1
|
Urie RR, Morris A, Farris D, Hughes E, Xiao C, Chen J, Lombard E, Feng J, Li JZ, Goldstein DR, Shea LD. Biomarkers from subcutaneous engineered tissues predict acute rejection of organ allografts. SCIENCE ADVANCES 2024; 10:eadk6178. [PMID: 38748794 PMCID: PMC11095459 DOI: 10.1126/sciadv.adk6178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Invasive graft biopsies assess the efficacy of immunosuppression through lagging indicators of transplant rejection. We report on a microporous scaffold implant as a minimally invasive immunological niche to assay rejection before graft injury. Adoptive transfer of T cells into Rag2-/- mice with mismatched allografts induced acute cellular allograft rejection (ACAR), with subsequent validation in wild-type animals. Following murine heart or skin transplantation, scaffold implants accumulate predominantly innate immune cells. The scaffold enables frequent biopsy, and gene expression analyses identified biomarkers of ACAR before clinical signs of graft injury. This gene signature distinguishes ACAR and immunodeficient respiratory infection before injury onset, indicating the specificity of the biomarkers to differentiate ACAR from other inflammatory insult. Overall, this implantable scaffold enables remote evaluation of the early risk of rejection, which could potentially be used to reduce the frequency of routine graft biopsy, reduce toxicities by personalizing immunosuppression, and prolong transplant life.
Collapse
Affiliation(s)
- Russell R. Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Diana Farris
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chengchuan Xiao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth Lombard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiane Feng
- Animal Phenotyping Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Schweins M, Gäbel R, Raitza M, Vasudevan P, Lemcke H, Joksch M, Schildt A, Kurth J, Lindner T, Meinel FG, Öner A, Ince H, Vollmar B, Krause BJ, David R, Lang CI. Multi-modal assessment of a cardiac stem cell therapy reveals distinct modulation of regional scar properties. J Transl Med 2024; 22:187. [PMID: 38378655 PMCID: PMC10880233 DOI: 10.1186/s12967-024-04986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND The initial idea of functional tissue replacement has shifted to the concept that injected cells positively modulate myocardial healing by a non-specific immune response of the transplanted cells within the target tissue. This alleged local modification of the scar requires assessment of regional properties of the left ventricular wall in addition to commonly applied measures of global morphological and functional parameters. Hence, we aimed at investigating the effect of cardiac cell therapy with cardiovascular progenitor cells, so-called cardiac induced cells, on both global and regional properties of the left ventricle by a multimodal imaging approach in a mouse model. METHODS Myocardial infarction was induced in mice by ligation of the left anterior descending artery, the therapy group received an intramyocardial injection of 1 × 106 cardiac induced cells suspended in matrigel, the control group received matrigel only. [18F]FDG positron emission tomography imaging was performed after 17 days, to assess regional glucose metabolism. Three weeks after myocardial infarction, cardiac magnetic resonance imaging was performed for morphological and functional assessment of the left ventricle. Following these measurements, hearts were excised for histological examinations. RESULTS Cell therapy had no significant effect on global morphological parameters. Similarly, there was no difference in scar size and capillary density between therapy and control group. However, there was a significant improvement in contractile function of the left ventricle - left ventricular ejection fraction, stroke volume and cardiac output. Regional analysis of the left ventricle identified changes of wall properties in the scar area as the putative mechanism. Cell therapy reduced the thinning of the scar and significantly improved its radial contractility. Furthermore, the metabolic defect, assessed by [18F]FDG, was significantly reduced by the cell therapy. CONCLUSION Our data support the relevance of extending the assessment of global left ventricular parameters by a structured regional wall analysis for the evaluation of therapies targeting at modulation of healing myocardium. This approach will enable a deeper understanding of mechanisms underlying the effect of experimental regenerative therapies, thus paving the way for a successful translation into clinical application.
