1
|
Pereira RVS, EzEldeen M, Ugarte-Berzal E, Vandooren J, Martens E, Gouwy M, Ganseman E, Van Damme J, Matthys P, Vranckx JJ, Proost P, Opdenakker G. Protection of stromal cell-derived factor-1 SDF-1/CXCL12 against proteases yields improved skin wound healing. Front Immunol 2024; 15:1359497. [PMID: 39156898 PMCID: PMC11327020 DOI: 10.3389/fimmu.2024.1359497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
SDF-1/CXCL12 is a unique chemotactic factor with multiple functions on various types of precursor cells, all carrying the cognate receptor CXCR4. Whereas individual biological functions of SDF-1/CXCL12 have been well documented, practical applications in medicine are insufficiently studied. This is explained by the complex multifunctional biology of SDF-1 with systemic and local effects, critical dependence of SDF-1 activity on aminoterminal proteolytic processing and limited knowledge of applicable modulators of its activity. We here present new insights into modulation of SDF-1 activity in vitro and in vivo by a macromolecular compound, chlorite-oxidized oxyamylose (COAM). COAM prevented the proteolytic inactivation of SDF-1 by two inflammation-associated proteases: matrix metalloproteinase-9/MMP-9 and dipeptidylpeptidase IV/DPPIV/CD26. The inhibition of proteolytic inactivation was functionally measured by receptor-mediated effects, including intracellular calcium mobilization, ERK1/2 phosphorylation, receptor internalization and chemotaxis of CXCR4-positive cells. Protection of SDF-1/CXCL12 against proteolysis was dependent on electrostatic COAM-SDF-1 interactions. By in vivo experiments in mice, we showed that the combination of COAM with SDF-1 delivered through physiological fibrin hydrogel had beneficial effect for the healing of skin wounds. Collectively, we show that COAM protects SDF-1 from proteolytic inactivation, maintaining SDF-1 biological activities. Thus, protection from proteolysis by COAM represents a therapeutic strategy to prolong SDF-1 bioavailability for wound healing applications.
Collapse
Affiliation(s)
- Rafaela Vaz Sousa Pereira
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mostafa EzEldeen
- Department of Imaging and Pathology, OMFS-IMPATH Research Group KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Oral Health Sciences, KU Leuven and Pediatric Dentistry and Special Dental Care, University Hospitals Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Eva Ganseman
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Department of Development & Regeneration & Department of Plastic & Reconstructive Surgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Cuffaro D, Di Leo R, Ciccone L, Nocentini A, Supuran CT, Nuti E, Rossello A. New isoxazolidinyl-based N-alkylethanolamines as new activators of human brain carbonic anhydrases. J Enzyme Inhib Med Chem 2023; 38:2164574. [PMID: 36630083 PMCID: PMC9848372 DOI: 10.1080/14756366.2022.2164574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Carbonic anhydrases (CAs) are widespread metalloenzymes which catalyse the reversible hydration of carbon dioxide (CO2) to bicarbonate (HCO3-) and a proton, relevant in many physiological processes. In the last few years, the involvement of CA activation in different metabolic pathways in the human brain addressed the research to the discovery of novel CA activators. Here, a new series of isoxazoline-based amino alcohols as CA activators was investigated. The synthesis and the CA activating effects towards four human CA isoforms expressed in the human brain, that are hCAs I, II, IV and VII, were reported. The best results were obtained for the (methyl)-isoxazoline-amino alcohols 3 and 5 with KA values in the submicromolar range (0.52-0.86 µM) towards hCA VII, and a good selectivity over hCA I. Being hCA VII involved in brain function and metabolism, the newly identified CA activators might be promising hit compounds with potential therapeutic applications in ageing, epilepsy or neurodegeneration.
