters the APC chemical conformation inducing damage to cancer cell membranes, resulting in necrotic cell death within minutes of light exposure. NIR-PIT selectivity kills cancer cells by immunogenic cell death (ICD) with minimal damage to adjacent normal cells thus, leading to rapid recovery by the patient. Moreover, since NIR-PIT induces ICD only on cancer cells, NIR-PIT initiates and activates antitumor host immunity that could be further enhanced when combined with immune checkpoint inhibition. NIR-PIT induces dramatic changes in the tumor vascularity causing the super-enhanced permeability and retention (SUPR) effect that dramatically enhances nanodrug delivery to the tumor bed. Currently, a worldwide Phase 3 study of NIR-PIT for recurrent or inoperable head and neck cancer patients is underway. In September 2020, the first APC and accompanying laser system were conditionally approved for clinical use in Japan. In this review, we introduce NIR-PIT and the SUPR effect and summarize possible applications of NIR-PIT in a variety of cancers.
Collapse
Affiliation(s)
- Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
35
|
Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H. Near Infrared Photoimmunotherapy; A Review of Targets for Cancer Therapy. Cancers (Basel) 2021; 13:cancers13112535. [PMID: 34064074 PMCID: PMC8196790 DOI: 10.3390/cancers13112535] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses an antibody-photoabsorber (IRDye700DX) conjugate (APC) that is activated by NIR light irradiation. A major benefit of NIR-PIT is that only APC-bound cancer cells that are exposed to NIR light are killed by NIR-PIT; thus, minimal damage occurs in adjacent normal cells. NIR-PIT has now been applied to many cancers expressing various cell-surface target proteins using monoclonal antibodies designed to bind to them. Moreover, NIR-PIT is not limited to tumor antigens but can also be used to kill specific host cells that create immune-permissive environments in which tumors grow. Moreover, multiple targets can be treated simultaneously with NIR-PIT using a cocktail of APCs. NIR-PIT has great potential to treat a wide variety of cancers by targeting appropriate tumor cells, immune cells, or both, and can be augmented by other immunotherapies. Abstract Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses an antibody-photoabsorber (IRDye700DX) conjugate (APC) that is activated by NIR light irradiation. In September 2020, the first APC and laser system were conditionally approved for clinical use in Japan. A major benefit of NIR-PIT is that only APC-bound cancer cells that are exposed to NIR light are killed by NIR-PIT; thus, minimal damage occurs in adjacent normal cells. These early trials have demonstrated that in addition to direct cell killing, there is a significant therapeutic host immune response that greatly contributes to the success of the therapy. Although the first clinical use of NIR-PIT targeted epidermal growth factor receptor (EGFR), many other targets are suitable for NIR-PIT. NIR-PIT has now been applied to many cancers expressing various cell-surface target proteins using monoclonal antibodies designed to bind to them. Moreover, NIR-PIT is not limited to tumor antigens but can also be used to kill specific host cells that create immune-permissive environments in which tumors grow. Moreover, multiple targets can be treated simultaneously with NIR-PIT using a cocktail of APCs. NIR-PIT can be used in combination with other therapies, such as immune checkpoint inhibitors, to enhance the therapeutic effect. Thus, NIR-PIT has great potential to treat a wide variety of cancers by targeting appropriate tumor cells, immune cells, or both, and can be augmented by other immunotherapies.
Collapse
|
36
|
Yasui H, Nishinaga Y, Taki S, Takahashi K, Isobe Y, Shimizu M, Koike C, Taki T, Sakamoto A, Katsumi K, Ishii K, Sato K. Near-infrared photoimmunotherapy targeting GPR87: Development of a humanised anti-GPR87 mAb and therapeutic efficacy on a lung cancer mouse model. EBioMedicine 2021; 67:103372. [PMID: 33993055 PMCID: PMC8138482 DOI: 10.1016/j.ebiom.2021.103372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND GPR87 is a G-protein receptor that is specifically expressed in tumour cells, such as lung cancer, and rarely expressed in normal cells. GPR87 is a promising target for cancer therapy, but its ligand is controversial. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer therapy in which a photosensitiser, IRDye700DX (IR700), binds to antibodies and specifically destroys target cells by irradiating them with near-infrared-light. Here, we aimed to develop a NIR-PIT targeting GPR87. METHODS We evaluated the expression of GPR87 in resected specimens of lung cancer and malignant pleural mesothelioma (MPM) resected at Nagoya University Hospital using immunostaining. Humanised anti-GPR87 antibody (huGPR87) was generated by introducing CDRs from mouse anti-GPR87 antibody generated by standard hybridoma method. HuGPR87 was conjugated with IR700 and the therapeutic effect of NIR-PIT was evaluated in vitro and in vivo using lung cancer or MPM cell lines. FINDINGS Among the surgical specimens, 54% of lung cancer and 100% of MPM showed high expression of GPR87. It showed therapeutic effects on lung cancer and MPM cell lines in vitro, and showed therapeutic effects in multiple models in vivo. INTERPRETATION These results suggest that NIR-PIT targeting GPR87 is a promising therapeutic approach for the treatment of thoracic cancer. FUNDING This research was supported by the Program for Developing Next-generation Researchers (Japan Science and Technology Agency), KAKEN (18K15923, 21K07217, JSPS), FOREST-Souhatsu, CREST (JST).