Collapse
Affiliation(s)
- Moritz Schweins
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Ralf Gäbel
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Matti Raitza
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Praveen Vasudevan
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Markus Joksch
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Anna Schildt
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Felix G Meinel
- Institute of Diagnostic and Interventional Radiology, Rostock University Medical Center, Rostock, Germany
| | - Alper Öner
- Department of Cardiology, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Hüseyin Ince
- Department of Cardiology, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Cajetan Immanuel Lang
- Department of Cardiology, Rostock University Medical Centre, 18057, Rostock, Germany.
| |
Collapse
|
3
|
Lin L, Zicheng L, Shaohua G. Post-Acute Myocardial Infarction Heart Failure Core Genes and Relevant Signaling Pathways. J Cardiovasc Pharmacol 2023; 82:480-488. [PMID: 37678296 DOI: 10.1097/fjc.0000000000001481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
ABSTRACT There is increasing concern about heart failure after myocardial infarction and the current clinical treatment measures for ventricular remodeling. Herein, we present the results of differential gene analysis, pathway enrichment analysis, and characteristic gene screening. Our study identifies 4 core genes ( KLRC2 , SNORD105 , SNORD45B , and RNU5A-1 ) associated with post-acute myocardial infarction (AMI) heart failure. The authors discuss the significance of the identified core genes, their potential implications in immune dysfunction and heart failure, and their relevance to disease regulatory genes. The study concludes by emphasizing the importance of clinical relevance in molecular research and suggests potential therapeutic targets for post-AMI heart failure.
Collapse
Affiliation(s)
- Ling Lin
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Zicheng
- Department of Interal Medicine, Weiting Community Health Center of Suzhou Industrial Park, Suzhou, Jiangsu, China; and
| | - Gu Shaohua
- Department of Nephrology, Kunshan Third Hospital, Suzhou, China
| |
Collapse
|
4
|
Vasudevan P, Wolfien M, Lemcke H, Lang CI, Skorska A, Gaebel R, Galow AM, Koczan D, Lindner T, Bergmann W, Mueller-Hilke B, Vollmar B, Krause BJ, Wolkenhauer O, Steinhoff G, David R. CCR2 macrophage response determines the functional outcome following cardiomyocyte transplantation. Genome Med 2023; 15:61. [PMID: 37563727 PMCID: PMC10416392 DOI: 10.1186/s13073-023-01213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The immune response is a crucial factor for mediating the benefit of cardiac cell therapies. Our previous research showed that cardiomyocyte transplantation alters the cardiac immune response and, when combined with short-term pharmacological CCR2 inhibition, resulted in diminished functional benefit. However, the specific role of innate immune cells, especially CCR2 macrophages on the outcome of cardiomyocyte transplantation, is unclear. METHODS We compared the cellular, molecular, and functional outcome following cardiomyocyte transplantation in wildtype and T cell- and B cell-deficient Rag2del mice. The cardiac inflammatory response was assessed using flow cytometry. Gene expression profile was assessed using single-cell and bulk RNA sequencing. Cardiac function and morphology were determined using magnetic resonance tomography and immunohistochemistry respectively. RESULTS Compared to wildtype mice, Rag2del mice show an increased innate immune response at steady state and disparate macrophage response after MI. Subsequent single-cell analyses after MI showed differences in macrophage development and a lower prevalence of CCR2 expressing macrophages. Cardiomyocyte transplantation increased NK cells and monocytes, while reducing CCR2-MHC-IIlo macrophages. Consequently, it led to increased mRNA levels of genes involved in extracellular remodelling, poor graft survival, and no functional improvement. Using machine learning-based feature selection, Mfge8 and Ccl7 were identified as the primary targets underlying these effects in the heart. CONCLUSIONS Our results demonstrate that the improved functional outcome following cardiomyocyte transplantation is dependent on a specific CCR2 macrophage response. This work highlights the need to study the role of the immune response for cardiomyocyte cell therapy for successful clinical translation.