Collapse
Affiliation(s)
| | | | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Alessio Nocentini
- Department of Neurofarba, University of Florence, Sesto Fiorentino, Italy,CONTACT Alessio Nocentini Physical address Department of Neurofarba, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Department of Neurofarba, University of Florence, Sesto Fiorentino, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Pisa, Italy,Elisa Nuti Physical address Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
3
|
Cuffaro D, Bertolini A, Bertini S, Ricci C, Cascone MG, Danti S, Saba A, Macchia M, Digiacomo M. Olive Mill Wastewater as Source of Polyphenols with Nutraceutical Properties. Nutrients 2023; 15:3746. [PMID: 37686778 PMCID: PMC10489820 DOI: 10.3390/nu15173746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Agrifood waste products are often considered rich sources of bioactive compounds that can be conveniently recovered. Due to these peculiar characteristics, the study of these waste products is attracting great interest in nutraceutical research. Olive mill wastewaters (OMWWs) are generated by extra virgin olive oil (EVOO) production, and they pose environmental challenges due to their disposal. This study aimed to characterize the polyphenolic profile and to evaluate the nutraceutical properties of OMWW extracts from two Tuscan olive cultivars, Leccino (CL) and Frantoio (CF), collected during different time points in EVOO production. METHOD After a liquid-liquid extraction, the HPLC and LC-MS/MS analysis of OMWW extracts confirmed the presence of 18 polyphenolic compounds. RESULTS The polyphenol composition varied between the cultivars and during maturation stages. Notably, oleacein was detected at remarkably high levels in CL1 and CF1 extracts (314.628 ± 19.535 and 227.273 ± 3.974 μg/mg, respectively). All samples demonstrated scavenging effects on free radicals (DPPH and ABTS assays) and an anti-inflammatory potential by inhibiting cyclooxygenase (COX) enzymes. CONCLUSIONS This study highlights the nutraceutical potential of OMWW extracts, emphasizing their antioxidant, antiradical, and anti-inflammatory activities. The results demonstrate the influence of olive cultivar, maturation stage, and extraction process on the polyphenolic composition and the bioactivity of OMWW extracts. These findings support a more profitable reuse of OMWW as an innovative, renewable, and low-cost source of dietary polyphenols with potential applications as functional ingredients in the development of dietary supplements, as well as in the pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| | - Andrea Bertolini
- Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy;
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (C.R.); (M.G.C.); (S.D.)
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (C.R.); (M.G.C.); (S.D.)
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (C.R.); (M.G.C.); (S.D.)
| | - Alessandro Saba
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
- Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy;
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| |
Collapse
|
4
|
Kiczak L, Pasławska U, Goździk W, Adamik B, Zielińska M, Zieliński S, Nowak K, Płóciennik M, Bania J, Tabiś A, Nowak M, Pasławski R, Frostell C. Effect of low-dose hydrocortisone and inhaled nitric oxide on inflammatory mediators and local pulmonary metalloproteinases activity in LPS-induced sepsis in piglets. Sci Rep 2023; 13:11369. [PMID: 37443327 PMCID: PMC10344886 DOI: 10.1038/s41598-023-38311-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Hospital mortality in sepsis varies between 30-45%. It has been shown that administration of inhaled nitric oxide (iNO) and intravenous corticosteroid in a porcine endotoxemia model attenuated the systemic inflammatory response. We explored the anti-inflammatory effect of a double-treatment strategy (iNO + low-dose steroid) on the lungs in a long-term porcine endotoxic shock model. As metalloproteinases (MMPs) are involved in the initiation of multiple organ dysfunction in septic shock, we evaluated the influence of this combination therapy on MMP2 and MMP9 activity and proIL-1β maturation. A shock-like condition was established in 23 animals by continuous infusion of E. coli lipopolysaccharide (LPS) for 10 h. Then the animals were observed for 10 h. Twelve pigs received iNO and hydrocortisone (iNO treatment started 3 h after the initial LPS infusion and continued until the end of the experiment). Eleven pigs were controls. Pigs treated with iNO and hydrocortisone displayed less inflammatory infiltrates in the lungs than the controls and a lower level of IL-1β. The proMMP2 was significantly decreased in the iNO and hydrocortisone group. The amount of an active MMP9 (~ 60 kDa) was decreased in the iNO and hydrocortisone group. Total gelatinolytic activity was lower in the iNO and hydrocortisone group. Reduced MMP activity was accompanied by a 2.5-fold decrease of the active IL-1β form (17 kDa) in the pulmonary tissue of iNO combined with hydrocortisone exposed pigs. We demonstrated that in a porcine endotoxemia model the NO inhalation combined with intravenous hydrocortisone led to the attenuation of the inflammatory cascade induced by bacterial LPS. The decrease in pulmonary MMPs activities was accompanied by reduced proIL-1β processing.
