1
|
Abolhasani FS, Moein M, Rezaie N, Sheikhimehrabadi P, Shafiei M, Afkhami H, Modaresi M. Occurrence of COVID-19 in cystic fibrosis patients: a review. Front Microbiol 2024; 15:1356926. [PMID: 38694803 PMCID: PMC11061495 DOI: 10.3389/fmicb.2024.1356926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/11/2024] [Indexed: 05/04/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic ailment caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. This autosomal recessive disorder is characterized by diverse pathobiological abnormalities, such as the disorder of CFTR channels in mucosal surfaces, caused by inadequate clearance of mucus and sputum, in addition to the malfunctioning of mucous organs. However, the primary motive of mortality in CF patients is pulmonary failure, which is attributed to the colonization of opportunistic microorganisms, formation of resistant biofilms, and a subsequent decline in lung characteristics. In December 2019, the World Health Organization (WHO) declared the outbreak of the radical coronavirus disease 2019 (COVID-19) as a worldwide public health crisis, which unexpectedly spread not only within China but also globally. Given that the respiration system is the primary target of the COVID-19 virus, it is crucial to investigate the impact of COVID-19 on the pathogenesis and mortality of CF patients, mainly in the context of acute respiratory distress syndrome (ARDS). Therefore, the goal of this review is to comprehensively review the present literature on the relationship between cystic fibrosis, COVID-19 contamination, and development of ARDS. Several investigations performed during the early stages of the virus outbreak have discovered unexpected findings regarding the occurrence and effectiveness of COVID-19 in individuals with CF. Contrary to initial expectancies, the rate of infection and the effectiveness of the virus in CF patients are lower than those in the overall population. This finding may be attributed to different factors, including the presence of thick mucus, social avoidance, using remedies that include azithromycin, the fairly younger age of CF patients, decreased presence of ACE-2 receptors, and the effect of CFTR channel disorder on the replication cycle and infectivity of the virus. However, it is important to notice that certain situations, which include undergoing a transplant, can also doubtlessly boost the susceptibility of CF patients to COVID-19. Furthermore, with an increase in age in CF patients, it is vital to take into account the prevalence of the SARS-CoV-2 virus in this population. Therefore, ordinary surveillance of CF patients is vital to evaluate and save the population from the capability of transmission of the virus given the various factors that contribute to the spread of the SARS-CoV-2 outbreak in this precise organization.
Collapse
Affiliation(s)
- Fatemeh Sadat Abolhasani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Moein
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Rezaie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, School of Medicine, Shahed University, Tehran, Iran
| | - Mohammadreza Modaresi
- Pediatric Pulmonary Disease and Sleep Medicine Research Center, Pediatric Center of Excellence, Children's Medical Center, Tehran, Iran
- Cystic Fibrosis Research Center, Iran CF Foundation (ICFF), Tehran, Iran
| |
Collapse
|
2
|
Dobi D, Loberto N, Bassi R, Pistocchi A, Lunghi G, Tamanini A, Aureli M. Cross-talk between CFTR and sphingolipids in cystic fibrosis. FEBS Open Bio 2023; 13:1601-1614. [PMID: 37315117 PMCID: PMC10476574 DOI: 10.1002/2211-5463.13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023] Open
Abstract
Cystic fibrosis (CF) is the most common inherited, life-limiting disorder in Caucasian populations. It is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), which lead to an impairment of protein expression and/or function. CFTR is a chloride/bicarbonate channel expressed at the apical surface of epithelial cells of different organs. Nowadays, more than 2100 CFTR genetic variants have been described, but not all of them cause CF. However, around 80-85% of the patients worldwide are characterized by the presence, at least in one allele, of the mutation F508del. CFTR mutations cause aberrant hydration and secretion of mucus in hollow organs. In the lungs, this condition favors bacterial colonization, allowing the development of chronic infections that lead to the onset of the CF lung disease, which is the main cause of death in patients. In recent years, evidence has reported that CFTR loss of function is responsible for alterations in a particular class of bioactive lipids, called sphingolipids (SL). SL are ubiquitously present in eukaryotic cells and are mainly asymmetrically located within the external leaflet of the plasma membrane, where they organize specific platforms capable of segregating a selected number of proteins. CFTR is associated with these platforms that are fundamental for its functioning. Considering the importance of SL in CFTR homeostasis, we attempt here to provide a critical overview of the literature to determine the role of these lipids in channel stability and activity, and whether their modulation in CF could be a target for new therapeutic approaches.
