1
|
Detante O, Legris L, Moisan A, Rome C. Cell Therapy and Functional Recovery of Stroke. Neuroscience 2024; 550:79-88. [PMID: 38013148 DOI: 10.1016/j.neuroscience.2023.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
Stroke is the most common cause of disability. Brain repair mechanisms are often insufficient to allow a full recovery. Stroke damage involve all brain cell type and extracellular matrix which represent the crucial "glio-neurovascular niche" useful for brain plasticity. Regenerative medicine including cell therapies hold great promise to decrease post-stroke disability of many patients, by promoting both neuroprotection and neural repair through direct effects on brain lesion and/or systemic effects such as immunomodulation. Mechanisms of action vary according to each grafted cell type: "peripheral" stem cells, such as mesenchymal stem cells (MSC), can provide paracrine trophic support, and neural stem/progenitor cells (NSC) or neurons can act as direct cells' replacements. Optimal time window, route, and doses are still debated, and may depend on the chosen medicinal product and its expected mechanism such as neuroprotection, delayed brain repair, systemic effects, or graft survival and integration in host network. MSC, mononuclear cells (MNC), umbilical cord stem cells and NSC are the most investigated. Innovative approaches are implemented concerning combinatorial approaches with growth factors and biomaterials such as injectable hydrogels which could protect a cell graft and/or deliver drugs into the post-stroke cavity at chronic stages. Through main publications of the last two decades, we provide in this review concepts and suggestions to improve future translational researches and larger clinical trials of cell therapy in stroke.
Collapse
Affiliation(s)
- Olivier Detante
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France; Stroke Unit, Neurology, CHU Grenoble Alpes, CS10217, 38043 Grenoble, France; Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France.
| | - Loic Legris
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France; Stroke Unit, Neurology, CHU Grenoble Alpes, CS10217, 38043 Grenoble, France; Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France.
| | - Anaick Moisan
- Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France; Cell Therapy and Engineering Unit, EFS Rhône Alpes, 464 route de Lancey, 38330 Saint Ismier, France.
| | - Claire Rome
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France; Stroke Unit, Neurology, CHU Grenoble Alpes, CS10217, 38043 Grenoble, France; Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
2
|
Saleh RO, Majeed AA, Margiana R, Alkadir OKA, Almalki SG, Ghildiyal P, Samusenkov V, Jabber NK, Mustafa YF, Elawady A. Therapeutic gene delivery by mesenchymal stem cell for brain ischemia damage: Focus on molecular mechanisms in ischemic stroke. Cell Biochem Funct 2024; 42:e3957. [PMID: 38468129 DOI: 10.1002/cbf.3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Cerebral ischemic damage is prevalent and the second highest cause of death globally across patient populations; it is as a substantial reason of morbidity and mortality. Mesenchymal stromal cells (MSCs) have garnered significant interest as a potential treatment for cerebral ischemic damage, as shown in ischemic stroke, because of their potent intrinsic features, which include self-regeneration, immunomodulation, and multi-potency. Additionally, MSCs are easily obtained, isolated, and cultured. Despite this, there are a number of obstacles that hinder the effectiveness of MSC-based treatment, such as adverse microenvironmental conditions both in vivo and in vitro. To overcome these obstacles, the naïve MSC has undergone a number of modification processes to enhance its innate therapeutic qualities. Genetic modification and preconditioning modification (with medications, growth factors, and other substances) are the two main categories into which these modification techniques can be separated. This field has advanced significantly and is still attracting attention and innovation. We examine these cutting-edge methods for preserving and even improving the natural biological functions and therapeutic potential of MSCs in relation to adhesion, migration, homing to the target site, survival, and delayed premature senescence. We address the use of genetically altered MSC in stroke-induced damage. Future strategies for improving the therapeutic result and addressing the difficulties associated with MSC modification are also discussed.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ola Kamal A Alkadir
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Vadim Samusenkov