Collapse
Affiliation(s)
- Hirotoshi Yasui
- Respiratory Medicine, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Yuko Nishinaga
- Respiratory Medicine, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Shunichi Taki
- Respiratory Medicine, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Kazuomi Takahashi
- Respiratory Medicine, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Yoshitaka Isobe
- Respiratory Medicine, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Misae Shimizu
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Chiaki Koike
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Tetsuro Taki
- Department of Pathology, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Aya Sakamoto
- Perseus Proteomics, Inc., 4-7-6, Komaba 153-0041, Meguro-ku, Tokyo, Japan
| | - Keiko Katsumi
- Perseus Proteomics, Inc., 4-7-6, Komaba 153-0041, Meguro-ku, Tokyo, Japan
| | - Keisuke Ishii
- Perseus Proteomics, Inc., 4-7-6, Komaba 153-0041, Meguro-ku, Tokyo, Japan
| | - Kazuhide Sato
- Respiratory Medicine, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan; Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan; FOREST- Souhatsu, CREST, JST; Nagoya University Institute for Advanced Research, S-YLC, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi,, Japan.
| |
Collapse
|
37
|
Yasui H, Takahashi K, Taki S, Shimizu M, Koike C, Umeda K, Rahman S, Akashi T, Nguyen VS, Nakagawa Y, Sato K. Near Infrared Photo‐Antimicrobial Targeting Therapy for
Candida albicans. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hirotoshi Yasui
- Respiratory Medicine Nagoya University Graduate School of Medicine 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
| | - Kazuomi Takahashi
- Respiratory Medicine Nagoya University Graduate School of Medicine 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
| | - Shunichi Taki
- Respiratory Medicine Nagoya University Graduate School of Medicine 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
| | - Misae Shimizu
- Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit Nagoya University Institute for Advanced Research 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
| | - Chiaki Koike
- Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit Nagoya University Institute for Advanced Research 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
| | - Koji Umeda
- EW Nutrition Japan Immunology Research Institute in Gifu 839‐7, Gifu‐City Sano Gifu 501‐1101 Japan
| | - Shofiqur Rahman
- EW Nutrition Japan Immunology Research Institute in Gifu 839‐7, Gifu‐City Sano Gifu 501‐1101 Japan
| | - Tomohiro Akashi
- Division of OMICS Analysis Nagoya University Graduate School of Medicine 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
- Division of Systems Biology Nagoya University Graduate School of Medicine 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
- S‐YLC Nagoya University Institute for Advanced Research Furo‐cho, Chikusa‐ku Nagoya Aichi 464‐8601 Japan
| | - Van Sa Nguyen
- EW Nutrition Japan Immunology Research Institute in Gifu 839‐7, Gifu‐City Sano Gifu 501‐1101 Japan
| | - Yoshiyuki Nakagawa
- Division of OMICS Analysis Nagoya University Graduate School of Medicine 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
| | - Kazuhide Sato
- Respiratory Medicine Nagoya University Graduate School of Medicine 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
- CREST, JST Honcho Kawaguchi Saitama 332‐0012 Japan
| |
Collapse
|
38
|
Wang M, Rao J, Wang M, Li X, Liu K, Naylor MF, Nordquist RE, Chen WR, Zhou F. Cancer photo-immunotherapy: from bench to bedside. Theranostics 2021; 11:2218-2231. [PMID: 33500721 PMCID: PMC7797676 DOI: 10.7150/thno.53056] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Targeted therapy and immunotherapy in combination is considered the ideal strategy for treating metastatic cancer, as it can eliminate the primary tumors and induce host immunity to control distant metastases. Phototherapy, a promising targeted therapy, eradicates primary tumors using an appropriate dosage of focal light irradiation, while initiating antitumor immune responses through induced immunogenic tumor cell death. Recently, phototherapy has been employed to improve the efficacy of immunotherapies such as chimeric antigen receptor T-cell therapy and immune checkpoint inhibitors. Phototherapy and immunoadjuvant therapy have been used in combination clinically, wherein the induced immunogenic cell death and enhanced antigen presentation synergy, inducing a systemic antitumor immune response to control residual tumor cells at the treatment site and distant metastases. This review summarizes studies on photo-immunotherapy, the combination of phototherapy and immunotherapy, especially focusing on the development and progress of this unique combination from a benchtop project to a promising clinical therapy for metastatic cancer.
