1
|
Sherif O, Khelwatty SA, Bagwan I, Seddon AM, Dalgleish A, Mudan S, Modjtahedi H. Expression of EGFRvIII and its co‑expression with wild‑type EGFR, or putative cancer stem cell biomarkers CD44 or EpCAM are associated with poorer prognosis in patients with hepatocellular carcinoma. Oncol Rep 2024; 52:172. [PMID: 39450530 PMCID: PMC11526438 DOI: 10.3892/or.2024.8831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/30/2024] [Indexed: 10/26/2024] Open
Abstract
The aberrant expression of HER family members and cancer stem cells (CSCs) have been associated with tumour progression and resistance to therapy. At present, several HER inhibitors have been approved for the treatment of patients with a range of cancers but not for the treatment of patients with hepatocellular carcinoma (HCC). The present study investigated the co‑expression and prognostic significance of HER family members, type‑III deletion mutant EGFR (EGFRvIII), and the putative CSC biomarkers CD44 and epithelial cell adhesion molecule (EpCAM) in 43 patients with HCC. The relative expression of these biomarkers was determined using immunohistochemistry. At a cut off value of >5% of tumour cells stained for these biomarkers, 35% [wild‑type (wt)EGFR], 58% (HER‑2), 0% (HER‑3), 19% (HER‑4), 26% (EGFRvIII), 40% (CD44) and 33% (EpCAM) of patients were positive. In 23, 14 and 9% of the patients, wtEGFR expression was accompanied by co‑expression with HER‑2, EGFRvIII and HER‑2/EGFRvIII, respectively. EGFRvIII expression, membranous expression of CD44 and co‑expression of wtEGFR/EGFRvIII were associated with poor overall survival (OS). By contrast, cytoplasmic CD44 expression was associated with a longer OS time. The present study also investigated the effect of several agents targeting one or more members of the HER family, other growth factor receptors and cell signalling proteins on the proliferation of HCC cell lines. Among agents targeting one or more members of the HER family, the pan‑HER family blocker afatinib was the most effective, inhibiting the proliferation of three out of seven human liver cancer cell lines (LCCLs), while the CDK inhibitor dinacicilib was the most effective agent, inhibiting the proliferation of all human LCCLs tested. Taken together, the present results suggested that EGFRvIII expression and its co‑expression with wtEGFR or CD44 was of prognostic significance. These results also support further investigations of the therapeutic potential of drugs targeting EGFRvIII and other members of the HER family in patients with HCC.
Collapse
MESH Headings
- Humans
- Epithelial Cell Adhesion Molecule/metabolism
- Epithelial Cell Adhesion Molecule/genetics
- Hyaluronan Receptors/metabolism
- Hyaluronan Receptors/genetics
- ErbB Receptors/metabolism
- ErbB Receptors/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Female
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Prognosis
- Middle Aged
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Male
- Aged
- Adult
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Aged, 80 and over
Collapse
Affiliation(s)
- Ozlem Sherif
- Department of Biomolecular Sciences, School of Life Science, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| | - Said A. Khelwatty
- Department of Biomolecular Sciences, School of Life Science, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| | - Izhar Bagwan
- Department of Biomolecular Sciences, School of Life Science, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
- Berkshire Surrey Pathology Services, Royal Surrey Hospital, Guildford GU2 7XX, UK
| | - Alan M. Seddon
- Department of Biomolecular Sciences, School of Life Science, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| | - Angus Dalgleish
- Infection and Immunity Research Institute, St George's, University of London, London SW17 0RE, UK
| | | | - Helmout Modjtahedi
- Department of Biomolecular Sciences, School of Life Science, Pharmacy and Chemistry, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
2
|
Elhinnawi MA, Boushra MI, Hussien DM, Hussein FH, Abdelmawgood IA. Mitochondria's Role in the Maintenance of Cancer Stem Cells in Hepatocellular Carcinoma. Stem Cell Rev Rep 2024:10.1007/s12015-024-10797-1. [PMID: 39422808 DOI: 10.1007/s12015-024-10797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is recognized as a major contributor to cancer-related mortality worldwide. Cancer stem cells (CSCs) are a tiny group of cancer cells that possess a significant ability to regenerate themselves, form tumors, and undergo differentiation. CSCs have a pivotal role in the initiation, spread, recurrence, and resistance to treatment of cancer. As a result, they are very susceptible to being targeted for therapeutic intervention. The potential to cure HCC may be achieved by efficiently targeting drugs that eradicate cancer stem cells. Mitochondria have a crucial function in granting drug resistance to cancer stem cells by means of mitochondrial metabolism, biogenesis, and dynamics. Dysfunction in mitochondrial metabolic processes, such as mitochondrial oxidative phosphorylation (OXPHOS), calcium signaling, and reactive oxygen species (ROS) generation, contributes to the initiation and progression of human malignancies, including HCC. ROS have both beneficial and detrimental effects depending on their concentration. Consequently, ROS have become a prominent subject in the study of the fundamental mechanisms of HCC. Furthermore, an imbalance in the process of creating new mitochondria is a characteristic feature of CSCs, and an increase in mitochondrial biogenesis is associated with the heightened resistance observed in CSCs. This article provides a detailed examination of the involvement of mitochondria in the preservation of CSCs, as well as the spread of HCC. A deeper understanding of how mitochondria participate in tumorigenesis and drug resistance could result in the discovery of novel cancer treatments.
Collapse
Affiliation(s)
- Manar A Elhinnawi
- Experimental Pathology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | | | | | | | | |
Collapse
|
3
|
Ma D, Liang R, Luo Q, Song G. Pressure loading regulates the stemness of liver cancer stem cells via YAP/BMF signaling axis. J Cell Physiol 2024:e31451. [PMID: 39358905 DOI: 10.1002/jcp.31451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Cancer stem cells (CSCs) are considered the major cause of the occurrence, progression, chemoresistance/radioresistance, recurrence, and metastasis of cancer. Increased interstitial fluid pressure (IFP) is a key feature of solid tumors. Our previous study showed that the distribution of liver cancer stem cells (LCSCs) correlated with the mechanical heterogeneity within liver cancer tissues. However, the regulation of liver cancer's mechanical microenvironment on the LCSC stemness is not fully understood. Here, we employed a cellular pressure-loading device to investigate the effects of normal IFP (5 mmHg), as well as increased IFP (40 and 200 mmHg) on the stemness of LCSCs. Compared to the control LCSCs (exposure to 5 mmHg pressure loading), the LCSCs exposed to 40 mmHg pressure loading exhibited significantly upregulated expression of CSC markers (CD44, EpCAM, Nanog), enhanced sphere and colony formation capacities, and tumorigenic potential, whereas continuously increased pressure to 200 mmHg suppressed the LCSC characteristics. Mechanistically, pressure loading regulated Yes-associated protein (YAP) activity and Bcl-2 modifying factor (BMF) expression. YAP transcriptionally regulated BMF expression to affect the stemness of LCSCs. Knockdown of YAP and overexpression of BMF attenuated pressure-mediated stemness and tumorgenicity, while YAP-deficient and BMF-deletion recused pressure-dependent stemness on LCSCs, suggesting the involvement of YAP/BMF signaling axis in this process. Together, our findings provide a potential target for overcoming the stemness of CSCs and elucidate the significance of increased IFP in cancer progression.
Collapse
Affiliation(s)
- Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
4
|
Zhang WQ, Sun JX, Lan ST, Sun XM, Guo YJ, Wen BC, Chen J, Liu G. Regulation of Fuzheng Huayu capsule on inhibiting the fibrosis-associated hepatocellular carcinogenesis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1219-1238. [PMID: 38780602 DOI: 10.1080/10286020.2024.2355132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
In the current study, bioinformatics analysis of the hepatocellular carcinoma (HCC) dataset was conducted with the hepatoprotective effect of the Fuzheng Huayu (FZHY) capsule against the diethylnitrosamine-induced HCC progression analyzed. Eight cell clusters were defined and tanshinone IIA, arachidonic acid, and quercetin, compounds of the FZHY capsule, inhibit HCC progression-related fibrosis by regulating the expression of PLAU and IGFBP3. Combined with the ameliorative effect of the FZHY capsule against liver dysfunctions and expression of PLAU and IGFBP3, our study confirmed the effect of the FZHY capsule on inhibiting the fibrosis-associated HCC progression via regulating the expression of PLAU and IGFBP3.
Collapse
Affiliation(s)
- Wen-Qi Zhang
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Jia-Xin Sun
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Shu-Ting Lan
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiao-Mei Sun
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Yi-Jing Guo
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Bi-Chao Wen
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Jie Chen
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|
5
|
Yang Z, Zhang P, Zhao Y, Guo R, Hu J, Wang Q, Zhao Z, Liu H, Lv S, Ren Z, Hu Y, Cui D. DRD4 promotes chemo-resistance and cancer stem cell-like phenotypes by mediating the activation of the Akt/β-catenin signaling axis in liver cancer. Br J Cancer 2024; 131:1212-1223. [PMID: 39174739 PMCID: PMC11442912 DOI: 10.1038/s41416-024-02811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Liver cancer stem cells (LCSCs) significantly impact chemo-resistance and recurrence in liver cancer. Dopamine receptor D4 (DRD4) is known to enhance the cancer stem cell (CSC) phenotype in glioblastoma and correlates with poor prognosis in some non-central nervous system tumors; however, its influence on LCSCs remains uncertain. METHODS To investigate the gene and protein expression profiles of DRD4 in LCSCs and non-LCSCs, we utilized transcriptome sequencing and Western blotting analysis. Bioinformatics analysis and immunohistochemistry were employed to assess the correlation between DRD4 expression levels and the pathological characteristics of liver cancer patients. The impact of DRD4 on LCSC phenotypes and signaling pathways were explored using pharmacological or gene-editing techniques. Additionally, the effect of DRD4 on the protein expression and intracellular localization of β-catenin were examined using Western blotting and immunofluorescence. RESULTS DRD4 expression is significantly elevated in LCSCs and correlates with short survival in liver cancer. The expression and activity of DRD4 are positive to resistance, self renewal and tumorigenicity in HCC. Mechanistically, DRD4 stabilizes β-catenin and promotes its entry into the nucleus via activating the PI3K/Akt/GSK-3β pathway, thereby enhancing LCSC phenotypes. CONCLUSIONS Inhibiting DRD4 expression and activation offers a promising targeted therapy for eradicating LCSCs and relieve chemo-resistance.
Collapse
MESH Headings
- Humans
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/drug therapy
- Drug Resistance, Neoplasm/genetics
- beta Catenin/metabolism
- beta Catenin/genetics
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Mice
- Animals
- Cell Line, Tumor
- Phenotype
- Male
- Gene Expression Regulation, Neoplastic
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Female
- Mice, Nude
Collapse
Affiliation(s)
- Zhengyan Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Medical and Industrial Interdisciplinary Research Institute, Henan University, Kaifeng, 475004, China
| | - Pai Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, 475004, China
- Genetics and Prenatal Diagnosis Department, Luoyang Maternal and Child Health Hospital, Luoyang, 471023, China
| | - Yiwei Zhao
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, 475004, China
| | - Ran Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Jinglin Hu
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Qi Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Medical and Industrial Interdisciplinary Research Institute, Henan University, Kaifeng, 475004, China
| | - Zhi Zhao
- Henan University-affiliated Zhengzhou Yihe Hospital, Zhengzhou, 450000, China
| | - Handi Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Medical and Industrial Interdisciplinary Research Institute, Henan University, Kaifeng, 475004, China
| | - Zhiguang Ren
- Henan International Joint Laboratory for Nuclear Protein Regulation, Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Medical and Industrial Interdisciplinary Research Institute, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Clinical Resources Translation, The First Affiliated Hospital, Henan University, Kaifeng, 475004, China.