Collapse
Affiliation(s)
- Liliana Kiczak
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland.
| | - Urszula Pasławska
- Veterinary Center, Nicoalus Copernicus University in Toruń, 87-100, Toruń, Poland
- Department of Internal Diseases and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland
| | - Waldemar Goździk
- Clinical Department of Anesthesiology and Intensive Therapy, Wrocław Medical University, 50-556, Wrocław, Poland
| | - Barbara Adamik
- Clinical Department of Anesthesiology and Intensive Therapy, Wrocław Medical University, 50-556, Wrocław, Poland
| | - Marzena Zielińska
- Clinical Department of Anesthesiology and Intensive Therapy, Wrocław Medical University, 50-556, Wrocław, Poland
| | - Stanisław Zieliński
- Clinical Department of Anesthesiology and Intensive Therapy, Wrocław Medical University, 50-556, Wrocław, Poland
| | - Kacper Nowak
- Department of Internal Diseases and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland
| | - Michał Płóciennik
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland
| | - Aleksandra Tabiś
- Department of Food Hygiene and Consumer Health Protection, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland
| | - Marcin Nowak
- Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland
| | - Robert Pasławski
- Veterinary Center, Nicoalus Copernicus University in Toruń, 87-100, Toruń, Poland
| | - Claes Frostell
- Department of Anesthesia and Intensive Care, Karolinska Institutet Danderyd Hospital, 182-88, Stockholm, Sweden
| |
Collapse
|
5
|
Cuffaro D, Gimeno A, Bernardoni BL, Di Leo R, Pujadas G, Garcia-Vallvé S, Nencetti S, Rossello A, Nuti E. Identification of N-Acyl Hydrazones as New Non-Zinc-Binding MMP-13 Inhibitors by Structure-Based Virtual Screening Studies and Chemical Optimization. Int J Mol Sci 2023; 24:11098. [PMID: 37446276 DOI: 10.3390/ijms241311098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Matrix metalloproteinase 13 plays a central role in osteoarthritis (OA), as its overexpression induces an excessive breakdown of collagen that results in an imbalance between collagen synthesis and degradation in the joint, leading to progressive articular cartilage degradation. Therefore, MMP-13 has been proposed as a key therapeutic target for OA. Here we have developed a virtual screening workflow aimed at identifying selective non-zinc-binding MMP-13 inhibitors by targeting the deep S1' pocket of MMP-13. Three ligands were found to inhibit MMP-13 in the µM range, and one of these showed selectivity over other MMPs. A structure-based analysis guided the chemical optimization of the hit compound, leading to the obtaining of a new N-acyl hydrazone-based derivative with improved inhibitory activity and selectivity for the target enzyme.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Aleix Gimeno
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, 43007 Tarragona, Spain
| | | | - Riccardo Di Leo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Gerard Pujadas
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, 43007 Tarragona, Spain
| | - Santiago Garcia-Vallvé
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, 43007 Tarragona, Spain
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
6
|
Di Leo R, Cuffaro D, Rossello A, Nuti E. Bacterial Zinc Metalloenzyme Inhibitors: Recent Advances and Future Perspectives. Molecules 2023; 28:molecules28114378. [PMID: 37298854 DOI: 10.3390/molecules28114378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Human deaths caused by Gram-negative bacteria keep rising due to the multidrug resistance (MDR) phenomenon. Therefore, it is a priority to develop novel antibiotics with different mechanisms of action. Several bacterial zinc metalloenzymes are becoming attractive targets since they do not show any similarities with the human endogenous zinc-metalloproteinases. In the last decades, there has been an increasing interest from both industry and academia in developing new inhibitors against those enzymes involved in lipid A biosynthesis, and bacteria nutrition and sporulation, e.g., UDP-[3-O-(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC), thermolysin (TLN), and pseudolysin (PLN). Nevertheless, targeting these bacterial enzymes is harder than expected and the lack of good clinical candidates suggests that more effort is needed. This review gives an overview of bacterial zinc metalloenzyme inhibitors that have been synthesized so far, highlighting the structural features essential for inhibitory activity and the structure-activity relationships. Our discussion may stimulate and help further studies on bacterial zinc metalloenzyme inhibitors as possible novel antibacterial drugs.