Collapse
Affiliation(s)
- Miao Wang
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Jie Rao
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Meng Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaosong Li
- Department of Oncology, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
| | - Kaili Liu
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | | | - Robert E. Nordquist
- Immunophotonics, Inc., 4320 Forest Park Ave., #303 (BAL), St. Louis, MO 63108, USA
| | - Wei R. Chen
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Feifan Zhou
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
39
|
Kitamura N, Sento S, Yoshizawa Y, Sasabe E, Kudo Y, Yamamoto T. Current Trends and Future Prospects of Molecular Targeted Therapy in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2020; 22:E240. [PMID: 33383632 PMCID: PMC7795499 DOI: 10.3390/ijms22010240] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, advances in drug therapy for head and neck squamous cell carcinoma (HNSCC) have progressed rapidly. In addition to cytotoxic anti-cancer agents such as platinum-based drug (cisplatin and carboplatin) and taxane-based drugs (docetaxel and paclitaxel), epidermal growth factor receptor-tyrosine kinase inhibitors (cetuximab) and immune checkpoint inhibitors such as anti-programmed cell death-1 (PD-1) antibodies (nivolumab and pembrolizumab) have come to be used. The importance of anti-cancer drug therapy is increasing year by year. Therefore, we summarize clinical trials of molecular targeted therapy and biomarkers in HNSCC from previous studies. Here we show the current trends and future prospects of molecular targeted therapy in HNSCC.
Collapse
Affiliation(s)
- Naoya Kitamura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan; (S.S.); (Y.Y.); (E.S.); (T.Y.)
| | - Shinya Sento
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan; (S.S.); (Y.Y.); (E.S.); (T.Y.)
| | - Yasumasa Yoshizawa
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan; (S.S.); (Y.Y.); (E.S.); (T.Y.)
| | - Eri Sasabe
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan; (S.S.); (Y.Y.); (E.S.); (T.Y.)
| | - Yasusei Kudo
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan;
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan; (S.S.); (Y.Y.); (E.S.); (T.Y.)
| |
Collapse
|
40
|
Silic-Benussi M, Saponeri A, Michelotto A, Russo I, Colombo A, Pelizzo MG, Ciminale V, Alaibac M. Near infrared photoimmunotherapy targeting the cutaneous lymphocyte antigen for mycosis fungoides. Expert Opin Biol Ther 2020; 21:977-981. [PMID: 33353448 DOI: 10.1080/14712598.2021.1858791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Mycosis fungoides (MF) is a low-grade T-cell lymphoma with primary cutaneous involvement accounting for more than half of all primary cutaneous lymphomas. The treatment of MF is very challenging due to the limited therapies available. Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and highly selective cancer treatment that employs a monoclonal antibody conjugated to a photo-absorber dye, the hydrophilic phthalocyanine IRdye 700DX® (IR700), and near infrared light. In this study, we investigated the effect of NIR-PIT on MF targeting the cell-surface antigen cutaneous lymphocyte antigen (CLA)Matherial and methods: MF derived My-La CD4+ cells were incubated with the anti-CLA antibody conjugated to IR700 and then irradiated with a 690 nm near-infrared light. Cell death was evaluated by propidium iodide staining and flow cytometry 24 hours after irradiation.Results: Treatment with anti-CLA or light irradiation exhibited very modest pro-death effects, whereas treatment with the anti-CLA antibody conjugated to IR700 and then irradiation with a 690 nm near-infrared light induced a substantial increase in death in the MF cell line.Conclusions: NIR-PIT targeting CLA to treat MF showed marked antitumour effects. As such, CLA-targeted NIR-PIT could be a promising treatment for MF and, possibly, other cutaneous diseases characterized by CLA+ skin infiltrating T-cells.
Collapse
Affiliation(s)
- Micol Silic-Benussi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | | | - Irene Russo
- Unit of Dermatology, University of Padua, Padova, Italy
| | - Anna Colombo
- Unit of Dermatology, University of Padua, Padova, Italy
| | | | - Vincenzo Ciminale
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Mauro Alaibac
- Unit of Dermatology, University of Padua, Padova, Italy
| |
Collapse
|