Collapse
Affiliation(s)
- Praveen Vasudevan
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Markus Wolfien
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, 18057 Rostock, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | | | - Anna Skorska
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Ralf Gaebel
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Dirk Koczan
- Core Facility for Microarray Analysis, Institute for Immunology, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Wendy Bergmann
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Brigitte Mueller-Hilke
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Olaf Wolkenhauer
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Stellenbosch Institute of Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, 7602 South Africa
| | - Gustav Steinhoff
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| |
Collapse
|
5
|
Gaebel R, Lang C, Vasudevan P, Lührs L, de Carvalho KAT, Abdelwahid E, David R. New Approaches in Heart Research: Prevention Instead of Cardiomyoplasty? Int J Mol Sci 2023; 24:ijms24109017. [PMID: 37240361 DOI: 10.3390/ijms24109017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death in industrialized nations. Due to the high number of patients and expensive treatments, according to the Federal Statistical Office (2017) in Germany, cardiovascular diseases account for around 15% of total health costs. Advanced coronary artery disease is mainly the result of chronic disorders such as high blood pressure, diabetes, and dyslipidemia. In the modern obesogenic environment, many people are at greater risk of being overweight or obese. The hemodynamic load on the heart is influenced by extreme obesity, which often leads to myocardial infarction (MI), cardiac arrhythmias, and heart failure. In addition, obesity leads to a chronic inflammatory state and negatively affects the wound-healing process. It has been known for many years that lifestyle interventions such as exercise, healthy nutrition, and smoking cessation drastically reduce cardiovascular risk and have a preventive effect against disorders in the healing process. However, little is known about the underlying mechanisms, and there is significantly less high-quality evidence compared to pharmacological intervention studies. Due to the immense potential of prevention in heart research, the cardiologic societies are calling for research work to be intensified, from basic understanding to clinical application. The topicality and high relevance of this research area are also evident from the fact that in March 2018, a one-week conference on this topic with contributions from top international scientists took place as part of the renowned "Keystone Symposia" ("New Insights into the Biology of Exercise"). Consistent with the link between obesity, exercise, and cardiovascular disease, this review attempts to draw lessons from stem-cell transplantation and preventive exercise. The application of state-of-the-art techniques for transcriptome analysis has opened new avenues for tailoring targeted interventions to very individual risk factors.
Collapse
Affiliation(s)
- Ralf Gaebel
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| | - Cajetan Lang
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| | - Praveen Vasudevan
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| | - Larissa Lührs
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Prίncipe Research Institute & Pequeno Prίncipe Faculties, Ave. Silva Jardim, P.O. Box 80240-020, Curitiba 1632, Brazil
| | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Prίncipe Research Institute & Pequeno Prίncipe Faculties, Ave. Silva Jardim, P.O. Box 80240-020, Curitiba 1632, Brazil
| | - Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| |
Collapse
|
6
|
Lang CI, Dahmen A, Vasudevan P, Lemcke H, Gäbel R, Öner A, Ince H, David R, Wolfien M. Cardiac cell therapies for the treatment of acute myocardial infarction in mice: systematic review and meta-analysis. Cytotherapy 2023; 25:640-652. [PMID: 36890093 DOI: 10.1016/j.jcyt.2023.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 03/08/2023]
Abstract
Backgound Aims: This meta-analysis aims at summarizing the whole body of research on cell therapies for acute myocardial infarction (MI) in the mouse model to bring forward ongoing research in this field of regenerative medicine. Despite rather modest effects in clinical trials, pre-clinical studies continue to report beneficial effects of cardiac cell therapies for cardiac repair following acute ischemic injury. Results: The authors' meta-analysis of data from 166 mouse studies comprising 257 experimental groups demonstrated a significant improvement in left ventricular ejection fraction of 10.21% after cell therapy compared with control animals. Subgroup analysis indicated that second-generation cell therapies such as cardiac progenitor cells and pluripotent stem cell derivatives had the highest therapeutic potential for minimizing myocardial damage post-MI. Conclusions: Whereas the vision of functional tissue replacement has been replaced by the concept of regional scar modulation in most of the investigated studies, rather basic methods for assessing cardiac function were most frequently used. Hence, future studies will highly benefit from integrating methods for assessment of regional wall properties to evolve a deeper understanding of how to modulate cardiac healing after acute MI.