Collapse
Affiliation(s)
- Riccardo Di Leo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
7
|
Gomes SV, Dias BV, Júnior PAM, Pereira RR, de Souza DMS, Breguez GS, de Lima WG, Magalhães CLDB, Cangussú SD, Talvani A, Queiroz KB, Calsavara AJC, Costa DC. High-fat diet increases mortality and intensifies immunometabolic changes in septic mice. J Nutr Biochem 2023; 116:109315. [PMID: 36921735 DOI: 10.1016/j.jnutbio.2023.109315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Immunometabolic changes in the liver and white adipose tissue (WAT) caused by high-fat (HF) diet intake may worse metabolic adaptation and protection against pathogens in sepsis. We investigate the effect of chronic HF diet (15 weeks) on mortality and immunometabolic responses in female mice after sepsis induced by cecum ligation and perforation (CLP). At week 14, animals were divided into four groups: sham C diet (C-Sh), sepsis C diet (C-Sp), sham HF diet (HF-Sh) and sepsis HF diet (HF-Sp). The surviving animals were euthanised on the 7th day. The HF diet decreased survival rate (58.3% vs 76.2% C-Sp group), increased serum cytokine storm (IL-6 (1.41 ×; vs HF-Sh), IL-1β (1.37 ×; vs C-Sp), TNF (1.34 ×; vs C-Sp and 1.72 ×; vs HF-Sh), IL-17 (1.44 ×; vs HF-Sh), IL-10 (1.55 ×; vs C-Sp and 1.41 ×; HF-Sh), WAT inflammation (IL-6 (8.7 ×; vs C-Sp and 2.4 ×; vs HF-Sh), TNF (5 ×; vs C-Sp and 1.7 ×;vs HF-Sh), IL-17 (1.7 ×; vs C-Sp), IL-10 (7.4 ×; vs C-Sp and 1.3 ×; vs HF-Sh), and modulated lipid metabolism in septic mice. In the HF-Sp group liver's, we observed hepatomegaly, hydropic degeneration, necrosis, an increase in oxidative stress (reduction of CAT activity (-81.7%; vs HF-Sh); increase MDA levels (82.8%; vs HF-Sh), and hepatic IL-6 (1.9 ×; vs HF-Sh), and TNF (1.3 × %;vs HF-Sh) production. Furthermore, we found a decrease in the total number of inflammatory, mononuclear cells, and in the regenerative processes, and binucleated hepatocytes in a HF-Sp group liver's. Our results suggested that the organism under metabolic stress of a HF diet during sepsis may worsen the inflammatory landscape and hepatocellular injury and may harm the liver regenerative process.