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, 475004, China.
| | - Daxiang Cui
- Medical and Industrial Interdisciplinary Research Institute, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Wu J, Zhou Z, Huang Y, Deng X, Zheng S, He S, Huang G, Hu B, Shi M, Liao W, Huang N. Radiofrequency ablation: mechanisms and clinical applications. MedComm (Beijing) 2024; 5:e746. [PMID: 39359691 PMCID: PMC11445673 DOI: 10.1002/mco2.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Radiofrequency ablation (RFA), a form of thermal ablation, employs localized heat to induce protein denaturation in tissue cells, resulting in cell death. It has emerged as a viable treatment option for patients who are ineligible for surgery in various diseases, particularly liver cancer and other tumor-related conditions. In addition to directly eliminating tumor cells, RFA also induces alterations in the infiltrating cells within the tumor microenvironment (TME), which can significantly impact treatment outcomes. Moreover, incomplete RFA (iRFA) may lead to tumor recurrence and metastasis. The current challenge is to enhance the efficacy of RFA by elucidating its underlying mechanisms. This review discusses the clinical applications of RFA in treating various diseases and the mechanisms that contribute to the survival and invasion of tumor cells following iRFA, including the roles of heat shock proteins, hypoxia, and autophagy. Additionally, we analyze the changes occurring in infiltrating cells within the TME after iRFA. Finally, we provide a comprehensive summary of clinical trials involving RFA in conjunction with other treatment modalities in the field of cancer therapy, aiming to offer novel insights and references for improving the effectiveness of RFA.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiyuan Zhou
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuanwen Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xinyue Deng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siting Zheng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shangwen He
- Department of Respiratory and Critical Care MedicineChronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Genjie Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Binghui Hu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Shi
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wangjun Liao
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Na Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
7
|
Alcala S, Serralta San Martin G, Muñoz-Fernández de Legaria M, Moreno-Rubio J, Salinas S, López-Gil JC, Rojo López JA, Martínez Alegre J, Cortes Bandy DA, Zambrana F, Jiménez-Gordo AM, Casado E, López-Gómez M, Sainz B. Autofluorescent Cancer Stem Cells: Potential Biomarker to Predict Recurrence in Resected Colorectal Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:2575-2588. [PMID: 39225547 PMCID: PMC11445700 DOI: 10.1158/2767-9764.crc-24-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cancer stem cells (CSC) in colorectal cancer drive intratumoral heterogeneity and distant metastases. Previous research from our group showed that CSCs can be easily detected by autofluorescence (AF). The aim of the present study was to evaluate the potential role of AF CSCs as a prognostic biomarker for colorectal cancer relapse. Seventy-five freshly resected tumors were analyzed by flow cytometry. AF was categorized as high (H-AF) or low, and the results were correlated with histologic features [grade of differentiation, presence of metastases in lymph nodes (LN), perivascular and lymphovascular invasion] and clinical variables (time to relapse and overall survival). Nineteen of the 75 (25.3%) patients experienced relapse (local or distant); of these 19 patients, 13 showed positive LNs and 6 had H-AF. Of note, four of them died before 5 years. Although patients with H-AF CSC percentages in the global population experienced 1.5 times increased relapse [HR, 1.47; 95% confidence interval (0.60-3.63)], patients with H-AF CSC percentages and LN metastases had the highest risk of relapse [HR, 7.92; P < 0.004; 95% confidence interval (1.97-31.82)]. These data support AF as an accurate and feasible marker to identify CSCs in resected colorectal cancer. A strong statistical association between H-AF CSCs and the risk of relapse was observed, particularly in patients with positive LNs, suggesting that H-AF patients might benefit from adjuvant chemotherapy regimens and intensive surveillance due to their high propensity to experience disease recurrence. Significance: AF has been proven to be an accurate biomarker for CSC identification; however, to date, their role as a prognostic factor after resection of colorectal cancer tumors has not been investigated. Our results show that determining the presence of AF CSCs after tumor resection has prognostic value and represents a potentially important tool for the management of patients with colorectal cancer.
Collapse
Affiliation(s)
- Sonia Alcala
- Department of Biochemistry, School of Medicine, Autónoma University of Madrid and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Gonzalo Serralta San Martin
- Department of Internal Medicine, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
- Universidad Europea de Madrid, Madrid, Spain.
| | | | - Juan Moreno-Rubio
- Department of Medical Oncology, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
- Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain.
| | - Silvia Salinas
- Department of Pathology, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
| | - Juan Carlos López-Gil
- Department of Biochemistry, School of Medicine, Autónoma University of Madrid and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - José Alberto Rojo López
- Department of General Surgery, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
| | - Javier Martínez Alegre
- Universidad Europea de Madrid, Madrid, Spain.
- Department of General Surgery, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
| | | | - Francisco Zambrana
- Universidad Europea de Madrid, Madrid, Spain.
- Department of Medical Oncology, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
- Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain.
| | - Ana-María Jiménez-Gordo
- Universidad Europea de Madrid, Madrid, Spain.
- Department of Medical Oncology, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
- Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain.
| | - Enrique Casado
- Universidad Europea de Madrid, Madrid, Spain.
- Department of Medical Oncology, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
- Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain.
| | - Miriam López-Gómez
- Universidad Europea de Madrid, Madrid, Spain.
- Department of Medical Oncology, Infanta Sofía University Hospital, FIIB HUIS HHEN, Madrid, Spain.
| | - Bruno Sainz
- Department of Biochemistry, School of Medicine, Autónoma University of Madrid and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain.
| |
Collapse
|
8
|
Teng X, Shang J, Du L, Huang W, Wang Y, Liu M, Ma Y, Wang M, Tang H, Bai L. RNA-binding protein Trx regulates alternative splicing and promotes metastasis of HCC via interacting with LINC00152. J Gastroenterol Hepatol 2024. [PMID: 39343436 DOI: 10.1111/jgh.16735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is central to HCC metastasis, in which RNA-binding proteins (RBPs) play a key role. METHODS To explore the role of RBPs in metastasis of hepatocellular carcinoma (HCC), whole transcriptome sequencing was conducted to identify differential RBPs between HCC with metastasis and HCC without metastasis. The influence of RBPs on metastasis of HCC was verified by in vitro and in vivo experiments. The interaction of RBPs with non-coding RNAs was evaluated by RNA immunoprecipitation and pull-down assays. RNA sequencing, whole-genome sequencing, and alternative splicing analysis were further performed to clarify post-transcriptional regulation mechanisms. RESULTS Whole transcriptome sequencing results showed that expression of thioredoxin (Trx) was significantly upregulated in HCC patients with metastasis. Trx was also found to be associated with poor prognosis in HCC patients. Overexpression of Trx could promote migration and invasion of HCC cells in vitro and increase the rate of lung metastasis of HCC cells in vivo. Moreover, binding assays showed that Trx could bind to LINC00152. As a result, LINC00152 was verified to determine the pro-metastasis function of Trx by knockdown assay. Furthermore, we revealed that Trx could regulate metastasis-associated alternative splicing program. Specifically, angiopoietin 1 (ANGPT1) was the splicing target; the splicing isoform switching of ANGPT1 could activate the PI3K-Akt pathway, upregulate EMT-associated proteins, and promote migration and invasion of HCC cells. CONCLUSIONS We found that Trx could interact with LINC00152 and promote HCC metastasis via regulating alternative splicing, indicating that Trx may serve as a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xiangnan Teng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Shang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplantation Center and HBP Surgery, Sichuan Clinical Research Center for Cancer Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanji Ma
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Zhang Z, Yang J, Liu R, Ma J, Wang K, Wang X, Tang N. Inhibiting HMGCR represses stemness and metastasis of hepatocellular carcinoma via Hedgehog signaling. Genes Dis 2024; 11:101285. [PMID: 39022130 PMCID: PMC11252768 DOI: 10.1016/j.gendis.2024.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 07/20/2024] Open
Abstract
Cancer stem cells (CSCs) play a crucial role in tumor initiation, recurrence, metastasis, and drug resistance. However, the current understanding of CSCs in hepatocellular carcinoma (HCC) remains incomplete. Through a comprehensive analysis of the database, it has been observed that 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), a critical enzyme involved in cholesterol synthesis, is up-regulated in HCC tissues and liver CSCs. Moreover, high expression of HMGCR is associated with a poor prognosis in patients with HCC. Functionally, HMGCR promotes the stemness and metastasis of HCC both in vitro and in vivo. By screening various signaling pathway inhibitors, we have determined that HMGCR regulates stemness and metastasis by activating the Hedgehog signaling in HCC. Mechanistically, HMGCR positively correlates with the expression of the Smoothened receptor and facilitates the nuclear translocation of the transcriptional activator GLI family zinc finger 1. Inhibition of the Hedgehog pathway can reverse the stimulatory effects of HMGCR on stemness and metastasis in HCC. Notably, simvastatin, an FDA-approved cholesterol-lowering drug, has been shown to inhibit stemness and metastasis of HCC by targeting HMGCR. Taken together, our findings suggest that HMGCR promotes the regeneration and metastasis of HCC through the activation of Hedgehog signaling, and simvastatin holds the potential for clinical suppression of HCC metastasis.
Collapse
Affiliation(s)
- Zhirong Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jiayao Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Rui Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jing Ma
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiaojun Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Alzahrani MS, Almutairy B, Althobaiti YS, Alsaab HO. Recent Advances in RNA Interference-Based Therapy for Hepatocellular Carcinoma: Emphasis on siRNA. Cell Biochem Biophys 2024; 82:1947-1964. [PMID: 38987439 DOI: 10.1007/s12013-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Even though RNA treatments were first proposed as a way to change aberrant signaling in cancer, research in this field is currently ongoing. The term "RNAi" refers to the use of several RNAi technologies, including ribozymes, riboswitches, Aptamers, small interfering RNA (siRNA), antisense oligonucleotides (ASOs), and CRISPR/Cas9 technology. The siRNA therapy has already achieved a remarkable feat by revolutionizing the treatment arena of cancers. Unlike small molecules and antibodies, which need administration every three months or even every two years, RNAi may be given every quarter to attain therapeutic results. In order to overcome complex challenges, delivering siRNAs to the targeted tissues and cells effectively and safely and improving the effectiveness of siRNAs in terms of their action, stability, specificity, and potential adverse consequences are required. In this context, the three primary techniques of siRNA therapies for hepatocellular carcinoma (HCC) are accomplished for inhibiting angiogenesis, decreasing cell proliferation, and promoting apoptosis, are discussed in this review. We also deliberate targeting issues, immunogenic reactions to siRNA therapy, and the difficulties with their intrinsic chemistry and transportation.
Collapse
Affiliation(s)
- Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia.
| |
Collapse
|
11
|
Chen T, Wang Q, Liu C, Zhang F, Bai Y, Jiao Y, Wang M, Bao S, Liu B, Shao M, Ma S, Ding Y. Ovatodiolide inhibited hepatocellular carcinoma stemness through SP1/MTDH/STAT3 signaling pathway. Chem Biol Interact 2024; 400:111161. [PMID: 39053793 DOI: 10.1016/j.cbi.2024.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Hepatocellular carcinoma (HCC) is characterized with high recurrence and mortality, and the clinical treatments for HCC are very limited. Hepatocellular carcinoma stem cells are the root of HCC progress, recurrence, and multidrug resistance. Ovatodiolide (OVA) is a bioactive diterpenoid served as an inflammatory and immunotherapeutic responses modulator. In this research, we found OVA inhibited HCC stemness through inhibiting MTDH gene transcription. Moreover, we firstly discovered transcription factor SP1 bound to the promoter region of MTDH to transcriptionally regulate MTDH level. Mechanically, we demonstrated OVA decreased SP1 protein stability to transcriptionally inhibit MTDH gene, and inhibited the nuclear translocation of p65, and then diminished IL-6 level to suppress JAK/STAT3 signaling pathway, eventually decreases CD133 level and the stemness of HCC. Furthermore, we demonstrated ACT004, OVA derivative with high metabolic stability towards cytochrome P450 enzymes, showed no genotoxicity and no accumulative or delayed toxicities after long-term administration in rats. And the in vivo efficacy experiments indicated ACT004 inhibited tumor growth of hepatocellular carcinoma. In conclusion, we revealed the mechanism of OVA in regulating HCC stemness, detected the toxicity of OVA derivative and evaluated the in vivo efficacy which lays a foundation for further discovery of anti-HCC stem cell agents and provide a new strategy for the application of OVA in clinical treatment.
Collapse
Affiliation(s)
- Tianyang Chen
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Qin Wang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Can Liu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Fengyuan Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Yongping Bai
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Yan Jiao
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | | | - Shiqi Bao
- Accendatech Co., Ltd., Tianjin, 300384, China
| | - Baofeng Liu
- Shan Dong Xinbo Pharmaceutical R&D Co., Ltd., Shan Dong, 251500, China
| | - Mingxiang Shao
- Shan Dong Xinbo Pharmaceutical R&D Co., Ltd., Shan Dong, 251500, China
| | - Shuoqian Ma
- College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Yahui Ding
- College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
12
|
Li GJ, Xiang Y, Yang JY, Weiskirchen R, Feng R, Zhai WL. Promotion of hepatocellular carcinoma stemness and progression by abnormal spindle-like microcephaly-associated protein via the Wnt/β-catenin pathway. J Gastrointest Oncol 2024; 15:1613-1626. [PMID: 39279956 PMCID: PMC11399842 DOI: 10.21037/jgo-24-406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024] Open
Abstract
Background Cancer stem cells (CSCs) play a crucial role in tumor recurrence and metastasis, which are the primary causes of death in patients with hepatocellular carcinoma (HCC). Currently, no drug effectively blocks the recurrence and metastasis of liver cancer, leading to a poor prognosis for patients. To enhance treatment outcomes, there is an urgent need to investigate the molecular mechanisms behind the recurrence and progression of liver cancer, with the aim of identifying effective therapeutic targets. Targeting HCC stemness can improve the prognosis of patients with HCC. Abnormal spindle-like microcephaly-associated protein (ASPM) plays a pivotal role in regulating neurogenesis and brain size, which is a centrosome protein. ASPM has been implicated in tumorigenesis and tumor progression, but its regulatory role in HCC stemness is not well understood. This study aims to investigate the role of ASPM in liver cancer stemness and elucidate its potential molecular mechanisms. Methods Bioinformatics analysis was used to study the expression of ASPM and its clinical significance in HCC. In vitro and in vivo assays were conducted to clarify the impact of ASPM knockdown on HCC cell stemness. The correlation between ASPM and the Wnt/β-catenin pathway was examined through analysis of online databases and in vitro experiments. Results The bioinformatics analysis revealed significant upregulation of ASPM was significantly upregulated in HCC samples, with expression correlating with poor prognosis. In vitro experimental data confirmed elevated ASPM expression in HCC cells compared to normal hepatocytes. Knockdown of ASPM suppressed HCC cell growth, clone formation, spheroid formation, migration, invasion, and the expression of CSC markers CD133 and CD44. This also inhibited the activation of the Wnt/β-catenin pathway. Reactivation of this pathway partially reversed the biological changes induced by ASPM knockdown in HCC cells. Additionally, in vivo data demonstrated that ASPM downregulation reduced the size and weight of xenografts in BALB/c mice, along with decreased expression of CSC markers. Conclusions These findings suggest that ASPM promotes HCC stemness and progression through the Wnt/β-catenin pathway. Targeting ASPM or the Wnt/β-catenin pathway may be a promising strategy to prevent HCC chemoresistance and recurrence, ultimately improving patient prognosis.