Collapse
Affiliation(s)
- Dorina Dobi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Anna Tamanini
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and MovementUniversity of VeronaItaly
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| |
Collapse
|
3
|
Hajdú B, Csabai L, Márton M, Holczer M, Korcsmáros T, Kapuy O. Oscillation of Autophagy Induction under Cellular Stress and What Lies behind It, a Systems Biology Study. Int J Mol Sci 2023; 24:7671. [PMID: 37108830 PMCID: PMC10143760 DOI: 10.3390/ijms24087671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
One of the main inducers of autophagy-dependent self-cannibalism, called ULK1, is tightly regulated by the two sensor molecules of nutrient conditions and energy status, known as mTOR and AMPK kinases, respectively. Recently, we developed a freely available mathematical model to explore the oscillatory characteristic of the AMPK-mTOR-ULK1 regulatory triangle. Here, we introduce a systems biology analysis to explain in detail the dynamical features of the essential negative and double-negative feedback loops and also the periodic repeat of autophagy induction upon cellular stress. We propose an additional regulatory molecule in the autophagy control network that delays some of AMPK's effect on the system, making the model output more consistent with experimental results. Furthermore, a network analysis on AutophagyNet was carried out to identify which proteins could be the proposed regulatory components in the system. These regulatory proteins should satisfy the following rules: (1) they are induced by AMPK; (2) they promote ULK1; (3) they down-regulate mTOR upon cellular stress. We have found 16 such regulatory components that have been experimentally proven to satisfy at least two of the given rules. Identifying such critical regulators of autophagy induction could support anti-cancer- and ageing-related therapeutic efforts.
Collapse
Affiliation(s)
- Bence Hajdú
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Luca Csabai
- Earlham Institute, Norwich Research Park, Norwich NR4 7UG, UK
- Department of Genetics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Margita Márton
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Marianna Holczer
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás Korcsmáros
- Earlham Institute, Norwich Research Park, Norwich NR4 7UG, UK
- Department of Genetics, Eötvös Loránd University, 1117 Budapest, Hungary
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
4
|
Shrestha N, Rout-Pitt N, McCarron A, Jackson CA, Bulmer AC, McAinch AJ, Donnelley M, Parsons DW, Hryciw DH. Changes in Essential Fatty Acids and Ileal Genes Associated with Metabolizing Enzymes and Fatty Acid Transporters in Rodent Models of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24087194. [PMID: 37108362 PMCID: PMC10138779 DOI: 10.3390/ijms24087194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Cystic fibrosis (CF), the result of mutations in the CF transmembrane conductance regulator (CFTR), causes essential fatty acid deficiency. The aim of this study was to characterize fatty acid handling in two rodent models of CF; one strain which harbors the loss of phenylalanine at position 508 (Phe508del) in CFTR and the other lacks functional CFTR (510X). Fatty acid concentrations were determined using gas chromatography in serum from Phe508del and 510X rats. The relative expression of genes responsible for fatty acid transport and metabolism were quantified using real-time PCR. Ileal tissue morphology was assessed histologically. There was an age-dependent decrease in eicosapentaenoic acid and the linoleic acid:α-linolenic acid ratio, a genotype-dependent decrease in docosapentaenoic acid (n-3) and an increase in the arachidonic acid:docosahexaenoic acid ratio in Phe508del rat serum, which was not observed in 510X rats. In the ileum, Cftr mRNA was increased in Phe508del rats but decreased in 510X rats. Further, Elvol2, Slc27a1, Slc27a2 and Got2 mRNA were increased in Phe508del rats only. As assessed by Sirius Red staining, collagen was increased in Phe508del and 510X ileum. Thus, CF rat models exhibit alterations in the concentration of circulating fatty acids, which may be due to altered transport and metabolism, in addition to fibrosis and microscopic structural changes in the ileum.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4215, Australia
| | - Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - Alexandra McCarron
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - Courtney A Jackson
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
| | - Andrew C Bulmer
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4215, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3000, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, VIC 3021, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
| | - David W Parsons
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
| | - Deanne H Hryciw
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3000, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
5
|
Carinci M, Palumbo L, Pellielo G, Agyapong ED, Morciano G, Patergnani S, Giorgi C, Pinton P, Rimessi A. The Multifaceted Roles of Autophagy in Infectious, Obstructive, and Malignant Airway Diseases. Biomedicines 2022; 10:biomedicines10081944. [PMID: 36009490 PMCID: PMC9405571 DOI: 10.3390/biomedicines10081944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a highly conserved dynamic process by which cells deliver their contents to lysosomes for degradation, thus ensuring cell homeostasis. In response to environmental stress, the induction of autophagy is crucial for cell survival. The dysregulation of this degradative process has been implicated in a wide range of pathologies, including lung diseases, representing a relevant potential target with significant clinical outcomes. During lung disease progression and infections, autophagy may exert both protective and harmful effects on cells. In this review, we will explore the implications of autophagy and its selective forms in several lung infections, such as SARS-CoV-2, Respiratory Syncytial Virus (RSV) and Mycobacterium tuberculosis (Mtb) infections, and different lung diseases such as Cystic Fibrosis (CF), Chronic Obstructive Pulmonary Disease (COPD), and Malignant Mesothelioma (MM).
