1
|
Sbrana F, Chellini F, Tani A, Parigi M, Garella R, Palmieri F, Zecchi-Orlandini S, Squecco R, Sassoli C. Label-free three-dimensional imaging and quantitative analysis of living fibroblasts and myofibroblasts by holotomographic microscopy. Microsc Res Tech 2024; 87:2757-2773. [PMID: 38984377 DOI: 10.1002/jemt.24648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Holotomography (HT) is a cutting-edge fast live-cell quantitative label-free imaging technique. Based on the principle of quantitative phase imaging, it combines holography and tomography to record a three-dimensional map of the refractive index, used as intrinsic optical and quantitative imaging contrast parameter of biological samples, at a sub-micrometer spatial resolution. In this study HT has been employed for the first time to analyze the changes of fibroblasts differentiating towards myofibroblasts - recognized as the main cell player of fibrosis - when cultured in vitro with the pro-fibrotic factor, namely transforming growth factor-β1. In parallel, F-actin, vinculin, α-smooth muscle actin, phospho-myosin light chain 2, type-1 collagen, peroxisome proliferator-activated receptor-gamma coactivator-1α expression and mitochondria were evaluated by confocal laser scanning microscopy. Plasmamembrane passive properties and transient receptor potential canonical channels' currents were also recorded by whole-cell patch-clamp. The fluorescence images and electrophysiological results have been compared to the data obtained by HT and their congruence has been discussed. HT turned out to be a valid approach to morphologically distinguish fibroblasts from well differentiated myofibroblasts while obtaining objective measures concerning volume, surface area, projection area, surface index and dry mass (i.e., the mass of the non-aqueous content inside the cell including proteins and subcellular organelles) of the entire cell, nuclei and nucleoli with the major advantage to monitor outer and inner features in living cells in a non-invasive, rapid and label-free approach. HT might open up new research opportunities in the field of fibrotic diseases. RESEARCH HIGHLIGHTS: Holotomography (HT) is a label-free laser interferometric imaging technology exploiting the intrinsic optical property of cells namely refractive index (RI) to enable a direct imaging and analysis of whole cells or intracellular organelles. HT turned out a valid approach to distinguish morphological features of living unlabeled fibroblasts from differentiated myofibroblasts. HT provided quantitative information concerning volume, surface area, projection area, surface index and dry mass of the entire fibroblasts/myofibroblasts, nuclei and nucleoli.
Collapse
Affiliation(s)
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Yang X, Wang T, Ding Y, Chen Y, Lv Z. Concentrated growth factor therapy as cosmetic treatment in discoid lupus erythematosus. J Dermatol 2024; 51:1125-1128. [PMID: 38321607 PMCID: PMC11483891 DOI: 10.1111/1346-8138.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/20/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Discoid lupus erythematosus (DLE) is a disfigurement disease. The atrophic scar and hair loss of this disease are followed by cosmetic defects and profoundly impact psychological health. Concentrated growth factor (CGF) has been widely adopted in medical cosmetology. Here we report a 36-year-old female systemic lupus erythematosus patient with a 5-year history of alopecia in DLE, who was recommended for CGF therapy and experienced hair regrowth. We suggest that CGF may be an effective cosmetic treatment for DLE.
Collapse
Affiliation(s)
- Xiao‐Shuang Yang
- Department of DermatologySecond Affiliated Hospital, Zhejiang University School of MedicineZhejiangHangzhouChina
| | - Ting‐Ting Wang
- Department of DermatologySecond Affiliated Hospital, Zhejiang University School of MedicineZhejiangHangzhouChina
| | - Yu‐Xin Ding
- Department of DermatologySecond Affiliated Hospital, Zhejiang University School of MedicineZhejiangHangzhouChina
| | - Yu‐Hong Chen
- Department of DermatologySecond Affiliated Hospital, Zhejiang University School of MedicineZhejiangHangzhouChina
| | - Zhong‐Fa Lv
- Department of DermatologySecond Affiliated Hospital, Zhejiang University School of MedicineZhejiangHangzhouChina
| |
Collapse
|
3
|
Li JP, Liu YJ, Li Y, Yin Y, Ye QW, Lu ZH, Dong YW, Zhou JY, Zou X, Chen YG. Spatiotemporal heterogeneity of LMOD1 expression summarizes two modes of cell communication in colorectal cancer. J Transl Med 2024; 22:549. [PMID: 38849852 PMCID: PMC11161970 DOI: 10.1186/s12967-024-05369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Cellular communication (CC) influences tumor development by mediating intercellular junctions between cells. However, the role and underlying mechanisms of CC in malignant transformation remain unknown. Here, we investigated the spatiotemporal heterogeneity of CC molecular expression during malignant transformation. It was found that although both tight junctions (TJs) and gap junctions (GJs) were involved in maintaining the tumor microenvironment (TME), they exhibited opposite characteristics. Mechanistically, for epithelial cells (parenchymal component), the expression of TJ molecules consistently decreased during normal-cancer transformation and is a potential oncogenic factor. For fibroblasts (mesenchymal component), the expression of GJs consistently increased during normal-cancer transformation and is a potential oncogenic factor. In addition, the molecular profiles of TJs and GJs were used to stratify colorectal cancer (CRC) patients, where subtypes characterized by high GJ levels and low TJ levels exhibited enhanced mesenchymal signals. Importantly, we propose that leiomodin 1 (LMOD1) is biphasic, with features of both TJs and GJs. LMOD1 not only promotes the activation of cancer-associated fibroblasts (CAFs) but also inhibits the Epithelial-mesenchymal transition (EMT) program in cancer cells. In conclusion, these findings demonstrate the molecular heterogeneity of CC and provide new insights into further understanding of TME heterogeneity.