Collapse
Affiliation(s)
- Gao-Jie Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Examination Centre of the First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Ying Xiang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ji-Yao Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital Aachen, Aachen, Germany
| | - Ruo Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen-Long Zhai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Xu S, Liu Y, Yang S, Fei W, Qin J, Lu W, Xu J. FXN targeting induces cell death in ovarian cancer stem-like cells through PRDX3-Mediated oxidative stress. iScience 2024; 27:110506. [PMID: 39184439 PMCID: PMC11342215 DOI: 10.1016/j.isci.2024.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
Ovarian cancer stem cells (OCSCs) significantly impact the prognosis, chemoresistance, and treatment outcomes in OC. While ferroptosis has been proven effective against OCSCs, the intricate relationship between ferroptosis and OCSCs remains incompletely understood. Here, we enriched ovarian cancer stem-like cells (OCSLCs) through mammosphere culture, as an OCSC model. OCSLCs displayed heightened ferroptosis susceptibility, correlating with elevated FXN levels compared to non-stem OC cells. FXN has recently emerged as a potential regulator in ferroptosis. FXN knockdown diminished stemness marker nanog, sphere-forming ability, increased reactive oxygen species (ROS) generation, and attenuated OCSLCs viability. FXN overexpression exacerbated ferroptosis resistance and reduced RSL3-induced cell death. FXN knockdown impeded OCSLC xenograft tumor growth and exacerbated the degeneration of peroxiredoxin 3 (PRDX3), a mitochondrial antioxidant protein participates in oxidative stress. Thus, elevated FXN in OCSLCs suppresses ROS accumulation, fostering ferroptosis resistance, and regulates the antioxidant protein PRDX3. FXN emerges as a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Yuwan Liu
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Shizhou Yang
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Jiale Qin
- Department of Ultrasound, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006, Zhejiang, China
| |
Collapse
|
14
|
Zhu H, Chen H, Zhu X, Zhang B, Jin C. Diagnostic lncRNA high expression for liver patients prognosis and medication guidance: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1462512. [PMID: 39211780 PMCID: PMC11357924 DOI: 10.3389/fphar.2024.1462512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background The study of long non-coding RNAs (lncRNAs) has gained significant attention due to their roles in regulating gene expression and their potential as diagnostic biomarkers. This systematic review and meta-analysis aimed to evaluate the diagnostic value of high-expression lncRNAs in liver disease patients, including those with hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Methods A comprehensive literature search was conducted across multiple electronic databases, including PubMed, Embase, Web of Science, and Cochrane Library, up to July 2024. Studies were included if they investigated the expression of lncRNAs in liver disease patients and evaluated their diagnostic performance. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was used to assess the quality of included studies. Pooled sensitivity, specificity, diagnostic odds ratios (DOR), and summary receiver operating characteristic (SROC) curves were calculated using a bivariate random-effects model. Results Nine studies involving 888 samples were included in the meta-analysis. The pooled hazard ratio (HR) for overall survival (OS) was 2.01 (95% CI: 1.71-2.36), indicating a significant association between high lncRNA expression and poor liver disease outcomes. Subgroup analyses revealed a pooled odds ratio (OR) of 1.99 (95% CI: 1.53-2.60) for tissue samples and 8.62 (95% CI: 1.16-63.71) for blood samples, suggesting a stronger diagnostic value for blood-based lncRNAs. The funnel plots indicated minimal publication bias, and sensitivity analyses confirmed the robustness of the findings. Conclusion High-expression lncRNAs show significant potential as diagnostic biomarkers for liver diseases, offering non-invasive, accurate, and timely diagnostic information. Despite the promising results, further research is needed to standardize detection methods, elucidate the biological functions of lncRNAs, and validate their clinical utility in diverse patient populations. Integrating lncRNA biomarkers with traditional diagnostic approaches could enhance diagnostic accuracy and improve patient management and outcomes in liver disease.
Collapse
Affiliation(s)
- Hengzhou Zhu
- Department of Oncology, Wuxi Hospital of Triditional Chinese Medicine, Wuxi, China
| | - Haoyan Chen
- Department of Respiratory, Wuxi Hospital of Triditional Chinese Medicine, Wuxi, China
| | - Xiaodan Zhu
- Department of Oncology, Wuxi Hospital of Triditional Chinese Medicine, Wuxi, China
| | - Baonan Zhang
- Department of Oncology, Wuxi Hospital of Triditional Chinese Medicine, Wuxi, China
| | - Chunhui Jin
- Department of Oncology, Wuxi Hospital of Triditional Chinese Medicine, Wuxi, China
| |
Collapse
|
15
|
Ren F, Wang L, Wang Y, Wang J, Wang Y, Song X, Zhang G, Nie F, Lin S. Single-cell transcriptome profiles the heterogeneity of tumor cells and microenvironments for different pathological endometrial cancer and identifies specific sensitive drugs. Cell Death Dis 2024; 15:571. [PMID: 39112478 PMCID: PMC11306564 DOI: 10.1038/s41419-024-06960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Endometrial cancer (EC) is a highly heterogeneous malignancy characterized by varied pathology and prognoses, and the heterogeneity of its cancer cells and the tumor microenvironment (TME) remains poorly understood. We conducted single-cell RNA sequencing (scRNA-seq) on 18 EC samples, encompassing various pathological types to delineate their specific unique transcriptional landscapes. Cancer cells from diverse pathological sources displayed distinct hallmarks labeled as immune-modulating, proliferation-modulating, and metabolism-modulating cancer cells in uterine clear cell carcinomas (UCCC), well-differentiated endometrioid endometrial carcinomas (EEC-I), and uterine serous carcinomas (USC), respectively. Cancer cells from the UCCC exhibited the greatest heterogeneity. We also identified potential effective drugs and confirmed their effectiveness using patient-derived EC organoids for each pathological group. Regarding the TME, we observed that prognostically favorable CD8+ Tcyto and NK cells were prominent in normal endometrium, whereas CD4+ Treg, CD4+ Tex, and CD8+ Tex cells dominated the tumors. CXCL3+ macrophages associated with M2 signature and angiogenesis were exclusively found in tumors. Prognostically relevant epithelium-specific cancer-associated fibroblasts (eCAFs) and SOD2+ inflammatory CAFs (iCAFs) predominated in EEC-I and UCCC groups, respectively. We also validated the oncogenic effects of SOD2+ iCAFs in vitro. Our comprehensive study has yielded deeper insights into the pathogenesis of EC, potentially facilitating personalized treatments for its varied pathological types.
Collapse
Affiliation(s)
- Fang Ren
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Lingfang Wang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyouye Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaxuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanpei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaole Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Nie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
| |
Collapse
|
16
|
Qin Y, Han S, Yu Y, Qi D, Ran M, Yang M, Liu Y, Li Y, Lu L, Liu Y, Li Y. Lenvatinib in hepatocellular carcinoma: Resistance mechanisms and strategies for improved efficacy. Liver Int 2024; 44:1808-1831. [PMID: 38700443 DOI: 10.1111/liv.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Hepatocellular carcinoma (HCC), one of the most prevalent and destructive causes of cancer-related deaths worldwide, approximately 70% of patients with HCC exhibit advanced disease at diagnosis, limiting the potential for radical treatment. For such patients, lenvatinib, a long-awaited alternative to sorafenib for first-line targeted therapy, has become a key treatment. Unfortunately, despite some progress, the prognosis for advanced HCC remains poor because of drug resistance development. However, the molecular mechanisms underlying lenvatinib resistance and ways to relief drug resistance in HCC are largely unknown and lack of systematic summary; thus, this review not only aims to explore factors contributing to lenvatinib resistance in HCC, but more importantly, summary potential methods to conquer or mitigate the resistance. The results suggest that abnormal activation of pathways, drug transport, epigenetics, tumour microenvironment, cancer stem cells, regulated cell death, epithelial-mesenchymal transition, and other mechanisms are involved in the development of lenvatinib resistance in HCC and subsequent HCC progression. To improve the therapeutic outcomes of lenvatinib, inhibiting acquired resistance, combined therapies, and nano-delivery carriers may be possible approaches.
Collapse
Affiliation(s)
- Yongqing Qin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Shisong Han
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yahan Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Ding Qi
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Mengnan Ran
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yunyi Li
- Department of Nephrology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yong Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| |
Collapse
|
17
|
Safri F, Nguyen R, Zerehpooshnesfchi S, George J, Qiao L. Heterogeneity of hepatocellular carcinoma: from mechanisms to clinical implications. Cancer Gene Ther 2024; 31:1105-1112. [PMID: 38499648 PMCID: PMC11327108 DOI: 10.1038/s41417-024-00764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common types of primary liver cancer. Current treatment options have limited efficacy against this malignancy, primarily owing to difficulties in early detection and the inherent resistance to existing drugs. Tumor heterogeneity is a pivotal factor contributing significantly to treatment resistance and recurrent manifestations of HCC. Intratumoral heterogeneity is an important aspect of the spectrum of complex tumor heterogeneity and contributes to late diagnosis and treatment failure. Therefore, it is crucial to thoroughly understand the molecular mechanisms of how tumor heterogeneity develops. This review aims to summarize the possible molecular dimensions of tumor heterogeneity with an emphasis on intratumoral heterogeneity, evaluate its profound impact on the diagnosis and therapeutic strategies for HCC, and explore the suitability of appropriate pre-clinical models that can be used to best study tumor heterogeneity; thus, opening new avenues for cancer treatment.
Collapse
Affiliation(s)
- Fatema Safri
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Romario Nguyen
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Shadi Zerehpooshnesfchi
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia.
| | - Liang Qiao
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|
18
|
Wu Y, Fan Q, Zhou J, Hu H, Liao Z, Tang X, Xu M, Yang S, Lai J, Wan S, Wu J. Biomimetic platelet-like nanoparticles enhance targeted hepatocellular carcinoma therapy. Colloids Surf B Biointerfaces 2024; 240:113973. [PMID: 38795584 DOI: 10.1016/j.colsurfb.2024.113973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Curcumin (CUR) is a promising natural product for hepatocellular carcinoma (HCC) therapy. However, its clinical application has been limited by some issues such as rapid clearance and inadequate tumor accumulation. To address these drawbacks, we developed platelet membrane-coated CUR-loaded PLGA nanoparticles (PCPNPs). In this work, due to the bioinspired strategy, the PCPNPs exhibited immune evasion, prolonged circulation, and improved accumulation at tumor sites compared to the traditional CUR formulation. The superior tumor targeting of PCPNPs was likely due to the interactions between platelet P-selectin and tumoral CD44. Furthermore, both in vitro and in vivo assays revealed that the PCPNPs showed outstanding anticancer efficacy without obvious toxicity. Therefore, PCPNPs represent a biosafe and promising anti-tumor strategy, overcoming the limitations associated with CUR. These findings not only contribute to the advancement of natural compound nano-formulation but also open new avenues for targeted cancer treatment.
Collapse
Affiliation(s)
- Yuesong Wu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiahan Zhou
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haiyang Hu
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Zuyue Liao
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoqin Tang
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mengyao Xu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shuo Yang
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia Lai
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengli Wan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
19
|
Jasim SA, Salahdin OD, Malathi H, Sharma N, Rab SO, Aminov Z, Pramanik A, Mohammed IH, Jawad MA, Gabel BC. Targeting Hepatic Cancer Stem Cells (CSCs) and Related Drug Resistance by Small Interfering RNA (siRNA). Cell Biochem Biophys 2024:10.1007/s12013-024-01423-5. [PMID: 39060914 DOI: 10.1007/s12013-024-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Tumor recurrence after curative therapy and hepatocellular carcinoma (HCC) cells' resistance to conventional therapies is the reasons for the worse clinical results of HCC patients. A tiny population of cancer cells with a strong potential for self-renewal, differentiation, and tumorigenesis has been identified as cancer stem cells (CSCs). The discovery of CSC surface markers and the separation of CSC subpopulations from HCC cells have been made possible by recent developments in the study of hepatic (liver) CSCs. Hepatic CSC surface markers include epithelial cell adhesion molecules (EpCAM), CD133, CD90, CD13, CD44, OV-6, ALDH, and K19. CSCs have a significant influence on the development of cancer, invasiveness, self-renewal, metastasis, and drug resistance in HCC, and thus provide a therapeutic chance to treat HCC and avoid its recurrence. Therefore, it is essential to develop treatment approaches that specifically and effectively target hepatic stem cells. Given this, one potential treatment approach is to use particular small interfering RNA (siRNA) to target CSC, disrupting their behavior and microenvironment as well as changing their epigenetic state. The characteristics of CSCs in HCC are outlined in this study, along with new treatment approaches based on siRNA that may be used to target hepatic CSCs and overcome HCC resistance to traditional therapies.