Collapse
Affiliation(s)
- Sttefany Viana Gomes
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Bruna Vidal Dias
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Pedro Alves Machado Júnior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Renata Rebeca Pereira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Gustavo Silveira Breguez
- Multiuser Research Laboratory, School of Nutrition, School of Nutrition, Postgraduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Wanderson Geraldo de Lima
- Morphopathology Laboratory, Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Laboratory of Biology and Technology of Microorganisms (LBTM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Silvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Karina Barbosa Queiroz
- Laboratory of Experimental Nutrition (LABNEx), Department of Food, Postgraduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Allan Jefferson Cruz Calsavara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Wan D, Feng J, Wang P, Yang Z, Sun T. Hypoxia- and Inflammation-Related Transcription Factor SP3 May Be Involved in Platelet Activation and Inflammation in Intracranial Hemorrhage. Front Neurol 2022; 13:886329. [PMID: 35720085 PMCID: PMC9201407 DOI: 10.3389/fneur.2022.886329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 12/05/2022] Open
Abstract
The purpose of this study was to identify the biomarkers implicated in the development of intracranial hemorrhage (ICH) and potential regulatory pathways. In the transcriptomic data for patients with ICH, we identified DEmiRNAs and DEmRNAs related to hypoxia, inflammation, and their transcription factors (TFs). An ICH-based miRNA-TF-mRNA regulatory network was thus constructed, and four biomarkers (TIMP1, PLAUR, DDIT3, and CD40) were screened for their association with inflammation or hypoxia by machine learning. Following this, SP3 was found to be a transcription factor involved in hypoxia and inflammation, which regulates TIMP1 and PLAUR. From the constructed miRNA-TF-mRNA regulatory network, we identified three axes, hsa-miR-940/RUNX1/TIMP1, hsa-miR-571/SP3/TIMP1, and hsa-miR-571/SP3/PLAUR, which may be involved in the development of ICH. Upregulated TIMP1 and PLAUR were validated in an independent clinical cohort 3 days after ICH onset. According to Gene Set Enrichment Analysis (GSEA), SP3 was discovered to be important in interleukin signaling and platelet activation for hemostasis. Transcription factor SP3 associated with hypoxia or inflammation plays an important role in development of ICH. This study provides potential targets for monitoring the severity of inflammation and hypoxia in patients with ICH.
Collapse
Affiliation(s)
- Ding Wan
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Jin Feng
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Peng Wang
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Zhenxing Yang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
- *Correspondence: Tao Sun
| |
Collapse
|
9
|
Splenic T lymphocytes induce the formation of immunosuppressive neutrophils through IFN-γ in sepsis. Inflamm Res 2021; 71:81-91. [PMID: 34841450 DOI: 10.1007/s00011-021-01524-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite many advances in treatment, the prognosis of patients with sepsis still remains poor. Polymorphonuclear leukocytes (PMNs) are the first line of defense against infection. This study aimed to reveal the reason and mechanism of the production of PD-L1+ PMNs in sepsis. METHODS Cecal ligation and perforation mouse model was established to simulate sepsis. And PMNs were treated for 4 h, 12 h with or without 100 ng/mL (IFN-γ) for further gene sequencing. PD-L1, PD-1, Ly6G, and CD3 were detected by multiplexed immunofluorescence. In addition, expression of PD-L1 and function of PMNs were assessed by flow cytometry. Serum and cell culture supernatant were measured with ELISA assays. Western blot was used to verify the JAK2/STAT1 pathway. RESULTS Our study demonstrates that PMNs are the main immune cells with high expression of PD-L1 during sepsis, and these cells, therefore, play a critical role in immunosuppression. In vivo studies demonstrated a specific interaction between PD-L1+ PMNs and PD-1+ T cells. In vitro studies further demonstrated that IFN-γ induced the production of PD-L1+ PMNs through the JAK2/STAT1 pathway. In addition, Fedratinib, an inhibitor of Jak2, was shown to significantly reduce the expression of PD-L1 in neutrophils. CONCLUSIONS These data demonstrate that secretion of IFN-γ by splenic T lymphocytes induces the production of PD-L1 + PMNs through the JAK2/STAT1 pathway in sepsis.