Collapse
Affiliation(s)
- Jie-Pin Li
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yuan-Jie Liu
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yang Li
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yi Yin
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Qian-Wen Ye
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Zhi-Hua Lu
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yu-Wei Dong
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jin-Yong Zhou
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Xi Zou
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China.
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Nanjing, 210029, Jiangsu, China.
- Institute of Chinese & Western Medicine and Oncology Clinical Research, Nanjing, 210029, Jiangsu, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210029, Jiangsu, China.
| | - Yu-Gen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China.
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Nanjing, 210029, Jiangsu, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
4
|
Chang P, Guo K, Li S, Wang H, Tang M. In Situ Sodium Chloride Cross-Linked Fish Skin Collagen Scaffolds for Functional Hemostasis Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2208001. [PMID: 37936312 DOI: 10.1002/smll.202208001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Current fish collagen hemostasis for wound healing products is commonly obtained by electrospinning or artificial cross-linking fish collagen fibers which lacks mechanical properties, and biofunctions. Here, a new bio-active fish skin scaffold (FSS) is shown using in situ cross-linked scaleless freshwater fish skin adding adipose-derived stem cells (ASCs)-produced exosomes for hemostasis and wound healing. The structure, pore size, and the thickness of FSS is studied by swelling test, Fourier-transform infrared (FT-IR) spectra, scanning electron microscope (SEM) images, and histological analysis. The biofunctions of the FSS are also tested in vitro and in vivo. FSS keeps two functional layers: The dermis layer collagen forms a sponge like structure after swelling and in situ cross-linking treatments. The pore size of the FSS is ≈152 ± 23.54 µm, which is suitable for cells growing, angiogenesis and ASCs exosomes accelerate wound healing. The fat-rich epidermis layer can keep the wound moisty and clean before completely healed. In vitro and in vivo experimental results indicate that FSS+Exosomes enhances rat skin cavity wound healing. In situ sodium chloride cross-linked FSS+Exosomes provides a new strategy as functional hemostatic dressing scaffold for wound healing.
Collapse
Affiliation(s)
- Peng Chang
- Department of Plastic and Cosmetic Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Kai Guo
- Shenyang Institute of Automation, Chinese Academy of Sciences Shenyang, Liaoning, 110000, China
| | - Shijie Li
- Shenyang Institute of Automation, Chinese Academy of Sciences Shenyang, Liaoning, 110000, China
| | - Hongtao Wang
- Shenyang Elite Blue Medical Technology (EBG) Co., Ltd., Shenyang, 110004, China
| | - Mingqiang Tang
- Shenyang Elite Blue Medical Technology (EBG) Co., Ltd., Shenyang, 110004, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
5
|
Chellini F, Tani A, Parigi M, Palmieri F, Garella R, Zecchi-Orlandini S, Squecco R, Sassoli C. HIF-1α/MMP-9 Axis Is Required in the Early Phases of Skeletal Myoblast Differentiation under Normoxia Condition In Vitro. Cells 2023; 12:2851. [PMID: 38132171 PMCID: PMC10742321 DOI: 10.3390/cells12242851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hypoxia-inducible factor (HIF)-1α represents an oxygen-sensitive subunit of HIF transcriptional factor, which is usually degraded in normoxia and stabilized in hypoxia to regulate several target gene expressions. Nevertheless, in the skeletal muscle satellite stem cells (SCs), an oxygen level-independent regulation of HIF-1α has been observed. Although HIF-1α has been highlighted as a SC function regulator, its spatio-temporal expression and role during myogenic progression remain controversial. Herein, using biomolecular, biochemical, morphological and electrophysiological analyses, we analyzed HIF-1α expression, localization and role in differentiating murine C2C12 myoblasts and SCs under normoxia. In addition, we evaluated the role of matrix metalloproteinase (MMP)-9 as an HIF-1α effector, considering that MMP-9 is involved in myogenesis and is an HIF-1α target in different cell types. HIF-1α expression increased after 24/48 h of differentiating culture and tended to decline after 72 h/5 days. Committed and proliferating mononuclear myoblasts exhibited nuclear HIF-1α expression. Differently, the more differentiated elongated and parallel-aligned cells, which are likely ready to fuse with each other, show a mainly cytoplasmic localization of the factor. Multinucleated myotubes displayed both nuclear and cytoplasmic HIF-1α expression. The MMP-9 and MyoD (myogenic activation marker) expression synchronized with that of HIF-1α, increasing after 24 h of differentiation. By means of silencing HIF-1α and MMP-9 by short-interfering RNA and MMP-9 pharmacological inhibition, this study unraveled MMP-9's role as an HIF-1α downstream effector and the fact that the HIF-1α/MMP-9 axis is essential in morpho-functional cell myogenic commitment.