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Laura Palumbo
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giulia Pellielo
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Esther Densu Agyapong
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giampaolo Morciano
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Via Fossato di Mortara, 70, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Via Fossato di Mortara, 70, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
6
|
Nutrition in Cystic Fibrosis—Some Notes on the Fat Recommendations. Nutrients 2022; 14:nu14040853. [PMID: 35215502 PMCID: PMC8875685 DOI: 10.3390/nu14040853] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Nutrition is important in cystic fibrosis (CF) because the disease is associated with a higher energy consumption, special nutritional deficiencies, and malabsorption mainly related to pancreatic insufficiency. The clinical course with deterioration of lung function has been shown to relate to nutrition. Despite general recommendation of high energy intake, the clinical deterioration is difficult to restrain suggesting that special needs have not been identified and specified. It is well-known that the CF phenotype is associated with lipid abnormalities, especially in the essential or conditionally essential fatty acids. This review will concentrate on the qualitative aspects of fat metabolism, which has mainly been neglected in dietary fat recommendations focusing on fat quantity. For more than 60 years it has been known and confirmed that the patients have a deficiency of linoleic acid, an n-6 essential fatty acid of importance for membrane structure and function. The ratio between arachidonic acid and docosahexaenoic acid, conditionally essential fatty acids of the n-6 and n-3 series, respectively, is often increased. The recently discovered relations between the CFTR modulators and lipid metabolism raise new interests in this field and together with new technology provide possibilities to specify further specify personalized therapy.
Collapse
|
7
|
Hryciw DH, Jackson CA, Shrestha N, Parsons D, Donnelley M, McAinch AJ. Role for animal models in understanding essential fatty acid deficiency in cystic fibrosis. Cell Mol Life Sci 2021; 78:7991-7999. [PMID: 34741185 PMCID: PMC11072998 DOI: 10.1007/s00018-021-04014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Essential fatty acid deficiency has been observed in most patients with Cystic Fibrosis (CF); however, pancreatic supplementation does not restore the deficiency, suggesting a different pathology independent of the pancreas. At this time, the underlying pathological mechanisms are largely unknown. Essential fatty acids are obtained from the diet and processed by organs including the liver and intestine, two organs significantly impacted by mutations in the cystic fibrosis transmembrane conductance regulator gene (Cftr). There are several CF animal models in a variety of species that have been developed to investigate molecular mechanisms associated with the CF phenotype. Specifically, global and systemic mutations in Cftr which mimic genotypic changes identified in CF patients have been generated in mice, rats, sheep, pigs and ferrets. These mutations produce CFTR proteins with a gating defect, trafficking defect, or an absent or inactive CFTR channel. Essential fatty acids are critical to CFTR function, with a bidirectional relationship between CFTR and essential fatty acids proposed. Currently, there are limited analyses on the essential fatty acid status in most of these animal models. Of interest, in the mouse model, essential fatty acid status is dependent on the genotype and resultant phenotype of the mouse. Future investigations should identify an optimal animal model that has most of the phenotypic changes associated with CF including the essential fatty acid deficiencies, which can be used in the development of therapeutics.
Collapse
Affiliation(s)
- Deanne H Hryciw
- School of Environment and Science, Griffith University, Nathan, QLD, Australia.
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia.