Collapse
Affiliation(s)
| | | | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University, Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Israa Hussein Mohammed
- College of nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Benien C Gabel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
20
|
Guo J, Zhang J, Xiang Y, Zhou S, Yang Y, Zheng J. Long noncoding RNA SNHG3 interacts with microRNA-502-3p to mediate ITGA6 expression in liver hepatocellular carcinoma. Cancer Sci 2024; 115:2286-2300. [PMID: 38680094 PMCID: PMC11247603 DOI: 10.1111/cas.16190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
SNHG3, a long noncoding RNA (lncRNA), has been linked to poor outcomes in patients with liver hepatocellular carcinoma (LIHC). In this study, we found that SNHG3 was overexpressed in LIHC and associated with poor outcomes in patients with LIHC. Functional assays, including colony formation, spheroid formation, and in vivo assays showed that SNHG3 promoted stemness of cancer stem cells (CSC) and tumor growth in vivo by interacting with microRNA-502-3p (miR-502-3p). miR-502-3p inhibitor repressed the tumor-suppressing effects of SNHG3 depletion. Finally, by RNA pull-down, dual-luciferase reporter assay, m6A methylation level detection, and m6A-IP-qPCR assays, we found that miR-502-3p targeted YTHDF3 to regulate the translation of integrin alpha-6 (ITGA6) and targeted HBXIP to inhibit the m6A modification of ITGA6 through methyltransferase-like 3 (METTL3). Our study revealed that SNHG3 controls the YTHDF3/ITGA6 and HBXIP/METTL3/ITGA6 pathways by repressing miR-502-3p expression to sustain the self-renewal properties of CSC in LIHC.
Collapse
Affiliation(s)
- Juncheng Guo
- Postdoctoral Workstation, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Jianquan Zhang
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Yang Xiang
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Shuai Zhou
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Yijun Yang
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Haikou, Hainan, China
| |
Collapse
|
21
|
Yao Y, Zheng Y, Wu M, Gao Y, Yu Q, Liu M, Luo X, Wang R, Jiang L. CD133-targeted multifunctional nanomicelles for dual-modality imaging and synergistic high-intensity focus ultrasound (HIFU) ablation on pancreatic cancer in nude mice. J Mater Chem B 2024; 12:5884-5897. [PMID: 38775254 DOI: 10.1039/d4tb00091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pancreatic cancer is an aggressive and highly fatal malignant tumor. Recent studies have shown that cancer stem cells (CSCs) play an important role in resisting current therapeutic modalities. Furthermore, CD133 is highly expressed in CSCs. High-intensity focused ultrasound (HIFU) is a promising non-invasive therapeutic strategy for unresectable pancreatic cancers. In our study, we synthesized targeted CD133 organosilane nanomicelles by encapsulating perfluorohexane (PFH). The CD133 antibody on the surface could specifically bind to CD133-positive pancreatic cancer cells and selectively concentrate in pancreatic cancer tumor tissues. PFH was introduced to improve the ablation effect of HIFU due to its liquid-gas phase transition properties. By combining with the dorsal skinfold window chamber model (DSWC) of pancreatic cancer in nude mice, multiphoton fluorescence microscopy was used to evaluate the targeting effect of nanomicelles on pancreatic cancer tumor tissue. These multifunctional nanomicelles synergistically affected HIFU treatment of pancreatic cancer, providing an integrated research platform for diagnosing and treating pancreatic cancer with HIFU.
Collapse
Affiliation(s)
- Yijing Yao
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yiwen Zheng
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Mingtai Wu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yihui Gao
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Qian Yu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Mengyao Liu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Xiaoxiao Luo
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Rui Wang
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Lixin Jiang
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
22
|
Xu Y, Bai Z, Lan T, Fu C, Cheng P. CD44 and its implication in neoplastic diseases. MedComm (Beijing) 2024; 5:e554. [PMID: 38783892 PMCID: PMC11112461 DOI: 10.1002/mco2.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024] Open
Abstract
CD44, a nonkinase single span transmembrane glycoprotein, is a major cell surface receptor for many other extracellular matrix components as well as classic markers of cancer stem cells and immune cells. Through alternative splicing of CD44 gene, CD44 is divided into two isoforms, the standard isoform of CD44 (CD44s) and the variant isoform of CD44 (CD44v). Different isoforms of CD44 participate in regulating various signaling pathways, modulating cancer proliferation, invasion, metastasis, and drug resistance, with its aberrant expression and dysregulation contributing to tumor initiation and progression. However, CD44s and CD44v play overlapping or contradictory roles in tumor initiation and progression, which is not fully understood. Herein, we discuss the present understanding of the functional and structural roles of CD44 in the pathogenic mechanism of multiple cancers. The regulation functions of CD44 in cancers-associated signaling pathways is summarized. Moreover, we provide an overview of the anticancer therapeutic strategies that targeting CD44 and preclinical and clinical trials evaluating the pharmacokinetics, efficacy, and drug-related toxicity about CD44-targeted therapies. This review provides up-to-date information about the roles of CD44 in neoplastic diseases, which may open new perspectives in the field of cancer treatment through targeting CD44.
Collapse
Affiliation(s)
- Yiming Xu
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziyi Bai
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Tianxia Lan
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Chenying Fu
- Laboratory of Aging and Geriatric Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ping Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
23
|
Ma Y, Lv H, Xing F, Xiang W, Wu Z, Feng Q, Wang H, Yang W. Cancer stem cell-immune cell crosstalk in the tumor microenvironment for liver cancer progression. Front Med 2024; 18:430-445. [PMID: 38600350 DOI: 10.1007/s11684-023-1049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/15/2023] [Indexed: 04/12/2024]
Abstract
Crosstalk between cancer cells and the immune microenvironment is determinant for liver cancer progression. A tumor subpopulation called liver cancer stem cells (CSCs) significantly accounts for the initiation, metastasis, therapeutic resistance, and recurrence of liver cancer. Emerging evidence demonstrates that the interaction between liver CSCs and immune cells plays a crucial role in shaping an immunosuppressive microenvironment and determining immunotherapy responses. This review sheds light on the bidirectional crosstalk between liver CSCs and immune cells for liver cancer progression, as well as the underlying molecular mechanisms after presenting an overview of liver CSCs characteristic and their microenvironment. Finally, we discuss the potential application of liver CSCs-targeted immunotherapy for liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ma
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Hongwei Lv
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
| | - Fuxue Xing
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Zixin Wu
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Qiyu Feng
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Hongyang Wang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Wen Yang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| |
Collapse
|
24
|
Min K, Karuppannan SK, Tae G. The impact of matrix stiffness on hepatic cell function, liver fibrosis, and hepatocellular carcinoma-Based on quantitative data. BIOPHYSICS REVIEWS 2024; 5:021306. [PMID: 38846007 PMCID: PMC11151446 DOI: 10.1063/5.0197875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Over the past few decades, extensive research has explored the development of supportive scaffold materials for in vitro hepatic cell culture, to effectively mimic in vivo microenvironments. It is crucial for hepatic disease modeling, drug screening, and therapeutic evaluations, considering the ethical concerns and practical challenges associated with in vivo experiments. This review offers a comprehensive perspective on hepatic cell culture using bioscaffolds by encompassing all stages of hepatic diseases-from a healthy liver to fibrosis and hepatocellular carcinoma (HCC)-with a specific focus on matrix stiffness. This review begins by providing physiological and functional overviews of the liver. Subsequently, it explores hepatic cellular behaviors dependent on matrix stiffness from previous reports. For hepatic cell activities, softer matrices showed significant advantages over stiffer ones in terms of cell proliferation, migration, and hepatic functions. Conversely, stiffer matrices induced myofibroblastic activation of hepatic stellate cells, contributing to the further progression of fibrosis. Elevated matrix stiffness also correlates with HCC by increasing proliferation, epithelial-mesenchymal transition, metastasis, and drug resistance of HCC cells. In addition, we provide quantitative information on available data to offer valuable perspectives for refining the preparation and development of matrices for hepatic tissue engineering. We also suggest directions for further research on this topic.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sathish Kumar Karuppannan
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
25
|
Hu J, Wang J, Guo X, Fan Q, Li X, Li K, Wang Z, Liang S, Amin B, Zhang N, Chen C, Zhu B. MSLN induced EMT, cancer stem cell traits and chemotherapy resistance of pancreatic cancer cells. Heliyon 2024; 10:e29210. [PMID: 38628720 PMCID: PMC11019237 DOI: 10.1016/j.heliyon.2024.e29210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Chemoresistance is one of the main reasons for poor prognosis of pancreatic cancer. The effects of mesothelin (MSLN) on chemoresistance in pancreatic cancer are still unclear. We aim to investigate potential roles of MSLN in chemoresistance and its relationship with proliferation, epithelial-mesenchymal transition (EMT) and cancer stemness of pancreatic cancer cells. Human pancreatic cancer cell lines ASPC-1 and Mia PaCa-2 with high and low expression of MSLN, respectively, were selected. The ASPC-1 with MSLN knockout (KO) and Mia PaCa-2 of MSLN overexpression (OE) were generated. The effects of MSLN on cell phenotypes, expression of EMT-related markers, clone formation, tumor sphere formation, and pathologic role of MSLN in tumorigenesis were detected. Sensitivity of tumor cells to gemcitabine was evaluated. The results showed that adhesion, proliferation, migration and invasion were decreased significantly in ASPC-1 with MSLN KO, whereas increased significantly in Mia PaCa-2 with MSLN OE. The size and the number of clones and tumor spheres were decreased in ASPC-1 with MSLN KO, and increased in Mia PaCa-2 with MSLN OE. In xenograft model, tumor volume was decreased (tumor grew slower) in MSLN KO group compared to control group, while increased in MSLN OE group. Mia PaCa-2 with MSLN OE had a higher IC50 of gemcitabine, while ASPC-1 with MSLN KO had a lower IC50. We concluded that MSLN could induce chemoresistance by enhancing migration, invasion, EMT and cancer stem cell traits of pancreatic cancer cells. Targeting MSLN could represent a promising therapeutic strategy for reversing EMT and chemoresistance in pancreatic cancer cells.
Collapse
Affiliation(s)
- Jili Hu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, China
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations In Medical Science & NHC Key Laboratory of Birth Defects Prevention, China
| | - Jia Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Xu Guo
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Qing Fan
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xinming Li
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Kai Li
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Zhuoyin Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Shuntao Liang
- Center for Biomedical Innovation, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Buhe Amin
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Nengwei Zhang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Chaowen Chen
- Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Bin Zhu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of General Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing, China
| |
Collapse
|
26
|
Jeng KS, Chang CF, Tsang YM, Sheen IS, Jeng CJ. Reappraisal of the Roles of the Sonic Hedgehog Signaling Pathway in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1739. [PMID: 38730691 PMCID: PMC11083695 DOI: 10.3390/cancers16091739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
HCC remains one of the leading causes of cancer-related death globally. The main challenges in treatments of hepatocellular carcinoma (HCC) primarily arise from high rates of postoperative recurrence and the limited efficacy in treating advanced-stage patients. Various signaling pathways involved in HCC have been reported. Among them, the Sonic hedgehog (SHH) signaling pathway is crucial. The presence of SHH ligands is identified in approximately 60% of HCC tumor tissues, including tumor nests. PTCH-1 and GLI-1 are detected in more than half of HCC tissues, while GLI-2 is found in over 84% of HCC tissues. The SHH signaling pathway (including canonical and non-canonical) is involved in different aspects of HCC, including hepatocarcinogenesis, tumor growth, tumor invasiveness, progression, and migration. The SHH signaling pathway also contributes to recurrence, metastasis, modulation of the cancer microenvironment, and sustaining cancer stem cells. It also affects the resistance of HCC cells to chemotherapy, target therapy, and radiotherapy. Reappraisal of the roles of the SHH signaling pathway in HCC may trigger some novel therapies for HCC.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Chiung-Fang Chang
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
| | - Yuk-Ming Tsang
- Department of Imaging Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
| | - I-Shyan Sheen
- Department of Gastroenterology & Hepatology, Linkou Chang Memorial Hospital, Chang Gung Medical Foundation, Taoyuan City 333, Taiwan;
| | - Chi-Juei Jeng
- Graduate Institude of Clinical Medicine, National Taiwan University, College of Medicine, Taipei City 10617, Taiwan;
| |
Collapse
|
27
|
Yang D, Hu Y, Yang J, Tao L, Su Y, Wu Y, Yao Y, Wang S, Ye S, Xu T. Research Progress on the Correlation between Acetaldehyde Dehydrogenase 2 and Hepatocellular Carcinoma Development. J Pharmacol Exp Ther 2024; 389:163-173. [PMID: 38453527 DOI: 10.1124/jpet.123.001898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/03/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant pathologic type of primary liver cancer. It is a malignant tumor of liver epithelial cells. There are many ways to treat HCC, but the survival rate for HCC patients remains low. Therefore, understanding the underlying mechanisms by which HCC occurs and develops is critical to explore new therapeutic targets. Aldehyde dehydrogenase 2 (ALDH2) is an important player in the redox reaction of ethanol with endogenous aldehyde products released by lipid peroxidation. Increasing evidence suggests that ALDH2 is a crucial regulator of human tumor development, including HCC. Therefore, clarifying the relationship between ALDH2 and HCC is helpful for formulating rational treatment strategies. This review highlights the regulatory roles of ALDH2 in the development of HCC, elucidates the multiple potential mechanisms by which ALDH2 regulates the development of HCC, and summarizes the progress of research on ALDH2 gene polymorphisms and HCC susceptibility. Meanwhile, we envision viable strategies for targeting ALDH2 in the treatment of HCC SIGNIFICANCE STATEMENT: Numerous studies have aimed to explore novel therapeutic targets for HCC, and ALDH2 has been reported to be a critical regulator of HCC progression. This review discusses the functions, molecular mechanisms, and clinical significance of ALDH2 in the development of HCC and examines the prospects of ALDH2-based therapy for HCC.