Collapse
Affiliation(s)
- Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.G.)
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (S.Z.-O.)
| |
Collapse
|
6
|
Cappitti A, Palmieri F, Garella R, Tani A, Chellini F, Salzano De Luna M, Parmeggiani C, Squecco R, Martella D, Sassoli C. Development of accessible platforms to promote myofibroblast differentiation by playing on hydrogel scaffold composition. BIOMATERIALS ADVANCES 2023; 155:213674. [PMID: 37922662 DOI: 10.1016/j.bioadv.2023.213674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Mechanomimetic materials are particularly attractive for modeling in vitro fibroblast to myofibroblast (Myof) transition, a key process in the physiological repair of damaged tissue, and recognized as the core cellular mechanism of pathological fibrosis in different organs. In vivo, mechanical stimuli from the extracellular matrix (ECM) are crucial, together with cell-cell contacts and the pro-fibrotic transforming growth factor (TGF)-β1, in promoting fibroblast differentiation. Here, we explore the impact of hydrogels made by polyacrylamide with different composition on fibroblast behavior. By appropriate modulation of the hydrogel composition (e.g. adjusting the crosslinker content), we produce and fully characterize three kinds of scaffolds with different Young modulus (E). We observe that soft hydrogels (E < 1 kPa) induced fibroblast differentiation better than stiffer ones, also in the absence of TGF-β1. This study provides a readily accessible biomaterial platform to promote Myof generation. The easy approach used and the commercial availability of the monomers make these hydrogels suitable to a wide range of biomedical applications combined with high reproducibility and simple preparation protocols.
Collapse
Affiliation(s)
- Alice Cappitti
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Martina Salzano De Luna
- Department of chemical, materials and industrial production engineering, University of Naples Federico II, 80125 Napoli, Italy
| | - Camilla Parmeggiani
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy; European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Sesto Fiorentino, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy.
| | - Daniele Martella
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy; European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Sesto Fiorentino, Italy; Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Torino, Italy.
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| |
Collapse
|
7
|
Huang F, Deng Z, Zhang Q, Zhang Z, Li X, Zeng W, Wang Y, Hei Z, Yuan D. Dual-regulation by Cx32 in hepatocyte to trigger and worsen liver graft injury. Transl Res 2023; 262:44-59. [PMID: 37507007 DOI: 10.1016/j.trsl.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Liver transplantation is the ultimate treatment option for end-stage liver failure. However, liver graft injury remains a challenge. This study aimed to investigate the role of connexin32 (Cx32) in liver graft injury and elucidate its mechanism of action. Through detecting liver graft samples from 6 patients, we observed that changes in the Cx32 level coincided with liver graft injury. Therefore, we established autologous orthotopic liver transplantation (AOLT) models using Cx32-knockout and wild-type mice and hypoxia/reoxygenation (H/R) and lipopolysaccharide (LPS) pretreatment models using alpha mouse liver 12 (AML12) cells, to explore Cx32 mechanisms in liver graft injury. Following in vivo and in vitro Cx32 knockout, oxidative stress and inflammatory response were inhibited through the regulation of PKC-α/NF-κB/NLRP3 and Nrf2/NOX4/ROS signaling pathways, thereby reducing Bak/Bax-related apoptosis and ameliorating liver graft injury. When the Cx32-based gap junction (GJ) was blocked with 2-aminoethoxydiphenyl borate (2-APB), ROS transfer was attenuated between neighboring cells, exacerbated oxidative stress and inflammatory response were prevented, and aggravation of liver graft injury was mitigated. These results highlight the dual regulation mechanism of Cx32 in liver graft injury. Through interaction with PKC-α, Cx32 regulated the NF-κB/NLRP3 and Nrf2/NOX4/ROS signaling pathways, thus directly triggering oxidative stress and inflammatory response. Simultaneously, mass-produced ROS were transferred to neighboring cells through Cx32 channels, for which oxidative stress and the inflammatory response were aggravated indirectly. Finally, Bak/Bax-related apoptosis was activated, thereby worsening liver graft injury. Our findings propose Cx32 as a dual mechanistic factor for oxidative stress and inflammatory signaling pathways in regulating cell apoptosis on liver graft injury, which suggests a promising therapeutic targets for liver graft injury.