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| | - Courtney A Jackson
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Nirajan Shrestha
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - David Parsons
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, VIC, Australia
| |
Collapse
|
8
|
Inhibition of Ceramide Synthesis Reduces α-Synuclein Proteinopathy in a Cellular Model of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22126469. [PMID: 34208778 PMCID: PMC8234676 DOI: 10.3390/ijms22126469] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is a proteinopathy associated with the aggregation of α-synuclein and the formation of lipid–protein cellular inclusions, named Lewy bodies (LBs). LB formation results in impaired neurotransmitter release and uptake, which involve membrane traffic and require lipid synthesis and metabolism. Lipids, particularly ceramides, are accumulated in postmortem PD brains and altered in the plasma of PD patients. Autophagy is impaired in PD, reducing the ability of neurons to clear protein aggregates, thus worsening stress conditions and inducing neuronal death. The inhibition of ceramide synthesis by myriocin (Myr) in SH-SY5Y neuronal cells treated with preformed α-synuclein fibrils reduced intracellular aggregates, favoring their sequestration into lysosomes. This was associated with TFEB activation, increased expression of TFEB and LAMP2, and the cytosolic accumulation of LC3II, indicating that Myr promotes autophagy. Myr significantly reduces the fibril-related production of inflammatory mediators and lipid peroxidation and activates NRF2, which is downregulated in PD. Finally, Myr enhances the expression of genes that control neurotransmitter transport (SNARE complex, VMAT2, and DAT), whose progressive deficiency occurs in PD neurodegeneration. The present study suggests that counteracting the accumulation of inflammatory lipids could represent a possible therapeutic strategy for PD.
Collapse
|
9
|
Signorelli P, Pivari F, Barcella M, Merelli I, Zulueta A, Dei Cas M, Rosso L, Ghidoni R, Caretti A, Paroni R, Mingione A. Myriocin modulates the altered lipid metabolism and storage in cystic fibrosis. Cell Signal 2021; 81:109928. [PMID: 33482299 DOI: 10.1016/j.cellsig.2021.109928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is a hereditary disease mostly related to ΔF508 CFTR mutation causing a proteinopathy that is characterized by multiple organ dysfunction, primarily lungs chronic inflammation, and infection. Defective autophagy and accumulation of the inflammatory lipid ceramide have been proposed as therapeutic targets. Accumulation of lipids and cholesterol was reported in the airways of CF patients, together with altered triglycerides and cholesterol levels in plasma, thus suggesting a disease-related dyslipidemia. Myriocin, an inhibitor of sphingolipids synthesis, significantly reduces inflammation and activates TFEB-induced response to stress, enhancing fatty acids oxidation and promoting autophagy. Myriocin ameliorates the response against microbial infection in CF models and patients' monocytes. Here we show that CF broncho-epithelial cells exhibit an altered distribution of intracellular lipids. We demonstrated that lipid accumulation is supported by an enhanced synthesis of fatty acids containing molecules and that Myriocin is able to reduce such accumulation. Moreover, Myriocin modulated the transcriptional profile of CF cells in order to restore autophagy, activate an anti-oxidative response, stimulate lipid metabolism and reduce lipid peroxidation. Moreover, lipid storage may be altered in CF cells, since we observed a reduced expression of lipid droplets related proteins named perilipin 3 and 5 and seipin. To note, Myriocin up-regulates the expression of genes that are involved in lipid droplets biosynthesis and maturation. We suggest that targeting sphingolipids de novo synthesis may counteract lipids accumulation by modulating CF altered transcriptional profile, thus restoring autophagy and lipid metabolism homeostasis.
Collapse
Affiliation(s)
- Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Department of Health Science, University of Milan, Milan, Italy; "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Francesca Pivari
- Biochemistry and Molecular Biology Laboratory, Department of Health Science, University of Milan, Milan, Italy
| | - Matteo Barcella
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council of Italy, Milan, Italy
| | - Aida Zulueta
- Biochemistry and Molecular Biology Laboratory, Department of Health Science, University of Milan, Milan, Italy
| | - Michele Dei Cas
- Laboratory of Clinical Biochemistry and Mass Spectrometry, Department of Health Sciences, University of Milan, Milan, Italy
| | - Lorenzo Rosso
- Thoracic surgery and transplantation Unit, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Health Sciences Department, University of Milan, Milan, Italy
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Laboratory, Department of Health Science, University of Milan, Milan, Italy; "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Anna Caretti
- Biochemistry and Molecular Biology Laboratory, Department of Health Science, University of Milan, Milan, Italy
| | - Rita Paroni
- Laboratory of Clinical Biochemistry and Mass Spectrometry, Department of Health Sciences, University of Milan, Milan, Italy
| | - Alessandra Mingione
- Biochemistry and Molecular Biology Laboratory, Department of Health Science, University of Milan, Milan, Italy; "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy.
| |
Collapse
|