Collapse
Affiliation(s)
- Dashuai Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Junfa Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Liangsong Tao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Yue Su
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Yincui Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Yan Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Shuxian Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Sheng Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| |
Collapse
|
28
|
Huang S, Zhou C, Song C, Zhu X, Miao M, Li C, Duan S, Hu Y. In situ injectable hydrogel encapsulating Mn/NO-based immune nano-activator for prevention of postoperative tumor recurrence. Asian J Pharm Sci 2024; 19:100901. [PMID: 38645467 PMCID: PMC11031726 DOI: 10.1016/j.ajps.2024.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 04/23/2024] Open
Abstract
Postoperative tumor recurrence remains a predominant cause of treatment failure. In this study, we developed an in situ injectable hydrogel, termed MPB-NO@DOX + ATRA gel, which was locally formed within the tumor resection cavity. The MPB-NO@DOX + ATRA gel was fabricated by mixing a thrombin solution, a fibrinogen solution containing all-trans retinoic acid (ATRA), and a Mn/NO-based immune nano-activator termed MPB-NO@DOX. ATRA promoted the differentiation of cancer stem cells, inhibited cancer cell migration, and affected the polarization of tumor-associated macrophages. The outer MnO2 shell disintegrated due to its reaction with glutathione and hydrogen peroxide in the cytoplasm to release Mn2+ and produce O2, resulting in the release of doxorubicin (DOX). The released DOX entered the nucleus and destroyed DNA, and the fragmented DNA cooperated with Mn2+ to activate the cGAS-STING pathway and stimulate an anti-tumor immune response. In addition, when MPB-NO@DOX was exposed to 808 nm laser irradiation, the Fe-NO bond was broken to release NO, which downregulated the expression of PD-L1 on the surface of tumor cells and reversed the immunosuppressive tumor microenvironment. In conclusion, the MPB-NO@DOX + ATRA gel exhibited excellent anti-tumor efficacy. The results of this study demonstrated the great potential of in situ injectable hydrogels in preventing postoperative tumor recurrence.
Collapse
Affiliation(s)
- Shengnan Huang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Chenyang Zhou
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Chengzhi Song
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Xiali Zhu
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Chunming Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Shaofeng Duan
- School of Pharmaceutical Sciences, Henan University, Zhengzhou 450046, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
29
|
Li J, Ma X, Lin H, Zhao S, Li B, Huang Y. MHIF-MSEA: a novel model of miRNA set enrichment analysis based on multi-source heterogeneous information fusion. Front Genet 2024; 15:1375148. [PMID: 38586586 PMCID: PMC10995286 DOI: 10.3389/fgene.2024.1375148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction: MicroRNAs (miRNAs) are a class of non-coding RNA molecules that play a crucial role in the regulation of diverse biological processes across various organisms. Despite not encoding proteins, miRNAs have been found to have significant implications in the onset and progression of complex human diseases. Methods: Conventional methods for miRNA functional enrichment analysis have certain limitations, and we proposed a novel method called MiRNA Set Enrichment Analysis based on Multi-source Heterogeneous Information Fusion (MHIF-MSEA). Three miRNA similarity networks (miRSN-DA, miRSN-GOA, and miRSN-PPI) were constructed in MHIF-MSEA. These networks were built based on miRNA-disease association, gene ontology (GO) annotation of target genes, and protein-protein interaction of target genes, respectively. These miRNA similarity networks were fused into a single similarity network with the averaging method. This fused network served as the input for the random walk with restart algorithm, which expanded the original miRNA list. Finally, MHIF-MSEA performed enrichment analysis on the expanded list. Results and Discussion: To determine the optimal network fusion approach, three case studies were introduced: colon cancer, breast cancer, and hepatocellular carcinoma. The experimental results revealed that the miRNA-miRNA association network constructed using miRSN-DA and miRSN-GOA exhibited superior performance as the input network. Furthermore, the MHIF-MSEA model performed enrichment analysis on differentially expressed miRNAs in breast cancer and hepatocellular carcinoma. The achieved p-values were 2.17e(-75) and 1.50e(-77), and the hit rates improved by 39.01% and 44.68% compared to traditional enrichment analysis methods, respectively. These results confirm that the MHIF-MSEA method enhances the identification of enriched miRNA sets by leveraging multiple sources of heterogeneous information, leading to improved insights into the functional implications of miRNAs in complex diseases.
Collapse
Affiliation(s)
- Jianwei Li
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Xuxu Ma
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Hongxin Lin
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Shisheng Zhao
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Bing Li
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Yan Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Anesthesiology, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
30
|
Zhang X, Su T, Wu Y, Cai Y, Wang L, Liang C, Zhou L, Wang S, Li XX, Peng S, Kuang M, Yu J, Xu L. N6-Methyladenosine Reader YTHDF1 Promotes Stemness and Therapeutic Resistance in Hepatocellular Carcinoma by Enhancing NOTCH1 Expression. Cancer Res 2024; 84:827-840. [PMID: 38241695 DOI: 10.1158/0008-5472.can-23-1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/30/2023] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
N6-methyladenosine (m6A) RNA modification is the most common and conserved epigenetic modification in mRNA and has been shown to play important roles in cancer biology. As the m6A reader YTHDF1 has been reported to promote progression of hepatocellular carcinoma (HCC), it represents a potential therapeutic target. In this study, we evaluated the clinical significance of YTHDF1 using human HCC samples and found that YTHDF1 was significantly upregulated in HCCs with high stemness scores and was positively associated with recurrence and poor prognosis. Analysis of HCC spheroids revealed that YTHDF1 was highly expressed in liver cancer stem cells (CSC). Stem cell-specific conditional Ythdf1 knockin (CKI) mice treated with diethylnitrosamine showed elevated tumor burden as compared with wild-type mice. YTHDF1 promoted CSCs renewal and resistance to the multiple tyrosine kinase inhibitors lenvatinib and sorafenib in patient-derived organoids and HCC cell lines, which could be abolished by catalytically inactive mutant YTHDF1. Multiomic analysis, including RNA immunoprecipitation sequencing, m6A methylated RNA immunoprecipitation sequencing, ribosome profiling, and RNA sequencing identified NOTCH1 as a direct downstream of YTHDF1. YTHDF1 bound to m6A modified NOTCH1 mRNA to enhance its stability and translation, which led to increased NOTCH1 target genes expression. NOTCH1 overexpression rescued HCC stemness in YTHDF1-deficient cells in vitro and in vivo. Lipid nanoparticles targeting YTHDF1 significantly enhanced the efficacy of lenvatinib and sorafenib in HCC in vivo. Taken together, YTHDF1 drives HCC stemness and drug resistance through an YTHDF1-m6A-NOTCH1 epitranscriptomic axis, and YTHDF1 is a potential therapeutic target for treating HCC. SIGNIFICANCE Inhibition of YTHDF1 expression suppresses stemness of hepatocellular carcinoma cells and enhances sensitivity to targeted therapies, indicating that targeting YTHDF1 may be a promising therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianhong Su
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifan Wu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastroenterology and Hepatology, The First Afliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuhong Cai
- Center of Hepato-Pancreate-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lina Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cong Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhou
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiyan Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Xing Li
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastroenterology and Hepatology, The First Afliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Kuang
- Center of Hepato-Pancreate-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Lixia Xu
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Li J, Jiang H, Zhu Y, Ma Z, Li B, Dong J, Xiao C, Hu A. Fine particulate matter (PM 2.5) induces the stem cell-like properties of hepatocellular carcinoma by activating ROS/Nrf2/Keap1-mediated autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116052. [PMID: 38325274 DOI: 10.1016/j.ecoenv.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Exposure to fine particulate matter (PM2.5) has been linked to an increased incidence and mortality of hepatocellular carcinoma (HCC). However, the impact of PM2.5 exposure on HCC progression and the underlying mechanisms remain largely unknown. This study aimed to investigate the effects of PM2.5 exposure on the stem cell-like properties of HCC cells. Our findings indicate that PM2.5 exposure significantly enhances the stemness of HCC cells (p < 0.01). Subsequently, male nude mice were divided into two groups (n = 8/group for tumor-bearing assay, n = 5/group for metastasis assay) for control and PM2.5 exposure. In vivo assays revealed that exposure to PM2.5 promoted the growth, metastasis, and epithelial-mesenchymal transition (EMT) of HCC cells (p < 0.01). Further exploration demonstrated that PM2.5 enhances the stemness of HCC cells by inducing cellular reactive oxygen species (ROS) generation (p < 0.05). Mechanistic investigation indicated that elevated intracellular ROS inhibited kelch-like ECH-associated protein 1 (Keap1) levels, promoting the upregulation and nucleus translocation of NFE2-like bZIP transcription factor 2 (Nrf2). This, in turn, induced autophagy activation, thereby promoting the stemness of HCC cells (p < 0.01). Our present study demonstrates the adverse effects of PM2.5 exposure on HCC development and highlights the mechanism of ROS/Nrf2/Keap1-mediated autophagy. For the first time, we reveal the impact of PM2.5 exposure on the poor prognosis-associated cellular phenotype of HCC and its underlying mechanism, which is expected to provide new theoretical basis for the improvement of public health.
Collapse
Affiliation(s)
- Jiujiu Li
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Haoqi Jiang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yu Zhu
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Zijian Ma
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Bin Li
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jun Dong
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Changchun Xiao
- Hefei Center for Disease Control and Prevention, Hefei 230032, China.
| | - Anla Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
32
|
Gajos-Michniewicz A, Czyz M. WNT/β-catenin signaling in hepatocellular carcinoma: The aberrant activation, pathogenic roles, and therapeutic opportunities. Genes Dis 2024; 11:727-746. [PMID: 37692481 PMCID: PMC10491942 DOI: 10.1016/j.gendis.2023.02.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 09/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver cancer, highly heterogeneous both at the histopathological and molecular levels. It arises from hepatocytes as the result of the accumulation of numerous genomic alterations in various signaling pathways, including canonical WNT/β-catenin, AKT/mTOR, MAPK pathways as well as signaling associated with telomere maintenance, p53/cell cycle regulation, epigenetic modifiers, and oxidative stress. The role of WNT/β-catenin signaling in liver homeostasis and regeneration is well established, whereas in development and progression of HCC is extensively studied. Herein, we review recent advances in our understanding of how WNT/β-catenin signaling facilitates the HCC development, acquisition of stemness features, metastasis, and resistance to treatment. We outline genetic and epigenetic alterations that lead to activated WNT/β-catenin signaling in HCC. We discuss the pivotal roles of CTNNB1 mutations, aberrantly expressed non-coding RNAs and complexity of crosstalk between WNT/β-catenin signaling and other signaling pathways as challenging or advantageous aspects of therapy development and molecular stratification of HCC patients for treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| |
Collapse
|
33
|
Lakra DS, Bharathiraja P, Dhanalakshmi T, Prasad NR. Andrographolide reverts multidrug resistance in KBCh R 8-5 cells through AKT signaling pathway. Cell Biochem Funct 2024; 42:e3948. [PMID: 38379216 DOI: 10.1002/cbf.3948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Multidrug resistance (MDR) is a major obstacle in cancer chemotherapy. P-glycoprotein (P-gp) one of the ATP-binding cassette (ABC) transporters plays an important role in MDR. In this study, we examined the sensitizing property of andrographolide (Andro) to reverse MDR in the drug-resistant KBChR 8-5 cells. Andro exhibited increased cytotoxicity in a concentration-dependent manner in the P-gp overexpressing KBChR 8-5 cells. Furthermore, Andro showed synergistic interactions with PTX and DOX in this drug-resistant cells. Andro co-administration enhanced PTX- and DOX-induced cytotoxicity and reduced cell proliferation in the MDR cancer cells. Moreover, reactive oxygen species (ROS) were elevated with a decrease in the mitochondrial membrane potential (MMP) during Andro and chemotherapeutic drugs combination treatment in the drug-resistant cells. Furthermore, Andro and PTX-induced cell cycle arrest was observed in the drug-resistant cell. We also noticed that the expression of ABCB1 and AKT were downregulated during Andro (4 µM) treatment. Furthermore, Andro treatment enhanced the expression of caspase 3 and caspase 9 in the combinational groups that support the enhanced apoptotic cell death in drug-resistant cancer cells. Therefore, the results reveal that Andro plays a role in the reversal of P-gp-mediated MDR in KBChR 8-5 cells which might be due to regulating ABCB1/AKT signaling pathway.