Collapse
Affiliation(s)
- Fei Huang
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Zhizhao Deng
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Qian Zhang
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Zheng Zhang
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Xianlong Li
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Weiqi Zeng
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Yanling Wang
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China.
| | - Ziqing Hei
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China.
| | - Dongdong Yuan
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
8
|
Lu JH, Chueh KS, Juan TJ, Mao JW, Lin RJ, Lee YC, Shen MC, Sun TW, Lin HY, Juan YS. Effects of Therapeutic Platelet-Rich Plasma on Overactive Bladder via Modulating Hyaluronan Synthesis in Ovariectomized Rat. Int J Mol Sci 2023; 24:ijms24098242. [PMID: 37175945 PMCID: PMC10179536 DOI: 10.3390/ijms24098242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Postmenopausal women who have ovary hormone deficiency (OHD) may experience urological dysfunctions, such as overactive bladder (OAB) symptoms. This study used a female Sprague Dawley rat model that underwent bilateral ovariectomy (OVX) to simulate post-menopause in humans. The rats were treated with platelet-rich plasma (PRP) or platelet-poor plasma (PPP) after 12 months of OVX to investigate the therapeutic effects of PRP on OHD-induced OAB. The OVX-treated rats exhibited a decrease in the expression of urothelial barrier-associated proteins, altered hyaluronic acid (hyaluronan; HA) production, and exacerbated bladder pathological damage and interstitial fibrosis through NFƘB/COX-2 signaling pathways, which may contribute to OAB. In contrast, PRP instillation for four weeks regulated the inflammatory fibrotic biosynthesis, promoted cell proliferation and matrix synthesis of stroma, enhanced mucosal regeneration, and improved urothelial mucosa to alleviate OHD-induced bladder hyperactivity. PRP could release growth factors to promote angiogenic potential for bladder repair through laminin/integrin-α6 and VEGF/VEGF receptor signaling pathways in the pathogenesis of OHD-induced OAB. Furthermore, PRP enhanced the expression of HA receptors and hyaluronan synthases (HAS), reduced hyaluronidases (HYALs), modulated the fibroblast-myofibroblast transition, and increased angiogenesis and matrix synthesis via the PI3K/AKT/m-TOR pathway, resulting in bladder remodeling and regeneration.
Collapse
Affiliation(s)
- Jian-He Lu
- Center for Agricultural, Forestry, Fishery, Livestock and Aquaculture Carbon Emission Inventory and Emerging Compounds, General Research Service Center, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Kuang-Shun Chueh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801735, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| | - Tai-Jui Juan
- Department of Medicine, National Defense Medical College, Taipei 114201, Taiwan
| | - Jing-Wen Mao
- Department of Medicine, National Defense Medical College, Taipei 114201, Taiwan
| | - Rong-Jyh Lin
- Department of Parasitology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yi-Chen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Mei-Chen Shen
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Ting-Wei Sun
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Hung-Yu Lin
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan
- Division of Urology, Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung 840301, Taiwan
| | - Yung-Shun Juan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Regenerative Medicine and Cell Therapy Research Cancer, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
9
|
Effects of platelet-rich plasma glue placement at the prostatectomy site on erectile function restoration and cavernous nerve preservation in a nerve-sparing prostatectomy rat model. Biomed Pharmacother 2023; 161:114499. [PMID: 36913891 DOI: 10.1016/j.biopha.2023.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Despite the widespread use of nerve-sparing prostatectomy techniques, the incidence of post-operative erectile dysfunction (ED) remains high. Early intracavernous (IC) injection of platelet-rich plasma (PRP) after nerve crushing improves erectile function (EF) in rats by promoting cavernous nerve (CN) regeneration and preventing structural changes in the corpus cavernosum. However, the neuroprotective effects of the in situ application of PRP glue in rats after CN-sparing prostatectomy (CNSP) remain unclear. AIM This study aimed to investigate the effects of PRP glue treatment on EF and CN preservation in rats after CNSP. METHODS After prostatectomy, male Sprague-Dawley rats were treated with PRP glue, IC PRP injection, or their combination. The intracavernous pressure (ICP), mean arterial pressure (MAP), and CN preservation status in the rats were evaluated after 4 weeks. Results were corroborated using histology, immunofluorescence, and transmission electron microscopy. RESULTS The PRP glue-treated rats showed 100% CN preservation and significantly higher ICP responses (the ratio of maximum ICP to MAP (0.79 ± 0.09)) than the CNSP rats (the ratio of maximum ICP to MAP (0.33 ± 0.04)). PRP glue also significantly increased neurofilament-1 expression, indicating its positive effect on the CNs. Furthermore, this treatment significantly increased the expression of α-smooth muscle actin. Electron micrographs revealed that PRP glue preserved the myelinated axons and prevented atrophy of the corporal smooth muscle by maintaining the adherens junctions. CONCLUSIONS These results indicate that PRP glue is a potential solution for EF preservation by neuroprotection in patients with prostate cancer who are likely to undergo nerve-sparing radical prostatectomy.