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Yan Y, Wang Z, Liu X, Han S, Li J, Zhang Y, Zhao L. Identification of brain endothelial cell-specific genes and pathways in ischemic stroke by integrated bioinformatical analysis. Brain Circ 2023; 9:228-239. [PMID: 38284111 PMCID: PMC10821689 DOI: 10.4103/bc.bc_40_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is a life-threatening condition with limited treatment options; thus, finding the potential key genes for novel therapeutic targets is urgently needed. This study aimed to explore novel candidate genes and pathways of brain microvessel endothelial cells (ECs) in IS by bioinformatics analysis. MATERIALS AND METHODS The gene expression profiles of brain tissues or brain ECs in IS mice were downloaded from the online gene expression omnibus (GEO) to obtain the differentially expressed genes (DEGs) by R software. Functional enrichment analyses were used to cluster the functions and signaling pathways of the DEGs, while DEG-associated protein-protein interaction network was performed to identify hub genes. The target microRNAs and competitive endogenous RNA networks of key hub genes were constructed by Cytoscape. RESULTS Totally 84 DEGs were obtained from 6 brain tissue samples and 4 brain vascular EC samples both from IS mice in the datasets GSE74052 and GSE137482, with significant enrichment in immune responses, such as immune system processes and T-cell activation. Eight hub genes filtered by Cytoscape were validated by two other GEO datasets, wherein key genes of interest were verified by reverse transcription-polymerase chain reaction using an in vitro ischemic model of EC cultures. Our data indicated that AURKA and CENPF might be potential therapeutic target genes for IS, and Malat1/Snhg12/Xist-miR-297b-3p-CENPF, as well as Mir17 hg-miR-34b-3p-CENPF, might be RNA regulatory pathways to control IS progression. CONCLUSIONS Our work identified two brain EC-specific expressed genes in IS, namely, AURKA and CENPF, as potential gene targets for IS treatment. In addition, we presented miR-297b-3p/miR-34b-3p-CENPF as the potential RNA regulatory axes to prevent pathogenesis of IS.
Collapse
Affiliation(s)
- Yi Yan
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Zhaohui Wang
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Xiao Liu
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Song Han
- Department of Neurobiology, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Neurobiology, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Li Zhao
- Department of Neurobiology, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Tian Y, Niu HT, Li MH, Wang YZ. Effect of VEGF on neurological impairment and prognosis of acute cerebral infarction patients: A retrospective case-control study. Medicine (Baltimore) 2023; 102:e29835. [PMID: 36820574 PMCID: PMC9907990 DOI: 10.1097/md.0000000000029835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
OBJECTIVE Due to the complex pathological mechanism of acute cerebral infarction, the role of vascular endothelial growth factor (VEGF) on the disease is not clear. Therefore, a retrospective case-control study was performed to explore the effect of VEGF on neurological impairment and prognosis of acute cerebral infarction patients. METHOD A total of 100 patients with acute cerebral infarction admitted to our hospital from April 2021 to April 2022 were selected. Blood samples from all patients would be routinely collected to detect the expression of serum VEGF. Pearson chi-square, Spearman correlation and univariate Logistic regression were used to analyze the clinical data to explore the relationship between VEGF expression and basic information, stroke degree, quality of life, and prognosis of patients. To determine whether VEGF can provide relevant basis for the early prevention and prognostic treatment of acute cerebral infarction. And multivariate logistic regression was used to calculate the odds ratio between each variable and VEGF expression. RESULTS Pearson chi-square test and Spearman correlation coefficient showed that sex, degree of stroke, limb convulsions, loss of consciousness, hemiplegia, aphasia, mental functioning score, overall quality of life score, and short-term prognosis were significantly correlated with VEGF expression in 100 patients. Univariate logistic regression was used to describe the ORs and 95% confidence interval of subjects at the univariate level, and the degree of stroke (OR = 83.333, P < 0.001), tic of limbs (OR = 26.316, P < 0.001), loss of consciousness (OR = 23.256, P < 0.001), hemiplegia (OR = 62.500, P < 0.001), aphasia (OR = 76.923, P < 0.001), mental functioning score (OR = 7.937, P < 0.001), overall quality of life score (OR = 5.464, P < 0.001), short-term prognosis (OR = 37.037, P < 0.001) was significantly correlated with the high expression of VEGF. CONCLUSIONS The level of serum VEGF was positively correlated with neurological impairment degree and prognosis in patients with acute cerebral infarction, the more severe the degree of stroke and the worse the prognosis.