Collapse
Affiliation(s)
- Deepa S Lakra
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Pradhapsingh Bharathiraja
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - T Dhanalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
34
|
Wang T, Wang SQ, Du YX, Sun DD, Liu C, Liu S, Sun YY, Wang HL, Zhang CS, Liu HL, Jin L, Chen XP. Gentulizumab, a novel anti-CD47 antibody with potent antitumor activity and demonstrates a favorable safety profile. J Transl Med 2024; 22:220. [PMID: 38429732 PMCID: PMC10905820 DOI: 10.1186/s12967-023-04710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Targeting CD47/SIRPα axis has emerged as a promising strategy in cancer immunotherapy. Despite the encouraging clinical efficacy observed in hematologic malignancies through CD47-SIRPα blockade, there are safety concerns related to the binding of anti-CD47 antibodies to CD47 on the membrane of peripheral blood cells. METHODS In order to enhance the selectivity and therapeutic efficacy of the antibody, we developed a humanized anti-CD47 monoclonal antibody called Gentulizumab (GenSci059). The binding capacity of GenSci059 to CD47 was evaluated using flow cytometry and surface plasmon resonance (SPR) methods, the inhibitory effect of GenSci059 on the CD47-SIRPα interaction was evaluated through competitive ELISA assays. The anti-tumor activity of GenSci059 was assessed using in vitro macrophage models and in vivo patient-derived xenograft (PDX) models. To evaluate the safety profile of GenSci059, binding assays were conducted using blood cells. Additionally, we investigated the underlying mechanisms contributing to the weaker binding of GenSci059 to erythrocytes. Finally, toxicity studies were performed in non-human primates to assess the potential risks associated with GenSci059. RESULTS GenSci059 displayed strong binding to CD47 in both human and monkey, and effectively inhibited the CD47-SIRPα interaction. With doses ranging from 5 to 20 mg/kg, GenSci059 demonstrated potent inhibition of the growth of subcutaneous tumor with the inhibition rates ranged from 30.3% to complete regression. Combination of GenSci059 with 2.5 mg/kg Rituximab at a dose of 2.5 mg/kg showed enhanced tumor inhibition compared to monotherapy, exhibiting synergistic effects. GenSci059 exhibited minimal binding to hRBCs compared to Hu5F9-G4. The binding of GenSci059 to CD47 depended on the cyclization of N-terminal pyroglutamic acid and the spatial conformation of CD47, but was not affected by its glycosylation modifications. A maximum tolerated dose (MTD) of 450 mg/kg was observed for GenSci059, and no significant adverse effects were observed in repeated dosages up to 10 + 300 mg/kg, indicating a favorable safety profile. CONCLUSION GenSci059 selectively binds to CD47, effectively blocks the CD47/SIRPα axis signaling pathway and enhances the phagocytosis effects of macrophages toward tumor cells. This monoclonal antibody demonstrates potent antitumor activity and exhibits a favorable safety profile, positioning it as a promising and effective therapeutic option for cancer.
Collapse
Affiliation(s)
- Tao Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Si-Qin Wang
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Yin-Xiao Du
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Dan-Dan Sun
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Chang Liu
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Shuang Liu
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Ying-Ying Sun
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Hai-Long Wang
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Chun-Sheng Zhang
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Hai-Long Liu
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Lei Jin
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
35
|
Huang W, Wang C, Zhang H. Eriodictyol inhibits the motility, angiogenesis and tumor growth of hepatocellular carcinoma via NLRP3 inflammasome inactivation. Heliyon 2024; 10:e24401. [PMID: 38317873 PMCID: PMC10839802 DOI: 10.1016/j.heliyon.2024.e24401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
NLRP3 involves in the development of hepatocellular carcinoma (HCC). Eriodictyol has shown its inhibitory effect on HCC cell proliferation. However, the underlying mechanism of eriodictyol in HCC is still unclear. This study aimed to explore the effect of and mechanism of eriodictyol on HCC. In this study, compared with eriodictyol (0 μM) group, eriodictyol significantly suppressed HepG2 cells (eriodictyol of 25, 50 and 100 μM) and Huh-7 cells (eriodictyol of 50 and 100 μM) viability, invasion, tube formation, metastasis-related genes MMP3, MMP16 and angiogenesis regulator VEGFA expressions with IC50 of 45.63 μM and 78.26 μM in vitro, respectively. Besides, eriodictyol significantly repressed NLRP3 expression, and reduced the protein levels of NLRP3 inflammasome-related proteins, adapter protein ASC, caspase-1, interleukin (IL)-18, and IL-1β in HepG2 (eriodictyol of 25, 50 and 100 μM) and Huh-7 cells (eriodictyol of 50 and 100 μM), respectively. Meanwhile, compared with control group, NLRP3 overexpression reversed the anti-metastatic effects of 100 μM eriodictyol on HCC cells invasion, tube formation, and metastasis-related genes MMP3, MMP16 and angiogenesis regulator VEGFA expressions, whereas NLRP3 knockdown enhanced the anti-metastatic effects of 100 μM eriodictyol on HCC cells. In vivo, compared with control group, eriodictyol significantly reduced the tumor growth, liver damage, inhibited the activation of NLRP3 inflammasome, and improved liver function, whereas NLRP3 overexpressing neutralized the anti-tumor effects of eriodictyol and degraded liver function. Hence, eriodictyol inhibited HCC cell viability, motility, angiogenesis and tumor growth via NLRP3 inflammasome inactivation both in vitro and in vivo.
Collapse
Affiliation(s)
- Wei Huang
- Department of Hepatobiliary and Pancreatic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Chenyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Hui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| |
Collapse
|
36
|
Hu M, Dai C, Sun X, Chen Y, Xu N, Lin Z, Xu S, Cheng C, Tan Z, Bian S, Zheng W. Ubiquitination-specific protease 7 enhances stemness of hepatocellular carcinoma by stabilizing basic transcription factor 3. Funct Integr Genomics 2024; 24:28. [PMID: 38340226 DOI: 10.1007/s10142-024-01310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
This study aims to explore the molecular regulation mechanism of ubiquitination-specific protease 7 (USP7) in facilitating the stemness properties of hepatocellular carcinoma (HCC). Gain-of-function and loss-of-function assays were conducted in SK-Hep1 and HepG2 cells transfected with USP7 overexpression/knockdown plasmids and USP7 inhibitor P22077. The proliferation, migration, invasion, and self-renewal capacity of hepatocellular carcinoma cells were detected by CCK-8, colony formation, Transwell, scratch, and tumor sphere formation, respectively. MS was performed to identify the potential substrate of USP7 following P22077 treatment. Co-IP assay was used to verify the interaction between USP7 and basic transcription factor 3 (BTF3) in HCC cells. The overexpression of USP7 could promote the proliferation, migration, invasion, and colony formation capacity of SK-Hep1 and HepG2 cells. Additionally, ectopic UPS7 enhanced the epithelial-mesenchymal transition (EMT) and stem-like characteristics of the HCC cells. In contrast, USP7 depletion by knockdown of USP7 or administrating inhibitor P22077 significantly inhibited these malignant phenotypes of SK-Hep1 and HepG2 cells. Following MS analysis, BTF3 was identified as a potential substrate for USP7. USP7 could interact with BTF3 and upregulate its protein level, while USP7 depletion significantly upregulated the ubiquitination levels. Overexpression of BTF3 partially rescue the inhibitory effects of USP7 depletion on the malignant phenotypes and stemness properties of SK-Hep1 and HepG2 cells. USP7 can promote the stemness and malignant phenotype of HCC by stabilizing BTF3.
Collapse
Affiliation(s)
- Mingchao Hu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Department of Nuclear Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Chengchen Dai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Xieyin Sun
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Yinqi Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Nuo Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Zhaoyi Lin
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Shiyu Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Chun Cheng
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Zhonghua Tan
- Department of Nuclear Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Saiyan Bian
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
37
|
Wang J, Wang Z, Wang Q, Li X, Guo Y. Ubiquitous protein lactylation in health and diseases. Cell Mol Biol Lett 2024; 29:23. [PMID: 38317138 PMCID: PMC10845568 DOI: 10.1186/s11658-024-00541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
For decades, lactate has been considered a byproduct of glycolysis. The lactate shuttle hypothesis shifted the lactate paradigm, demonstrating that lactate not only plays important roles in cellular metabolism but also cellular communications, which can transcend compartment barriers and can occur within and among different cells, tissues and organs. Recently, the discovery that lactate can induce a novel post-translational modification, named lysine lactylation (Kla), brings forth a new avenue to study nonmetabolic functions for lactate, which has inspired a 'gold rush' of academic and commercial interest. Zhang et al. first showed that Kla is manifested in histones as epigenetic marks, and then mounting evidences demonstrated that Kla also occurs in diverse non-histone proteins. The widespread Kla faithfully orchestrates numerous biological processes, such as transcription, metabolism and inflammatory responses. Notably, dysregulation of Kla touches a myriad of pathological processes. In this review, we comprehensively reviewed and curated the existing literature to retrieve the new identified Kla sites on both histones and non-histone proteins and summarized recent major advances toward its regulatory mechanism. We also thoroughly investigated the function and underlying signaling pathway of Kla and comprehensively summarize how Kla regulates various biological processes in normal physiological states. In addition, we also further highlight the effects of Kla in the development of human diseases including inflammation response, tumorigenesis, cardiovascular and nervous system diseases and other complex diseases, which might potentially contribute to deeply understanding and interpreting the mechanism of its pathogenicity.
Collapse
Affiliation(s)
- Junyong Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou, 450001, Henan, China
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ziyi Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou, 450001, Henan, China
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qixu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou, 450001, Henan, China
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiao Li
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450001, Henan, China
| | - Yaping Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450001, Henan, China.
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
38
|
Du CL, Wei SY, Chen YH, Chen KJ. A robust genomic-based prognostic model for the assessment of cancer stemness and survival for patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2024; 23:97-102. [PMID: 37709605 DOI: 10.1016/j.hbpd.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Affiliation(s)
- Cheng-Li Du
- Division of Thoracic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shen-Yu Wei
- Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yun-Hao Chen
- Division of Thoracic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kang-Jie Chen
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
39
|
Velázquez-Enríquez JM, Cerna R, Beltrán-Ramírez O, Piña-Vázquez C, Villa-Treviño S, Vásquez-Garzón VR. DCLK1 is Overexpressed and Associated with Immune Cell Infiltration in Hepatocellular Carcinoma. Biochem Genet 2024:10.1007/s10528-024-10667-y. [PMID: 38294590 DOI: 10.1007/s10528-024-10667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Recent research has shown that Doublecortin-like kinase 1 (DCLK1) is overexpressed in different types of cancer. It has recently been described as a cancer stem cells (CSCs) marker, is associated with carcinogenesis, and positively correlates with infiltration of multiple immune cell types in some cancers. However, studies focused on assessing DCLK1 expression in HCC are limited, and the role of DCLK1 in HCC tumor immunity remains to be determined. In this study, we used a modified model of the resistant hepatocyte (MRHM) to evaluate DCLK1 expression in HCC. Furthermore, DCLK1 expression in HCC was analyzed using TIMER 2.0, UALCAN, GEPIA, GEO, and HPA web-based tools. Correlations between DCLK1 expression and clinicopathological factors in patients were analyzed using the UALCAN web-based tool. Finally, correlations between DCLK1 and immune infiltrates were investigated using the TIMER 2.0 and TISIDB web-based tools. The results showed that DCLK1 is significantly overexpressed during progression of the HCC carcinogenic process in the MRHM. DCLK1 is overexpressed in HCC according to multiple publics web-based tools, and its overexpression is associated with cancer stage. Furthermore, DCLK1 expression was correlated with infiltration levels of multiple immune cells, immunomodulatory factors, immunoinhibitors, MHC molecules, chemokines, receptors, and immune cell-specific markers. These results suggest that DCLK1 is a potential prognostic biomarker that determines cancer progression and correlates with immune cell infiltration in HCC.