Collapse
|
10
|
Yuan S, Guo D, Liang X, Zhang L, Zhang Q, Xie D. Relaxin in fibrotic ligament diseases: Its regulatory role and mechanism. Front Cell Dev Biol 2023; 11:1131481. [PMID: 37123405 PMCID: PMC10134402 DOI: 10.3389/fcell.2023.1131481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/24/2023] [Indexed: 05/02/2023] Open
Abstract
Fibrotic ligament diseases (FLDs) are diseases caused by the pathological accumulation of periarticular fibrotic tissue, leading to functional disability around joint and poor life quality. Relaxin (RLX) has been reported to be involved in the development of fibrotic lung and liver diseases. Previous studies have shown that RLX can block pro-fibrotic process by reducing the excess extracellular matrix (ECM) formation and accelerating collagen degradation in vitro and in vivo. Recent studies have shown that RLX can attenuate connective tissue fibrosis by suppressing TGF-β/Smads signaling pathways to inhibit the activation of myofibroblasts. However, the specific roles and mechanisms of RLX in FLDs remain unclear. Therefore, in this review, we confirmed the protective effect of RLX in FLDs and summarized its mechanism including cells, key cytokines and signaling pathways involved. In this article, we outline the potential therapeutic role of RLX and look forward to the application of RLX in the clinical translation of FLDs.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dong Guo
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinzhi Liang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Luhui Zhang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| | - Denghui Xie
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| |
Collapse
|
11
|
Sassoli C. Fibrosis: From Cellular and Molecular Targets to Therapeutic Strategies. Curr Mol Med 2022; 22:193-195. [DOI: 10.2174/156652402203220314140908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chiara Sassoli
- Department of Experimental and Clinical Medicine
Section of Human Anatomy and Histology
University of Florence, Florence, Italy
| |
Collapse
|
12
|
Bernacchioni C, Squecco R, Gamberi T, Ghini V, Schumacher F, Mannelli M, Garella R, Idrizaj E, Cencetti F, Puliti E, Bruni P, Turano P, Fiaschi T, Donati C. S1P Signalling Axis Is Necessary for Adiponectin-Directed Regulation of Electrophysiological Properties and Oxidative Metabolism in C2C12 Myotubes. Cells 2022; 11:713. [PMID: 35203362 PMCID: PMC8869893 DOI: 10.3390/cells11040713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Adiponectin (Adn), released by adipocytes and other cell types such as skeletal muscle, has insulin-sensitizing and anti-inflammatory properties. Sphingosine 1-phosphate (S1P) is reported to act as effector of diverse biological actions of Adn in different tissues. S1P is a bioactive sphingolipid synthesized by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK) 1 and 2. Consolidated findings support the key role of S1P in the biology of skeletal muscle. METHODS AND RESULTS Here we provide experimental evidence that S1P signalling is modulated by globular Adn treatment being able to increase the phosphorylation of SK1/2 as well as the mRNA expression levels of S1P4 in C2C12 myotubes. These findings were confirmed by LC-MS/MS that showed an increase of S1P levels after Adn treatment. Notably, the involvement of S1P axis in Adn action was highlighted since, when SK1 and 2 were inhibited by PF543 and ABC294640 inhibitors, respectively, not only the electrophysiological changes but also the increase of oxygen consumption and of aminoacid levels induced by the hormone, were significantly inhibited. CONCLUSION Altogether, these findings show that S1P biosynthesis is necessary for the electrophysiological properties and oxidative metabolism of Adn in skeletal muscle cells.
Collapse
Affiliation(s)
- Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| | - Roberta Squecco
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (R.S.); (R.G.); (E.I.)
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| | - Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, 50019 Florence, Italy; (V.G.); (P.T.)
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany;
| | - Michele Mannelli
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| | - Rachele Garella
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (R.S.); (R.G.); (E.I.)
| | - Eglantina Idrizaj
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (R.S.); (R.G.); (E.I.)
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| | - Elisa Puliti
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, 50019 Florence, Italy; (V.G.); (P.T.)
| | - Tania Fiaschi
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences “M. Serio”, University of Florence, 50134 Florence, Italy; (C.B.); (T.G.); (M.M.); (F.C.); (E.P.); (P.B.); (T.F.)