Collapse
Affiliation(s)
- Yong Tian
- Department of neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei province, P.R. China
- * Correspondence: Yong Tian, Department of neurosurgery, Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou, Hebei 061000, P.R. China (e-mail: )
| | - Hai-Tao Niu
- Department of neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei province, P.R. China
| | - Ming-Hang Li
- Department of neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei province, P.R. China
| | - Yang-Zhou Wang
- Department of neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei province, P.R. China
| |
Collapse
|
5
|
Farhoudi M, Sadigh-Eteghad S, Farjami A, Salatin S. Nanoparticle and Stem Cell Combination Therapy for the Management of Stroke. Curr Pharm Des 2023; 29:15-29. [PMID: 36515043 DOI: 10.2174/1381612829666221213113119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022]
Abstract
Stroke is currently one of the primary causes of morbidity and mortality worldwide. Unfortunately, the available treatments for stroke are still extremely limited. Indeed, stem cell (SC) therapy is a new option for the treatment of stroke that could significantly expand the therapeutic time window of stroke. Some proposed mechanisms for stroke-based SC therapy are the incorporation of SCs into the host brain to replace dead or damaged cells/tissues. Moreover, acute cell delivery can inhibit apoptosis and decrease lesion size, providing immunomudolatory and neuroprotection effects. However, several major SC problems related to SCs such as homing, viability, uncontrolled differentiation, and possible immune response, have limited SC therapy. A combination of SC therapy with nanoparticles (NPs) can be a solution to address these challenges. NPs have received considerable attention in regulating and controlling the behavior of SCs because of their unique physicochemical properties. By reviewing the pathophysiology of stroke and the therapeutic benefits of SCs and NPs, we hypothesize that combined therapy will offer a promising future in the field of stroke management. In this work, we discuss recent literature in SC research combined with NP-based strategies that may have a synergistic outcome after stroke incidence.
Collapse
Affiliation(s)
- Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Berlet R, Galang Cabantan DA, Gonzales-Portillo D, Borlongan CV. Enriched Environment and Exercise Enhance Stem Cell Therapy for Stroke, Parkinson’s Disease, and Huntington’s Disease. Front Cell Dev Biol 2022; 10:798826. [PMID: 35309929 PMCID: PMC8927702 DOI: 10.3389/fcell.2022.798826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cells, specifically embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), induced pluripotent stem cells (IPSCs), and neural progenitor stem cells (NSCs), are a possible treatment for stroke, Parkinson’s disease (PD), and Huntington’s disease (HD). Current preclinical data suggest stem cell transplantation is a potential treatment for these chronic conditions that lack effective long-term treatment options. Finding treatments with a wider therapeutic window and harnessing a disease-modifying approach will likely improve clinical outcomes. The overarching concept of stem cell therapy entails the use of immature cells, while key in recapitulating brain development and presents the challenge of young grafted cells forming neural circuitry with the mature host brain cells. To this end, exploring strategies designed to nurture graft-host integration will likely enhance the reconstruction of the elusive neural circuitry. Enriched environment (EE) and exercise facilitate stem cell graft-host reconstruction of neural circuitry. It may involve at least a two-pronged mechanism whereby EE and exercise create a conducive microenvironment in the host brain, allowing the newly transplanted cells to survive, proliferate, and differentiate into neural cells; vice versa, EE and exercise may also train the transplanted immature cells to learn the neurochemical, physiological, and anatomical signals in the brain towards better functional graft-host connectivity.