Collapse
Affiliation(s)
- Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, C.P. 68020, Oaxaca, México
| | - Renata Cerna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360, Ciudad de México, México
| | - Olga Beltrán-Ramírez
- Universidad Estatal de Sonora, Unidad Académica Navojoa, Boulevard Manlio Fabio Beltrones 810, Colonia Bugambilias, C.P. 85875, Navojoa, Sonora, México
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360, Ciudad de México, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360, Ciudad de México, México
| | - Verónica Rocío Vásquez-Garzón
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, C.P. 68020, Oaxaca, México.
| |
Collapse
|
40
|
Chen Y, Zhang X, Zhang M, Fan W, Lin Y, Li G. UTP11 promotes the growth of hepatocellular carcinoma by enhancing the mRNA stability of Oct4. BMC Cancer 2024; 24:93. [PMID: 38233795 PMCID: PMC10795422 DOI: 10.1186/s12885-023-11794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/24/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Several publications suggest that UTP11 may be a promising gene engaged for involvement of hepatocellular carcinoma (HCC) pathology. However, there are extremely limited biological, mechanistic and clinical studies of UTP11 in HCC. METHODS To anayze the UTP11 mRNA expression in HCC and normal clinical samples and further investigate the correlation between UTP11 expression and pathology and clinical prognosis via the Cancer Tissue Gene Atlas (TCGA) database. The protein levels of UTP11 were checked using the Human Protein Atlas (HPA) database. GO-KEGG enrichment was performed from Cancer Cell Line Encyclopedia (CCLE) database and TCGA dataset. The levels of UTP11 were tested with qRT-PCR and western blotting assays. Cell viability, immunofluorescence and flow cytometry assays and animal models were used to explore the potential involvement of UTP11 in regulating HCC growth in vitro and in vivo. The correlation of UTP11 and tumor stemness scores and stemness-associated proteins from TCGA database. The mRNA stability was treated with Actinomycin D, followed by testing the mRNA expression using qRT-PCR assay. RESULTS UTP11 was highly expressed in HCC samples compared to normal tissues from TCGA database. Similarly, UTP11 protein expression levels were obviously elevated in HCC tissue samples from HPA database. Furthermore, UTP11 levels were correlated with poor prognosis in HCC patient samples in TCGA dataset. In addition, the UTP11 mRNA levels was notably enhanced in different HCC cell lines than in normal liver cells and knocking down UTP11 was obviously reduced the viability and cell death of HCC cells. UTP11 knockdown suppressed the tumor growth of HCC in vivo experiment and extended the mice survival time. GO-KEEG analysis from CCLE and TCGA database suggested that UTP11 might involve in RNA splicing and the stability of mRNA. Further, UTP11 was positively correlated with tumor stemness scores and stemness-associated proteins from TCGA database. Knockdown of UTP11 was reduced the expression of stem cell-related genes and regulated the mRNA stability of Oct4. CONCLUSIONS UTP11 is potentially a diagnostic molecule and a therapeutic candidate for treatment of HCC.
Collapse
Affiliation(s)
- Yan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Tai an City, China
| | - Xiaowei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Tai an City, China
| | - Mingcheng Zhang
- Department of Endoscopy Center, The Second Affiliated Hospital of Shandong First Medical University, Tai an City, China
| | - Wenting Fan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shandong First Medical University, 271000, Tai an City, China
| | - Yueyue Lin
- Department of Endoscopy Center, The Second Affiliated Hospital of Shandong First Medical University, Tai an City, China
| | - Guodong Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shandong First Medical University, 271000, Tai an City, China.
| |
Collapse
|
41
|
Huang CH, Pai PC, Lei KF. Investigation of Stem Cell-Like Characteristics and Immune Cell Interaction of Tumor Cells Survived from Continuous Shear Flow Environment. Adv Biol (Weinh) 2024; 8:e2300332. [PMID: 37752715 DOI: 10.1002/adbi.202300332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Indexed: 09/28/2023]
Abstract
When tumor cells are released from a primary tumor into the bloodstream or lymphatic circulation system, they are exposed to a continuous shear flow environment. This environment exerts physical stresses on the tumor cells, which can activate apoptotic pathways. However, certain tumor cells have the ability to adapt to these mechanical stresses, enhancing their likelihood of survival and promoting metastasis. In this study, these tumor cells survived from shear flow environment are examined and revealed to closely link to stem cell-like characteristics. Higher gene expression levels of self-renewal and differentiation markers and enhanced abilities of migration, spheroid formation, and colony formation are shown. Moreover, the interaction between immune cells and the surviving cells is investigated. The results show that the surviving cells possess immune escape capabilities, implying their ability to evade immune surveillance. Additionally, these surviving cells display characteristics reminiscent of stem cells. This study holds great importance in advancing the understanding of tumor biology. By comprehending the behavior and properties of these surviving cells, new therapeutic strategies can be developed to specifically target circulating tumor cells (CTCs) and enhance cancer treatment outcomes.
Collapse
Affiliation(s)
- Chia-Hao Huang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Ping-Ching Pai
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, 33305, Taiwan
| | - Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, 33305, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
42
|
Gao Y, Li Y, Zhu Y, Luo Q, Lu Y, Wen K, Du B, Xi X, Li G. Emodin is a Potential Drug Targeting CD44-positive Hepatocellular Cancer. Curr Cancer Drug Targets 2024; 24:510-518. [PMID: 38099524 DOI: 10.2174/0115680096256913231101103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 05/29/2024]
Abstract
BACKGROUND Liver cancer is one of the most prevalent forms of cancer of the digestive system in our country. The most common subtype of this disease is hepatocellular carcinoma (HCC). Currently, treatment options for HCC patients include surgical resection, liver transplantation, radiofrequency ablation, chemoembolization, and biologic-targeted therapy. However, the efficacy of these treatments is suboptimal, as they are prone to drug resistance, metastasis, spread, and recurrence. These attributes are closely related to cancer stem cells (CSCs). Therefore, the utilization of drugs targeting CSCs may effectively inhibit the development and recurrence of HCC. METHODS HepG2 and Huh7 cells were used to analyze the antitumor activity of emodin by quantifying cell growth and metastasis, as well as to study its effect on stemness. RESULTS Emodin effectively suppressed the growth and movement of HCC cells. Emodin also significantly inhibited the proliferation of CD44-positive hepatoma cells. CONCLUSION Emodin shows promise as a potential therapeutic agent for HCC by targeting CD44-- positive hepatoma cells.
Collapse
Affiliation(s)
- Yuan Gao
- Department of General Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| | - Youling Li
- Department of Nuclear Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| | - Yunhe Zhu
- Department of Nuclear Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| | - Qiao Luo
- Department of General Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| | - Yifeng Lu
- Department of General Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| | - Ke Wen
- Department of General Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| | - Boyu Du
- Department of Nuclear Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| | - Xueyan Xi
- Department of General Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan City, Hubei Province, 442000, P.R. China
| | - Gang Li
- Department of General Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, P.R. China
| |
Collapse
|
43
|
Sukowati CH, El-Khobar K, Jasirwan COM, Kurniawan J, Gani RA. Stemness markers in hepatocellular carcinoma of Eastern vs. Western population: Etiology matters? Ann Hepatol 2024; 29:101153. [PMID: 37734662 DOI: 10.1016/j.aohep.2023.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with a high mortality rate. HCC development is associated with its underlying etiologies, mostly caused by infection of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV), alcohol, non-alcoholic fatty liver disease, and exposure to aflatoxins. These variables, together with human genetic susceptibility, contribute to HCC molecular heterogeneity, including at the cellular level. HCC initiation, tumor recurrence, and drug resistance rates have been attributed to the presence of liver cancer stem cells (CSC). This review summarizes available data regarding whether various HCC etiologies may be associated to the appearance of CSC biomarkers. It also described the genetic variations of tumoral tissues obtained from Western and Eastern populations, in particular to the oncogenic effect of HBV in the human genome.
Collapse
Affiliation(s)
- Caecilia Hc Sukowati
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS, AREA Science Park campus Basovizza, SS14 km 163.5, Trieste 34149, Italy; Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat 10340, Indonesia.
| | - Korri El-Khobar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat 10340, Indonesia
| | - Chyntia Olivia Maurine Jasirwan
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| | - Juferdy Kurniawan
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| | - Rino Alvani Gani
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| |
Collapse
|
44
|
Wang X, Yin L, Chai M, Kou B, Liu X, Wang X. Hu-Qi-Zheng-Xiao Decoction Inhibits the Metastasis of Hepatocellular Carcinoma Cells by Suppressing the HIF-1α Signaling Pathway to Inhibit EMT, LCSC, and Angiogenic Process. Integr Cancer Ther 2024; 23:15347354231226126. [PMID: 38385348 PMCID: PMC10893843 DOI: 10.1177/15347354231226126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/28/2023] [Accepted: 12/27/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common clinical malignant tumor of the digestive system. Hu-Qi-Zheng-Xiao (HQZX) decoction has been clinically found to prolong the survival of patients with hepatocellular carcinoma and improve the quality of patients' survival, but its antitumor biological mechanism is still unclear. METHODS A nude mouse hollow fiber hepatocellular carcinoma model was constructed to analyze the in vivo efficacy of HQZX decoction against 7 different hepatocellular carcinoma cells. The subcutaneous graft tumor model was again validated. In vitro, the effect of HQZX decoction on the growth and metastasis of the cell line with the highest growth inhibition was evaluated. The cell line with the best efficacy response screened was again used to construct a hollow fiber hepatocellular carcinoma model and hollow fiber conduit cells were extracted to detect the expression of HIF-1α, VEGF, EMT-related molecules, LCSCs-related molecules, and to observe the density of the subcutaneous vascular network of hollow fiber conduits. The liver metastasis model of splenic injection was constructed to observe the effect of HQZX decoction on tumor metastasis. RESULTS The hollow fiber hepatocellular carcinoma model was evaluated for the efficacy of HQZX decoction, and it was found to have the highest growth inhibition of LM3-luc cells. In vitro, the CCK8 assay revealed that HQZX decoction could inhibit tumor migration and invasion and promote apoptosis. In addition, the mechanism study of extracting cells from hollow fiber tubes found that HQZX decoction could inhibit metastasis-associated HIF-1α, VEGF, EMT-related molecules, and LCSCs-related molecules expression. capillary network around subcutaneous fiber tubes was reduced in the HQZX decoction gavage group of mice. It inhibited tumor metastasis in nude mice. CONCLUSIONS HQZX decoction inhibited the growth of a variety of hepatocellular carcinoma cells. HQZX decoction suppressed the expression of metastasis-associated VEGF, EMT-related molecules, and LCSCs-related molecules and inhibited tumor angiogenesis and growth and metastasis, which may be related to the inhibition of the HIF-1α signaling pathway. It reveals that HQZX decoction may be a promising herbal compound for anti-HCC therapy, and also reveals the accurate feasibility of the hollow fiber hepatocellular carcinoma model for in vivo pharmacodynamic evaluation and mechanism study.
Collapse
Affiliation(s)
- Xuejing Wang
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Hepatology, Beijing, People’s Republic of China
| | - Ling Yin
- Beijing Institute of Hepatology, Beijing, People’s Republic of China
| | - Mengyin Chai
- Beijing Institute of Hepatology, Beijing, People’s Republic of China
| | - Buxin Kou
- Beijing Institute of Hepatology, Beijing, People’s Republic of China
| | - Xiaoni Liu
- Beijing Institute of Hepatology, Beijing, People’s Republic of China
| | - Xiaojun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
45
|
Zhang F, Zhou K, Yuan W, Sun K. Radix Bupleuri-Radix Paeoniae Alba Inhibits the Development of Hepatocellular Carcinoma through Activation of the PTEN/PD-L1 Axis within the Immune Microenvironment. Nutr Cancer 2023; 76:63-79. [PMID: 37909316 DOI: 10.1080/01635581.2023.2276525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE This study investigated how Radix Bupleuri-Radix Paeoniae Alba (BP) was active against hepatocellular carcinoma (HCC). METHODS Traditional Chinese medicine systems pharmacology (TCMSP) database was employed to determine the active ingredients of BP and potential targets against HCC. Molecular docking analysis verified the binding activity of PTEN with BP ingredients. H22 cells were used to establish an HCC model in male balb/c mice. Immunofluorescence staining, immunohistochemistry, flow cytometry, western blotting, enzyme-linked immunosorbent assay, and real-time quantitative PCR were used to study changes in proliferation, apoptosis, PTEN levels, inflammation, and T-cell differentiation in male balb/c mice. RESULTS The major active ingredients in BP were found to be quercetin, kaempferol, isorhamnetin, stigmasterol, and beta-sitosterol. Molecular docking demonstrated that these five active BP ingredients formed a stable complex with PTEN. BP exhibited an anti-tumor effect in our HCC mouse model. BP was found to increase the CD8+ and IFN-γ+/CD4+ T cell levels while decreasing the PD-1+/CD8+ T and Treg cell levels in HCC mice. BP up-regulated the IL-6, IFN-γ, and TNF-α levels but down-regulated the IL-10 levels in HCC mice. After PTEN knockdown, BP-induced effects were abrogated. CONCLUSION BP influenced the immune microenvironment through activation of the PTEN/PD-L1 axis, protecting against HCC.