| |
Collapse
|
13
|
Sassoli C, Garella R, Chellini F, Tani A, Pavan P, Bambi F, Zecchi-Orlandini S, Squecco R. Platelet-rich plasma affects gap junctional features in myofibroblasts in vitro via vascular endothelial growth factor (VEGF)-A/VEGF receptor. Exp Physiol 2021; 107:106-121. [PMID: 34935228 DOI: 10.1113/ep090052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? It is a challenge to discover effective therapies for fibrosis. Increasing evidence supports the antifibrotic potential of platelet-rich plasma (PRP) as a source of bioactive molecules, such as vascular endothelial growth factor (VEGF)-A. However, the effects and mechanisms of action of PRP need to be clarified. What is the main finding and its importance? This report clarifies the mechanisms mediating the antifibrotic action of PRP, strengthening the role of VEGF-A/VEGF receptor, and identifies gap junction currents and connexin 43 as novel targets of this pathway in the fibroblast-to-myofibroblast transition induced by the transforming growth factor-β1. ABSTRACT Despite increasing experimental evidence, the antifibrotic potential of platelet-rich plasma (PRP) remains controversial, and its mechanisms of action are not fully clarified. This short report extends our previous research on the capability of PRP to prevent the in vitro differentiation of fibroblasts toward myofibroblasts, the key effectors of fibrosis, induced by the profibrotic agent transforming growth factor-β1 (TGF-β1). In particular, we focused on the involvement of signalling mediated by vascular endothelial growth factor (VEGF)-A/VEGF receptor (VEGFR) in the PRP-induced fibroblast response, highlighting gap junction features. Electrophysiological and morphological analyses revealed that PRP hindered morphofunctional differentiation of both murine NIH/3T3 and human primary adult skin fibroblasts toward myofibroblasts as judged by the analysis of membrane phenomena, α-smooth muscle actin and vinculin expression and cell morphology. Neutralization of VEGF-A by blocking antibodies or pharmacological inhibition of VEGFR by KRN633 in TGF-β1-treated fibroblasts prevented the PRP-promoted effects, such as the reduction of voltage-dependent transjunctional currents in cell pairs and a decreased expression of connexin 43, the typical connexin isoform forming voltage-dependent connexons. The role of VEGF-A in inhibiting these events was confirmed by treating TGF-β1-stimulated fibroblasts with soluble VEGF-A. The results obtained when cells were differentiated using KRN633 alone suggest an antagonistic cross-talk between TGF-β1 and VEGFR. In conclusion, this study identifies, for the first time, gap junction currents as crucial targets in the VEGF-A/VEGFR-mediated antifibrotic pathway and provides new insights into mechanisms behind the action of PRP in preventing differentiation of fibroblasts to myofibroblasts.
Collapse
Affiliation(s)
- Chiara Sassoli
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Rachele Garella
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Flaminia Chellini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessia Tani
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paola Pavan
- Transfusion Medicine and Cell Therapy Unit, 'A. Meyer' University Children's Hospital, Florence, Italy
| | - Franco Bambi
- Transfusion Medicine and Cell Therapy Unit, 'A. Meyer' University Children's Hospital, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Roberta Squecco
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Wang H, Chen Y, Zhao S, Wang X, Lu K, Xiao H. Effect of Sox9 on TGF-β1-mediated atrial fibrosis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1450-1458. [PMID: 34596216 DOI: 10.1093/abbs/gmab132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 01/02/2023] Open
Abstract
Atrial fibrosis is a crucial mechanism responsible for atrial fibrillation (AF). Sex-determining region Y-box containing gene 9 (Sox9) plays a pivotal role in fibrosis of many organs such as the skin, kidney, and liver. However, there are few studies about the occurrence and maintenance of Sox9 in atrial fibrosis. In this study, we investigated the role of Sox9 in the fibrotic phenotype of human atrial tissues and rat atrial fibroblasts in vitro. In the human right atrial tissue, Masson's trichrome staining, immunofluorescence, real-time quantitative polymerase chain reaction, and western blot analysis were carried out to explore the relationship between Sox9 and atrial fibrosis at the morphological, functional, and molecular levels. In cultured atrial fibroblasts, Sox9 was overexpressed by adenovirus or depleted by siRNA, and then, recombinant human transforming growth factor (TGF)-β1 was added. Immunofluorescence analysis, western blot analysis, Transwell assay, and scratch assay were used to analyze the cells. In patient atrial tissues, Sox9 was increased with worsened atrial fibrosis, and this increase was related to AF severity. In rat atrial fibroblasts, Sox9 was promoted by TGF-β1, and the α-smooth muscle actin (α-SMA) protein level and the ability of cell migration were increased after Sox9 overexpression by adenovirus, while the α-SMA protein level and the cell migration ability were decreased after Sox9 depletion by siRNA. In conclusion, Sox9 is involved in the regulation of fibrosis in the atria and may be located downstream of TGF-β1. Our findings may provide a new perspective to treat atrial fibrosis during AF.