Collapse
Affiliation(s)
| | - Anika Dahmen
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Praveen Vasudevan
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Ralf Gäbel
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Alper Öner
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Hüseyin Ince
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Markus Wolfien
- Institute of Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Germena G, Hinkel R. iPSCs and Exosomes: Partners in Crime Fighting Cardiovascular Diseases. J Pers Med 2021; 11:jpm11060529. [PMID: 34207562 PMCID: PMC8230331 DOI: 10.3390/jpm11060529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Understanding the mechanisms at the basis of these diseases is necessary in order to generate therapeutic approaches. Recently, cardiac tissue engineering and induced pluripotent stem cell (iPSC) reprogramming has led to a skyrocketing number of publications describing cardiovascular regeneration as a promising option for cardiovascular disease treatment. Generation of artificial tissue and organoids derived from induced pluripotent stem cells is in the pipeline for regenerative medicine. The present review summarizes the multiple approaches of heart regeneration with a special focus on iPSC application. In particular, we describe the strength of iPSCs as a tool to study the molecular mechanisms driving cardiovascular pathologies, as well as their potential in drug discovery. Moreover, we will describe some insights into novel discoveries of how stem-cell-secreted biomolecules, such as exosomes, could affect cardiac regeneration, and how the fine tuning of the immune system could be a revolutionary tool in the modulation of heart regeneration.
Collapse
Affiliation(s)
- Giulia Germena
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37077 Göttingen, Germany
- Correspondence: (G.G.); (R.H.)
| | - Rabea Hinkel
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37077 Göttingen, Germany
- Stiftung Tierärztliche Hochschule Hannover, University of Veterinary Medicine, 30559 Hannover, Germany
- Correspondence: (G.G.); (R.H.)
| |
Collapse
|
8
|
Deciphering the Code: Stem Cell-Immune Function and Cardiac Regeneration. Cells 2021; 10:cells10030592. [PMID: 33800252 PMCID: PMC8001404 DOI: 10.3390/cells10030592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
|
9
|
Chirico N, Van Laake LW, Sluijter JPG, van Mil A, Dierickx P. Cardiac circadian rhythms in time and space: The future is in 4D. Curr Opin Pharmacol 2020; 57:49-59. [PMID: 33338891 DOI: 10.1016/j.coph.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/25/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
The circadian clock synchronizes the body into 24-h cycles, thereby anticipating variations in tissue-specific diurnal tasks, such as response to increased cardiac metabolic demand during the active period of the day. As a result, blood pressure, heart rate, cardiac output, and occurrence of fatal cardiovascular events fluctuate in a diurnal manner. The heart contains different cell types that make up and reside in an environment of biochemical, mechanical, and topographical signaling. Cardiac architecture is essential for proper heart development as well as for maintenance of cell homeostasis and tissue repair. In this review, we describe the possibilities of studying circadian rhythmicity in the heart by using advanced in vitro systems that mimic the native cardiac 3D microenvironment which can be tuned in time and space. Harnessing the knowledge that originates from those in vitro models could significantly improve innovative cardiac modeling and regenerative strategies.
Collapse
Affiliation(s)
- Nino Chirico
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Linda W Van Laake
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alain van Mil
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pieterjan Dierickx
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA.
| |
Collapse
|
10
|
Jiang L, Liang J, Huang W, Wu Z, Paul C, Wang Y. Strategies and Challenges to Improve Cellular Programming-Based Approaches for Heart Regeneration Therapy. Int J Mol Sci 2020; 21:E7662. [PMID: 33081233 PMCID: PMC7589611 DOI: 10.3390/ijms21207662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Limited adult cardiac cell proliferation after cardiovascular disease, such as heart failure, hampers regeneration, resulting in a major loss of cardiomyocytes (CMs) at the site of injury. Recent studies in cellular reprogramming approaches have provided the opportunity to improve upon previous techniques used to regenerate damaged heart. Using these approaches, new CMs can be regenerated from differentiation of iPSCs (similar to embryonic stem cells), the direct reprogramming of fibroblasts [induced cardiomyocytes (iCMs)], or induced cardiac progenitors. Although these CMs have been shown to functionally repair infarcted heart, advancements in technology are still in the early stages of development in research laboratories. In this review, reprogramming-based approaches for generating CMs are briefly introduced and reviewed, and the challenges (including low efficiency, functional maturity, and safety issues) that hinder further translation of these approaches into a clinical setting are discussed. The creative and combined optimal methods to address these challenges are also summarized, with optimism that further investigation into tissue engineering, cardiac development signaling, and epigenetic mechanisms will help to establish methods that improve cell-reprogramming approaches for heart regeneration.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| |
Collapse
|