Collapse
Affiliation(s)
- Fan Zhang
- Department of TCM, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kun Zhou
- Department of Hepatology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Yuan
- Department of Hepatology, The First Affiliated Hospital of Hu'nan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Kewei Sun
- Department of Hepatology, The First Affiliated Hospital of Hu'nan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
46
|
Kwon M, Jung HJ. Hovenia dulcis Suppresses the Growth of Huh7-Derived Liver Cancer Stem Cells by Inducing Necroptosis and Apoptosis and Blocking c-MET Signaling. Cells 2023; 13:22. [PMID: 38201226 PMCID: PMC10778038 DOI: 10.3390/cells13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Liver cancer stem cells (LCSCs) contribute to the initiation, metastasis, treatment resistance, and recurrence of hepatocellular carcinoma (HCC). Therefore, exploring potential anticancer agents targeting LCSCs may offer new therapeutic options to overcome HCC treatment failure. Hovenia dulcis Thunberg (HDT), a tree from the buckthorn family found in Asia, exhibits various biological activities, including antifatigue, antidiabetic, neuroprotective, hepatoprotective, and antitumor activities. However, the therapeutic effect of HDT in eliminating LCSCs remains to be confirmed. In this study, we evaluated the inhibitory activity of ethanol, chloroform, and ethyl acetate extracts from HDT branches on the growth of Huh7-derived LCSCs. The ethyl acetate extract of HDT (EAHDT) exhibited the most potent inhibitory activity against the growth of Huh7 LCSCs among the three HDT extracts. EAHDT suppressed the in vitro self-renewal ability of Huh7 LCSCs and reduced tumor growth in vivo using the Huh7 LCSC-transplanted chick embryo chorioallantoic membrane model. Furthermore, EAHDT not only arrested the cell cycle in the G0/G1 phase but also induced receptor-interacting protein kinase 3/mixed-lineage kinase domain-like protein-mediated necroptosis and caspase-dependent apoptosis in Huh7 LCSCs in a concentration-dependent manner. Furthermore, the growth inhibitory effect of EAHDT on Huh7 LCSCs was associated with the downregulation of c-MET-mediated downstream signaling pathways and key cancer stemness markers. Based on these findings, we propose that EAHDT can be used as a new natural drug candidate to prevent and treat HCC by eradicating LCSCs.
Collapse
Affiliation(s)
- Mikyoung Kwon
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea;
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea;
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Republic of Korea
| |
Collapse
|
47
|
Li J, Qin C, Wu Y, Cheng S, Wang Y, Chen H, Chen F, Chen B, Li J. Targeting LRRC41 as a potential therapeutic approach for hepatocellular carcinoma. Front Mol Biosci 2023; 10:1300294. [PMID: 38192337 PMCID: PMC10773795 DOI: 10.3389/fmolb.2023.1300294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver cancer, characterized by high mortality rate. In clinical practice, several makers of liver cancer, such as VEGFR1, FGFR1 and PDGFRα, were identified and their potentials as a therapeutic target were explored. However, the unsatisfied treatment results emphasized the needs of new therapeutic targets. Methods: 112 HCC patients samples were obtained to evaluate the expression of LRRC41, SOX9, CD44, and EPCAM in HCC, combined with prognosis analysis. A DEN-induced HCC rat model was constructed to verify the expression of LRRC41 and SOX9 in HCC and lung metastasis tissues. Immune score evaluation was analysized by bioinformatics methods. Network pharmacology was performed to explored the potential FDA-approved drugs targeting LRRC41. Results: Through analysis of the Timer database and tissue micro-array, we confirmed that LRRC41 was over-expressed in HCC and exhibited a significant positive correlation with recurrence and metastasis. Immunohistochemistry staining of human HCC tissue samples revealed significant upregulation of LRRC41, SOX9, CD44, and EPCAM, with LRRC41 showing a positive correlation with SOX9, CD44, and EPCAM expression. UALCAN database analysis indicated that LRRC41 and SOX9 contribute to poor prognosis whereas CD44 and EPCAM did not demonstrate the same significance. Furthermore, analysis of a DEN-induced HCC rat model confirmed the significantly elevated expression of LRRC41 and SOX9 in HCC and lung metastasis tissues. Drug sensitivity analysis and molecular docking targeting LRRC41 identified several FDA-approved drugs, which may have potential antitumor effects on HCC by targeting LRRC41. Conclusion: Our findings highlight the role of LRRC41 overexpression in promoting HCC progression and its association with a poor prognosis. Drug sensitivity analysis and molecular docking shows several FDA-approved drugs may be potential therapeutic targets for HCC. Targeting LRRC41 may hold promise as a potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Jun Li
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chenjie Qin
- State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yicheng Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital Affiliated to the Naval Medical University, Shanghai, China
| | - Sheng Cheng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanqing Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Huijie Chen
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangli Chen
- Department of Hematology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingdi Chen
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Jutang Li
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Wu Y, Yang Y, Yi X, Song L. The circSNX14 functions as a tumor suppressor via the miR-562/ LATS2 pathway in hepatocellular carcinoma cells. J Mol Histol 2023; 54:593-607. [PMID: 37861952 DOI: 10.1007/s10735-023-10157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/17/2023] [Indexed: 10/21/2023]
Abstract
Circular RNAs (circRNAs) play critical roles in the initiation and progression of various cancers. However, the potential functional roles of circSNX14 in hepatocellular carcinoma (HCC) remain largely unknown. CircSNX14 expression pattern was analyzed in HCC tissues and cell lines via qRT-PCR. The effects of circSNX14 on cell proliferation, invasion, angiogenesis, and Epithelial-mesenchymal transition (EMT) were investigated by overexpression experiments. The role of circSNX14 in the tumorigenesis of HCC cells was examined using in vivo xenograft mouse model. The interaction between circSNX14, miR-562, and Large Tumor Suppressor Kinase 2 (LATS2) mRNA was confirmed by Luciferase reporter assay and RNA immunoprecipitation (RIP) analysis. CircSNX14 was significantly down-regulated in HCC tissues and cell lines, and its down-regulation was correlated with a poor prognosis in HCC patients. In the following functional experiments, circSNX14 overexpression remarkably suppressed the proliferation and invasion of HCC cells, and attenuated the mesenchymall status. circSNX14 overexpression also suppressed the tumorigenesis of HCC cells in the mouse model. We further revealed the interaction of circSNX14 and miR-562, and miR-562 could suppress the expression of LATS2 by interacting with its mRNA. The negative correlation of circSNX14 and miR-562, negative correlation of miR-562 and LATS2, and positive correlation of circSNX14 and LATS2 have been confirmed by Pearson correlation in the HCC samples. Collectively, these results reveal a novel role of circSNX14/miR-562/LATS2 axis in regulating the malignant progression of HCC cancer progression, indicating the tumor suppressor role of circSNX14 and its potential as a prognostic biomarker.
Collapse
Affiliation(s)
- Yan Wu
- Department of General Surgery, University-Town Hospital of Chongqing Medical University, No.55 University Town Middle Road, Shapingba District, Chongqing, 401331, China
| | - Yaowei Yang
- Department of General Surgery, University-Town Hospital of Chongqing Medical University, No.55 University Town Middle Road, Shapingba District, Chongqing, 401331, China
| | - Xin Yi
- Department of General Surgery, University-Town Hospital of Chongqing Medical University, No.55 University Town Middle Road, Shapingba District, Chongqing, 401331, China
| | - Liwen Song
- Department of General Surgery, University-Town Hospital of Chongqing Medical University, No.55 University Town Middle Road, Shapingba District, Chongqing, 401331, China.
| |
Collapse
|
49
|
Ying H, Zhang B, Cao G, Wang Y, Zhang X. Role for ubiquitin-specific protease 7 (USP7) in the treatment and the immune response to hepatocellular carcinoma: potential mechanisms. Transl Cancer Res 2023; 12:3016-3033. [PMID: 38130306 PMCID: PMC10731377 DOI: 10.21037/tcr-23-153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/19/2023] [Indexed: 12/23/2023]
Abstract
Background Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that can affect or regulate a variety of cellular activities. The purpose of this study was to investigate therapeutic and immunologic effects of USP7 in hepatocellular carcinoma (HCC), and as well to evaluate potential mechanisms of action. Methods USP7-related gene expression and clinical data were obtained from The Cancer Genome Atlas (TCGA) dataset, International Cancer Genome Consortium (ICGC) dataset, and Gene Expression Omnibus (GEO) dataset. Pathways associated with USP7 were determined by gene set enrichment analysis (GSEA). The relationships among USP7, immunity, and drug therapy were also investigated and potential mechanisms of action were explored. Results TCGA database results demonstrated USP7 mRNA expression levels to be upregulated in HCC tissues. Results were validated with UALCAN, ICGC, and GSE10143 datasets, as well as immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) experiments and were consistent with TCGA database findings (all P<0.05). GSEA analysis demonstrated increased USP7 levels to be associated with CHEMOKINE, Janus kinase/signal transducer and activator of transcription (JAK-STAT), mitogen-activated protein kinase (MAPK), P53, vascular endothelial growth factor (VEGF), and wingless (WNT) signaling pathways. Based on immune correlation analysis, USP7 was dramatically associated with immune cells and immune checkpoint molecules. In terms of drug therapy, USP7 expression levels were significantly related to HCC sensitivity to ciclosporin, talazoparib, dabrafenib, trametinib, paclitaxel, sorafenib, bortezomib, sunitinib, and crizotinib. Based on these results, we mechanistically propose an association between USP7 and these four drug targets: B-Raf proto-oncogene serine/threonine protein kinase (BRAF), mitogen-activated extracellular signal-regulated kinase (MEK), DNA topoisomerase I (TOPOI), and poly ADP-ribose polymerase (PARP). Conclusions USP7 plays a therapeutic and immunological role in HCC. The four drug targets BRAF, MEK, TOPOI, and PARP are implicated in the USP7 mechanism of action.
Collapse
Affiliation(s)
- Huiwen Ying
- Department of Infectious Diseases, Affiliated Hospital of Nantong University, Nantong, China
- Department of Infectious Diseases, Xuancheng People’s Hospital, Xuancheng, China
| | - Bin Zhang
- Department of Infectious Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Guilian Cao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yunan Wang
- Department of Rheumatism and Immunology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xian Zhang
- Department of Infectious Diseases, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
50
|
Zhou L, He L, Liu CH, Qiu H, Zheng L, Sample KM, Wu Q, Li J, Xie K, Ampuero J, Li Z, Lv D, Liu M, Romero-Gómez M, Hu Y, Tang H. Liver cancer stem cell dissemination and metastasis: uncovering the role of NRCAM in hepatocellular carcinoma. J Exp Clin Cancer Res 2023; 42:311. [PMID: 37993901 PMCID: PMC10664624 DOI: 10.1186/s13046-023-02893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Liver cancer stem cells (LCSCs) play an important role in hepatocellular carcinoma (HCC), but the mechanisms that link LCSCs to HCC metastasis remain largely unknown. This study aims to reveal the contributions of NRCAM to LCSC function and HCC metastasis, and further explore its mechanism in detail. METHODS 117 HCC and 29 non-HCC patients with focal liver lesions were collected and analyzed to assess the association between NRCAM and HCC metastasis. Single-cell RNA sequencing (scRNA-seq) was used to explore the biological characteristics of cells with high NRCAM expression in metastatic HCC. The role and mechanism of NRCAM in LCSC dissemination and metastasis was explored in vitro and in vivo using MYC-driven LCSC organoids from murine liver cells. RESULTS Serum NRCAM is associated with HCC metastasis and poor prognosis. A scRNA-seq analysis identified that NRCAM was highly expressed in LCSCs with MYC activation in metastatic HCC. Moreover, NRCAM facilitated LCSC migration and invasion, which was confirmed in MYC-driven LCSC organoids. The in vivo tumor allografts demonstrated that NRCAM mediated intra-hepatic/lung HCC metastasis by enhancing the ability of LCSCs to escape from tumors into the bloodstream. Nrcam expression inhibition in LCSCs blocked HCC metastasis. Mechanistically, NRCAM activated epithelial-mesenchymal transition (EMT) and metastasis-related matrix metalloproteinases (MMPs) through the MACF1 mediated β-catenin signaling pathway in LCSCs. CONCLUSIONS LCSCs typified by high NRCAM expression have a strong ability to invade and migrate, which is an important factor leading to HCC metastasis.
Collapse
Affiliation(s)
- Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| | - Linye He
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Huandi Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
| | - Li Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
| | - Klarke Michael Sample
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
| | - Qin Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
| | - Jiaxin Li
- Department of Liver Surgery and Liver Transplantation Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Kunlin Xie
- Department of Liver Surgery and Liver Transplantation Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Javier Ampuero
- Digestive Diseases Unit, Virgen del Rocío University Hospital, SeLiver Group at Institute of Biomedicine of Seville (IBIS: HUVRocío/CSIC/US), University of Seville, Seville, Spain
| | - Zhihui Li
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Miao Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Manuel Romero-Gómez
- Digestive Diseases Unit, Virgen del Rocío University Hospital, SeLiver Group at Institute of Biomedicine of Seville (IBIS: HUVRocío/CSIC/US), University of Seville, Seville, Spain.
- Digestive Disease Department and CIBERehd, Virgen del Rocío University Hospital, Avenida Manuel Siurot S/N, 41013, Seville, Spain.
| | - Yiguo Hu
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China.
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|