Collapse
Affiliation(s)
- Hechuan Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiqi Chen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuting Zhao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Kai Lu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hua Xiao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
15
|
Wu Y, Li Y, Bai Y, Jiang J, Wang X, Guo S. Left Main Bronchus Stenosis Lesion, Neutrophil Count, and Platelet Count Are Predictors of Post-Tuberculosis Bronchomalacia. Med Sci Monit 2021; 27:e931779. [PMID: 34620816 PMCID: PMC8507426 DOI: 10.12659/msm.931779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Post-tuberculosis bronchomalacia (PTBM) is one of the main conditions occurring in patients after tracheobronchial tuberculosis (TBTB), and is also associated with the recurrence of symptoms. The present study aimed to investigate the predictors of PTBM in patients who had been undergoing appropriate TB treatment. Material/Methods Clinical data of 104 patients with symptomatic airway stenosis after TBTB between January 01, 2019 and June 31, 2020 were recorded and analyzed. The association between baseline clinical characteristics, laboratory results, and PTBM was calculated with logistical regression. The time from onset of bronchoscopic intervention was examined by Kaplan-Meier estimates; differences between the 2 groups were tested by the log-rank test. Results Fifty-seven patients (54.81%) had PTBM. In the multivariate logistical analysis, the left main bronchus stenosis lesion (odds ratio [OR]=3.763), neutrophil (NEUT) count (OR=1.527), and platelet (PLT) (OR=1.010) count were predictors of PTBM. During follow-up, patients with BM had a significantly longer duration from onset of bronchoscopic intervention than patients without BM (hazard ratio=2.412, P<0.0001). Further, all patients needing long-term bronchoscopic intervention therapy were subsequently identified as having PTBM. Additionally, blood PLT counts were significantly decreased to normal levels in the non-BM group (P<0.05), but not in the BM group (P>0.05). Conclusions PTBM is most likely to occur in the left main bronchus. The inflammatory and immune responses associated with NEUT and PLT may represent therapeutic targets of PTBM. Our study is the first to report that decreased blood PLT count has the potential to monitor the treatment response.
Collapse
Affiliation(s)
- Yongchang Wu
- Department of Respiratory and Critical Care Medicine, Yongchuan Hospital of Chongqing Medical University, Chongqing, China (mainland).,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Yishi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Yang Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Jinyue Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Xiaohui Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
16
|
Cell instructive Liquid Crystalline Networks for myotube formation. iScience 2021; 24:103077. [PMID: 34568797 PMCID: PMC8449234 DOI: 10.1016/j.isci.2021.103077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/16/2021] [Accepted: 08/29/2021] [Indexed: 02/04/2023] Open
Abstract
Development of biological tissues in vitro is not a trivial task and requires the correct maturation of the selected cell line. To this aim, many attempts were done mainly by mimicking the biological environment using micro/nanopatterned or stimulated scaffolds. However, the obtainment of functional tissues in vitro is still far from being achieved. In contrast with the standard methods, we here present an easy approach for the maturation of myotubes toward the reproduction of muscular tissue. By using liquid crystalline networks with different stiffness and molecular alignment, we demonstrate how the material itself can give favorable interactions with myoblasts helping a correct differentiation. Electrophysiological studies demonstrate that myotubes obtained on these polymers have more adult-like morphology and better functional features with respect to those cultured on standard supports. The study opens to a platform for the differentiation of other cell lines in a simple and scalable way.
Collapse
|
17
|
Sassoli C, Nistri S, Chellini F, Bani D. Human Recombinant Relaxin (Serelaxin) as Anti-fibrotic Agent: Pharmacology, Limitations and Actual Perspectives. Curr Mol Med 2021; 22:196-208. [PMID: 33687895 DOI: 10.2174/1566524021666210309113650] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
Relaxin (recombinant human relaxin-2 hormone; RLX-2; serelaxin) had raised expectations as a new medication for fibrotic diseases. A plethora of in vitro and in vivo studies have offered convincing demonstrations that relaxin promotes remodelling of connective tissue extracellular matrix mediated by inhibition of multiple fibrogenic pathways, especially the downstream signalling of transforming growth factor (TGF)-β1, a major pro-fibrotic cytokine, and the recruitment and activation of myofibroblast, the main fibrosis-generating cells. However, all clinical trials with relaxin in patients with fibrotic diseases gave inconclusive results. In this review, we have summarized the molecular mechanisms of fibrosis, highlighting those which can be effectively targeted by relaxin. Then, we have performed a critical reappraisal of the clinical trials performed to-date with relaxin as anti-fibrotic drug, in order to highlight their key points of strength and weakness and to identify some future opportunities for the therapeutic use of relaxin, or its analogues, in fibrotic diseases and pathologic scarring which, in our opinion, deserve to be investigated.
Collapse
Affiliation(s)
- Chiara Sassoli
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology, Research Unit of Human Anatomy. Italy
| | - Silvia Nistri
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology, Research Unit of Histology & Embryology, University of Florence, Florence. Italy
| | - Flaminia Chellini
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology, Research Unit of Human Anatomy. Italy
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology, Research Unit of Histology & Embryology, University of Florence, Florence. Italy
| |
Collapse
|
18
|
Platelet Lysate Nebulization Protocol for the Treatment of COVID-19 and Its Sequels: Proof of Concept and Scientific Rationale. Int J Mol Sci 2021; 22:ijms22041856. [PMID: 33673372 PMCID: PMC7918610 DOI: 10.3390/ijms22041856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/08/2023] Open
Abstract
One of the most severe effects of coronavirus disease 2019 (COVID-19) is lung disorders such as acute respiratory distress syndrome. In the absence of effective treatments, it is necessary to search for new therapies and therapeutic targets. Platelets play a fundamental role in respiratory disorders resulting from viral infections, being the first line of defense against viruses and essential in maintaining lung function. The direct application of platelet lysate (PL) obtained from the platelet-rich plasma of healthy donors could help in the improvement of the patient due its anti-inflammatory, immunomodulatory, antifibrotic, and repairing effects. This work evaluates PL nebulization by analyzing its levels of growth factors and its biological activity on lung fibroblast cell cultures, besides describing a scientific basis for its use in this kind of pathology. The data of the work suggest that the molecular levels and biological activity of the PL are maintained after nebulization. Airway administration would allow acting directly on the lung tissue modulating inflammation and stimulating reparative processes on key structures such as the alveolocapillary barrier, improving the disease and sequels. The protocol developed in this work is a first step for the study of nebulized PL both in animal experimentation and in clinical trials.