Collapse
Affiliation(s)
- Reed Berlet
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | | | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Cesar V. Borlongan,
| |
Collapse
|
7
|
Ma Y, Yang S, He Q, Zhang D, Chang J. The Role of Immune Cells in Post-Stroke Angiogenesis and Neuronal Remodeling: The Known and the Unknown. Front Immunol 2022; 12:784098. [PMID: 34975872 PMCID: PMC8716409 DOI: 10.3389/fimmu.2021.784098] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Following a cerebral ischemic event, substantial alterations in both cellular and molecular activities occur due to ischemia-induced cerebral pathology. Mounting evidence indicates that the robust recruitment of immune cells plays a central role in the acute stage of stroke. Infiltrating peripheral immune cells and resident microglia mediate neuronal cell death and blood-brain barrier disruption by releasing inflammation-associated molecules. Nevertheless, profound immunological effects in the context of the subacute and chronic recovery phase of stroke have received little attention. Early attempts to curtail the infiltration of immune cells were effective in mitigating brain injury in experimental stroke studies but failed to exert beneficial effects in clinical trials. Neural tissue damage repair processes include angiogenesis, neurogenesis, and synaptic remodeling, etc. Post-stroke inflammatory cells can adopt divergent phenotypes that influence the aforementioned biological processes in both endothelial and neural stem cells by either alleviating acute inflammatory responses or secreting a variety of growth factors, which are substantially involved in the process of angiogenesis and neurogenesis. To better understand the multiple roles of immune cells in neural tissue repair processes post stroke, we review what is known and unknown regarding the role of immune cells in angiogenesis, neurogenesis, and neuronal remodeling. A comprehensive understanding of these inflammatory mechanisms may help identify potential targets for the development of novel immunoregulatory therapeutic strategies that ameliorate complications and improve functional rehabilitation after stroke.
Collapse
Affiliation(s)
- Yinzhong Ma
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shilun Yang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qianyan He
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Dianhui Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
8
|
Bai X, Liu X, Wu H, Feng J, Chen H, Zhou D. CircFUNDC1 knockdown alleviates oxygen-glucose deprivation-induced human brain microvascular endothelial cell injuries by inhibiting PTEN via miR-375. Neurosci Lett 2021; 770:136381. [PMID: 34906568 DOI: 10.1016/j.neulet.2021.136381] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/03/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The maintenance of human brain microvascular endothelial cell (HBMEC) function is crucial to improve the outcomes of ischemic stroke (IS). Emerging evidence shows that circular RNAs (circRNAs) are involved in IS progression. This study aimed to investigate the role of circRNA FUN14 domain containing 1 (circFUNDC1) in oxygen-glucose deprivation (OGD)-treated HBMECs. METHODS The expression of circFUNDC1, miR-375 and phosphatase and tensin homolog (PTEN) mRNA was detected by quantitative real-time PCR (qPCR). Cell viability, apoptosis, migration and angiogenesis were determined by CCK-8 assay, flow cytometry assay, transwell assay and tube formation assay. The protein level of PTEN was detected by western blot. The relationship between miR-375 and circFUNDC1 or PTEN was confirmed by pull-down assay, dual-luciferase reporter assay and RIP assay. Exosomes were identified by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). RESULTS CircFUNDC1 expression was increased in peripheral blood of IS patients and OGD-treated HBMECs. CircFUNDC1 knockdown alleviated OGD-induced cell apoptosis and promoted OGD-blocked cell viability, migration and angiogenesis of HBMECs. MiR-375 was a target of circFUNDC1, and miR-375 restoration played similar effects with circFUNDC1 knockdown. The inhibition of miR-375 reversed the effects of circFUNDC1 knockdown. In addition, PTEN was a downstream target of miR-375, and PTEN overexpression abolished the effects of miR-375 restoration. The expression of circFUNDC1 was elevated in serum-derived exosomes of IS patients, and circFUNDC1 harbored diagnostic values. CONCLUSION CircFUNDC1 knockdown alleviates OGD-induced HBMECs injuries by inhibiting PTEN via enriching miR-375.
Collapse
Affiliation(s)
- Xiumei Bai
- Pharmaceutical Department, Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong, China
| | - Xi Liu
- Pharmaceutical Department, Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong, China
| | - Haixia Wu
- Department of Circulatory Medicine, Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong, China
| | - Jiaqing Feng
- Department of Endocrinology, Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong, China
| | - Hua Chen
- Department of Neurosurgery, Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong, China
| | - Diangui Zhou
- Department of Neurology, Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong, China.