Collapse
|
10
|
Guzman NA, Guzman DE. Immunoaffinity Capillary Electrophoresis in the Era of Proteoforms, Liquid Biopsy and Preventive Medicine: A Potential Impact in the Diagnosis and Monitoring of Disease Progression. Biomolecules 2021; 11:1443. [PMID: 34680076 PMCID: PMC8533156 DOI: 10.3390/biom11101443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
Over the years, multiple biomarkers have been used to aid in disease screening, diagnosis, prognosis, and response to therapy. As of late, protein biomarkers are gaining strength in their role for early disease diagnosis and prognosis in part due to the advancements in identification and characterization of a distinct functional pool of proteins known as proteoforms. Proteoforms are defined as all of the different molecular forms of a protein derived from a single gene caused by genetic variations, alternative spliced RNA transcripts and post-translational modifications. Monitoring the structural changes of each proteoform of a particular protein is essential to elucidate the complex molecular mechanisms that guide the course of disease. Clinical proteomics therefore holds the potential to offer further insight into disease pathology, progression, and prevention. Nevertheless, more technologically advanced diagnostic methods are needed to improve the reliability and clinical applicability of proteomics in preventive medicine. In this manuscript, we review the use of immunoaffinity capillary electrophoresis (IACE) as an emerging powerful diagnostic tool to isolate, separate, detect and characterize proteoform biomarkers obtained from liquid biopsy. IACE is an affinity capture-separation technology capable of isolating, concentrating and analyzing a wide range of biomarkers present in biological fluids. Isolation and concentration of target analytes is accomplished through binding to one or more biorecognition affinity ligands immobilized to a solid support, while separation and analysis are achieved by high-resolution capillary electrophoresis (CE) coupled to one or more detectors. IACE has the potential to generate rapid results with significant accuracy, leading to reliability and reproducibility in diagnosing and monitoring disease. Additionally, IACE has the capability of monitoring the efficacy of therapeutic agents by quantifying companion and complementary protein biomarkers. With advancements in telemedicine and artificial intelligence, the implementation of proteoform biomarker detection and analysis may significantly improve our capacity to identify medical conditions early and intervene in ways that improve health outcomes for individuals and populations.
Collapse
Affiliation(s)
| | - Daniel E. Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, USA;
- Division of Hospital Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Vandooren J, Pereira RVS, Ugarte-Berzal E, Rybakin V, Noppen S, Stas MR, Bernaerts E, Ganseman E, Metzemaekers M, Schols D, Proost P, Opdenakker G. Internal Disulfide Bonding and Glycosylation of Interleukin-7 Protect Against Proteolytic Inactivation by Neutrophil Metalloproteinases and Serine Proteases. Front Immunol 2021; 12:701739. [PMID: 34276694 PMCID: PMC8278288 DOI: 10.3389/fimmu.2021.701739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Interleukin 7 (IL-7) is a cell growth factor with a central role in normal T cell development, survival and differentiation. The lack of IL-7–IL-7 receptor(R)-mediated signaling compromises lymphoid development, whereas increased signaling activity contributes to the development of chronic inflammation, cancer and autoimmunity. Gain-of-function alterations of the IL-7R and the signaling through Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) are enriched in T cell acute lymphoblastic leukemia (T-ALL) and autocrine production of IL-7 by T-ALL cells is involved in the phenotypes of leukemic initiation and oncogenic spreading. Several IL-7-associated pathologies are also characterized by increased presence of matrix metalloproteinase-9 (MMP-9), due to neutrophil degranulation and its regulated production by other cell types. Since proteases secreted by neutrophils are known to modulate the activity of many cytokines, we investigated the interactions between IL-7, MMP-9 and several other neutrophil-derived proteases. We demonstrated that MMP-9 efficiently cleaved human IL-7 in the exposed loop between the α-helices C and D and that this process is delayed by IL-7 N-linked glycosylation. Functionally, the proteolytic cleavage of IL-7 did not influence IL-7Rα binding and internalization nor the direct pro-proliferative effects of IL-7 on a T-ALL cell line (HPB-ALL) or in primary CD8+ human peripheral blood mononuclear cells. A comparable effect was observed for the neutrophil serine proteases neutrophil elastase, proteinase 3 and combinations of neutrophil proteases. Hence, glycosylation and disulfide bonding as two posttranslational modifications influence IL-7 bioavailability in the human species: glycosylation protects against proteolysis, whereas internal cysteine bridging under physiological redox state keeps the IL-7 conformations as active proteoforms. Finally, we showed that mouse IL-7 does not contain the protease-sensitive loop and, consequently, was not cleaved by MMP-9. With the latter finding we discovered differences in IL-7 biology between the human and mouse species.
Collapse
Affiliation(s)
- Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Rafaela Vaz Sousa Pereira
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Vasily Rybakin
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Melissa R Stas
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Eline Bernaerts
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Eva Ganseman
- Laboratory of Molecular Immunology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| |
Collapse
|