Collapse
|
19
|
Role of Sphingosine 1-Phosphate Signalling Axis in Muscle Atrophy Induced by TNFα in C2C12 Myotubes. Int J Mol Sci 2021; 22:ijms22031280. [PMID: 33525436 PMCID: PMC7866171 DOI: 10.3390/ijms22031280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle atrophy is characterized by a decrease in muscle mass causing reduced agility, increased fatigability and higher risk of bone fractures. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNFα), are strong inducers of skeletal muscle atrophy. The bioactive sphingolipid sphingosine 1-phoshate (S1P) plays an important role in skeletal muscle biology. S1P, generated by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK1/2), exerts most of its actions through its specific receptors, S1P1-5. Here, we provide experimental evidence that TNFα induces atrophy and autophagy in skeletal muscle C2C12 myotubes, modulating the expression of specific markers and both active and passive membrane electrophysiological properties. NMR-metabolomics provided a clear picture of the deep remodelling of skeletal muscle fibre metabolism induced by TNFα challenge. The cytokine is responsible for the modulation of S1P signalling axis, upregulating mRNA levels of S1P2 and S1P3 and downregulating those of SK2. TNFα increases the phosphorylated form of SK1, readout of its activation. Interestingly, pharmacological inhibition of SK1 and specific antagonism of S1P3 prevented the increase in autophagy markers and the changes in the electrophysiological properties of C2C12 myotubes without affecting metabolic remodelling induced by the cytokine, highlighting the involvement of S1P signalling axis on TNFα-induced atrophy in skeletal muscle.
Collapse
|
20
|
In Vitro Evidences of Different Fibroblast Morpho-Functional Responses to Red, Near-Infrared and Violet-Blue Photobiomodulation: Clues for Addressing Wound Healing. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although photobiomodulation (PBM) has proven promising to treat wounds, the lack of univocal guidelines and of a thorough understanding of light–tissue interactions hampers its mainstream adoption for wound healing promotion. This study compared murine and human fibroblast responses to PBM by red (635 ± 5 nm), near-infrared (NIR, 808 ± 1 nm), and violet-blue (405 ± 5 nm) light (0.4 J/cm2 energy density, 13 mW/cm2 power density). Cell viability was not altered by PBM treatments. Light and confocal laser scanning microscopy and biochemical analyses showed, in red PBM irradiated cells: F-actin assembly reduction, up-regulated expression of Ki67 proliferation marker and of vinculin in focal adhesions, type-1 collagen down-regulation, matrix metalloproteinase-2 and metalloproteinase-9 expression/functionality increase concomitant to their inhibitors (TIMP-1 and TIMP-2) decrease. Violet-blue and even more NIR PBM stimulated collagen expression/deposition and, likely, cell differentiation towards (proto)myofibroblast phenotype. Indeed, these cells exhibited a higher polygonal surface area, stress fiber-like structures, increased vinculin- and phospho-focal adhesion kinase-rich clusters and α-smooth muscle actin. This study may provide the experimental groundwork to support red, NIR, and violet-blue PBM as potential options to promote proliferative and matrix remodeling/maturation phases of wound healing, targeting fibroblasts, and to suggest the use of combined PBM treatments in the wound management setting.
Collapse
|
21
|
Musarò A. Muscle Homeostasis and Regeneration: From Molecular Mechanisms to Therapeutic Opportunities. Cells 2020; 9:cells9092033. [PMID: 32899793 PMCID: PMC7563331 DOI: 10.3390/cells9092033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022] Open
Abstract
The capacity of adult muscle to regenerate in response to injury stimuli represents an important homeostatic process. Regeneration is a highly coordinated program that partially recapitulates the embryonic developmental program and involves the activation of the muscle compartment of stem cells, namely satellite cells, as well as other precursor cells, whose activity is strictly dependent on environmental signals. However, muscle regeneration is severely compromised in several pathological conditions due to either the progressive loss of stem cell populations or to missing signals that limit the damaged tissues from efficiently activating a regenerative program. It is, therefore, plausible that the loss of control over these cells’ fate might lead to pathological cell differentiation, limiting the ability of a pathological muscle to sustain an efficient regenerative process. This Special Issue aims to bring together a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration and to suggest potential therapeutic approaches for degenerating muscle disease.
Collapse
Affiliation(s)
- Antonio Musarò
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via Antonio Scarpa, 14, 00161 Rome, Italy
| |
Collapse
|