| |
Collapse
|
9
|
Sadanandan N, Shear A, Brooks B, Saft M, Cabantan DAG, Kingsbury C, Zhang H, Anthony S, Wang ZJ, Salazar FE, Lezama Toledo AR, Rivera Monroy G, Vega Gonzales-Portillo J, Moscatello A, Lee JY, Borlongan CV. Treating Metastatic Brain Cancers With Stem Cells. Front Mol Neurosci 2021; 14:749716. [PMID: 34899179 PMCID: PMC8651876 DOI: 10.3389/fnmol.2021.749716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy may present an effective treatment for metastatic brain cancer and glioblastoma. Here we posit the critical role of a leaky blood-brain barrier (BBB) as a key element for the development of brain metastases, specifically melanoma. By reviewing the immunological and inflammatory responses associated with BBB damage secondary to tumoral activity, we identify the involvement of this pathological process in the growth and formation of metastatic brain cancers. Likewise, we evaluate the hypothesis of regenerating impaired endothelial cells of the BBB and alleviating the damaged neurovascular unit to attenuate brain metastasis, using the endothelial progenitor cell (EPC) phenotype of bone marrow-derived mesenchymal stem cells. Specifically, there is a need to evaluate the efficacy for stem cell therapy to repair disruptions in the BBB and reduce inflammation in the brain, thereby causing attenuation of metastatic brain cancers. To establish the viability of stem cell therapy for the prevention and treatment of metastatic brain tumors, it is crucial to demonstrate BBB repair through augmentation of vasculogenesis and angiogenesis. BBB disruption is strongly linked to metastatic melanoma, worsens neuroinflammation during metastasis, and negatively influences the prognosis of metastatic brain cancer. Using stem cell therapy to interrupt inflammation secondary to this leaky BBB represents a paradigm-shifting approach for brain cancer treatment. In this review article, we critically assess the advantages and disadvantages of using stem cell therapy for brain metastases and glioblastoma.
Collapse
Affiliation(s)
| | - Alex Shear
- University of Florida, Gainesville, FL, United States
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Madeline Saft
- University of Michigan, Ann Arbor, MI, United States
| | | | - Chase Kingsbury
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Henry Zhang
- University of Florida, Gainesville, FL, United States
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | | | - Alexa Moscatello
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
10
|
Yang D, Yang R, Shen J, Huang L, Men S, Wang T. Sinensetin attenuates oxygen-glucose deprivation/reperfusion-induced neurotoxicity by MAPK pathway in human cerebral microvascular endothelial cells. J Appl Toxicol 2021; 42:683-693. [PMID: 34664717 DOI: 10.1002/jat.4250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022]
Abstract
Sinensetin is a polymethoxylated flavone with anti-inflammatory and anti-oxidative activities. This work aimed to explore the function and mechanism of sinensetin in oxygen and glucose deprivation/reperfusion (OGD/R)-induced neurotoxicity. The overlapping target genes of cerebral stroke and sinensetin were determined according to GeneCards and ParmMapper tools and were subjected to Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Human cerebral microvascular endothelial cells (HCMECs) were stimulated with OGD/R. Neurotoxicity was investigated by Cell Counting Kit-8, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) level, qRT-PCR, and TUNEL analysis. The proteins (p38, JNK, and ERK) in mitogen-activated protein kinase (MAPK) signaling were measured using Western blotting. Total of 50 overlapping target genes of cerebral stroke and sinensetin were predicted. Pathway analysis showed they might be involved in the MAPK pathway. Sinensetin attenuated OGD/R-induced neurotoxicity by mitigating viability reduction, LDH release, ROS generation, inflammatory response, and apoptosis in HCMECs. Sinensetin weakened OGD/R-induced activation of the MAPK pathway via decreasing the phosphorylation of p38, JNK, and ERK. The pathway inhibitors mitigated the activation of the MAPK signaling, and sinensetin exacerbated this effect. The inhibitors reversed OGD/R-induced neurotoxicity in HCMECs, and sinensetin contributed to this role. Overall, sinensetin prevents OGD/R-induced neurotoxicity through decreasing the activation of MAPK pathway.
Collapse
Affiliation(s)
- Dong Yang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Ronggang Yang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Jiangyi Shen
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Lu Huang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Shuai Men
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Tiancai Wang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| |
Collapse
|
11
|
Stem Cells to the Rescue: Development and Application of Cell-Based Therapy for Microvascular Repair. Cells 2021; 10:cells10082144. [PMID: 34440914 PMCID: PMC8393633 DOI: 10.3390/cells10082144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022] Open
|