1
|
Horonyova P, Durisova I, Cermakova P, Babelova L, Buckova B, Sofrankova L, Valachovic M, Hsu YHH, Balazova M. The subtherapeutic dose of valproic acid induces the activity of cardiolipin-dependent proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149501. [PMID: 39079622 DOI: 10.1016/j.bbabio.2024.149501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
A mood-stabilizing anticonvulsant valproic acid (VPA) is a drug with a pleiotropic effect on cells. Here, we describe the impact of VPA on the metabolic function of human HAP1 cells. We show that VPA altered the biosynthetic pathway of cardiolipin (CL) and affected the activities of mitochondrial enzymes such as pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and NADH dehydrogenase. We demonstrate that a therapeutic dose of VPA (0.6 mM) has a harmful effect on cell growth and increases the production of reactive oxygen species and superoxides. On the contrary, less concentrated VPA (0.06 mM) increased the activities of CL-dependent enzymes leading to an increased level of oxidative phosphorylation and ATP production. The effect of VPA was also tested on the Barth syndrome model, which is characterized by a reduced amount of CL and an increased level of monolyso-CL. In this model, VPA treatment slightly attenuated the mitochondrial defects by altering the activities of CL-dependent enzymes. However, the presence of CL was essential for the increase in ATP production by VPA. Our findings highlight the potential therapeutic role of VPA in normalizing mitochondrial function in BTHS and shed light on the intricate interplay between lipid metabolism and mitochondrial physiology in health and disease. SUMMARY: This study investigates the dose-dependent effect of valproate, a mood-stabilizing drug, on mitochondrial function. The therapeutic concentration reduced overall cellular metabolic activity, while a subtherapeutic concentration notably improved the function of cardiolipin-dependent proteins within mitochondria. These findings shed light on novel aspects of valproate's effect and suggest potential practical applications for its use. By elucidating the differential effects of valproate doses on mitochondrial activity, this research underscores the drug's multifaceted role in cellular metabolism and highlights avenues for further exploration in therapeutic interventions.
Collapse
Affiliation(s)
- Paulina Horonyova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivana Durisova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Cermakova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lenka Babelova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Buckova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lucia Sofrankova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Slovakia
| | - Martin Valachovic
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Maria Balazova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
2
|
Wei J, Zhang M, Wang X, Yang K, Xiao Q, Zhu X, Pan X. Role of cardiolipin in regulating and treating atherosclerotic cardiovascular diseases. Eur J Pharmacol 2024; 979:176853. [PMID: 39067567 DOI: 10.1016/j.ejphar.2024.176853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Cardiovascular diseases, mainly caused by atherosclerosis, are the leading causes of morbidity and mortality worldwide. Despite the discrepancies in clinical manifestations between different abnormalities, atherosclerosis shares similar pathophysiological processes, such as mitochondrial dysfunction. Cardiolipin (CL) is a conserved mitochondria-specific lipid that contributes to the cristae structure of the inner mitochondrial membrane (IMM). Alterations in the CL, including oxidative modification, reduced quantity, and abnormal localization, contribute to the onset and progression of atherosclerosis. In this review, we summarize the knowledge that CL is involved in the pathogenesis of atherosclerosis. On the one hand, CL and its oxidative modification promote the progression of atherosclerosis via several mechanisms, including oxidative stress, apoptosis, and inflammation in response to stress. On the other hand, CL externalizes to the outer mitochondrial membrane (OMM) and acts as the pivotal "eat-me" signal in mitophagy, removing dysfunctional mitochondria and safeguarding against the progression of atherosclerosis. Given the imbalance between proatherogenic and antiatherogenic effects, we provide our understanding of the roles of the CL and its oxidative modification in atherosclerotic cardiovascular diseases, in addition to potential therapeutic strategies aimed at restoring the CL. Briefly, CL is far more than a structural IMM lipid; broader significances of the evolutionarily conserved lipid need to be explored.
Collapse
Affiliation(s)
- Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Russo S, De Rasmo D, Rossi R, Signorile A, Lobasso S. SS-31 treatment ameliorates cardiac mitochondrial morphology and defective mitophagy in a murine model of Barth syndrome. Sci Rep 2024; 14:13655. [PMID: 38871974 DOI: 10.1038/s41598-024-64368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Barth syndrome (BTHS) is a lethal rare genetic disorder, which results in cardiac dysfunction, severe skeletal muscle weakness, immune issues and growth delay. Mutations in the TAFAZZIN gene, which is responsible for the remodeling of the phospholipid cardiolipin (CL), lead to abnormalities in mitochondrial membrane, including alteration of mature CL acyl composition and the presence of monolysocardiolipin (MLCL). The dramatic increase in the MLCL/CL ratio is the hallmark of patients with BTHS, which is associated with mitochondrial bioenergetics dysfunction and altered membrane ultrastructure. There are currently no specific therapies for BTHS. Here, we showed that cardiac mitochondria isolated from TAFAZZIN knockdown (TazKD) mice presented abnormal ultrastructural membrane morphology, accumulation of vacuoles, pro-fission conditions and defective mitophagy. Interestingly, we found that in vivo treatment of TazKD mice with a CL-targeted small peptide (named SS-31) was able to restore mitochondrial morphology in tafazzin-deficient heart by affecting specific proteins involved in dynamic process and mitophagy. This agrees with our previous data showing an improvement in mitochondrial respiratory efficiency associated with increased supercomplex organization in TazKD mice under the same pharmacological treatment. Taken together our findings confirm the beneficial effect of SS-31 in the amelioration of tafazzin-deficient dysfunctional mitochondria in a BTHS animal model.
Collapse
Affiliation(s)
- Silvia Russo
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Pl. G. Cesare 11, 70124, Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) , National Research Council (CNR), Bari, Italy
| | - Roberta Rossi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Pl. G. Cesare 11, 70124, Bari, Italy.
| | - Simona Lobasso
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Pl. G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
4
|
Rainey NE, Armand AS, Petit PX. Sodium arsenite and arsenic trioxide differently affect the oxidative stress of lymphoblastoid cells: An intricate crosstalk between mitochondria, autophagy and cell death. PLoS One 2024; 19:e0302701. [PMID: 38728286 PMCID: PMC11086853 DOI: 10.1371/journal.pone.0302701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Although the toxicity of arsenic depends on its chemical forms, few studies have taken into account the ambiguous phenomenon that sodium arsenite (NaAsO2) acts as a potent carcinogen while arsenic trioxide (ATO, As2O3) serves as an effective therapeutic agent in lymphoma, suggesting that NaAsO2 and As2O3 may act via paradoxical ways to either promote or inhibit cancer pathogenesis. Here, we compared the cellular response of the two arsenical compounds, NaAsO2 and As2O3, on the Burkitt lymphoma cell model, the Epstein Barr Virus (EBV)-positive P3HR1 cells. Using flow cytometry and biochemistry analyses, we showed that a NaAsO2 treatment induces P3HR1 cell death, combined with drastic drops in ΔΨm, NAD(P)H and ATP levels. In contrast, As2O3-treated cells resist to cell death, with a moderate reduction of ΔΨm, NAD(P)H and ATP. While both compounds block cells in G2/M and affect their protein carbonylation and lipid peroxidation, As2O3 induces a milder increase in superoxide anions and H2O2 than NaAsO2, associated to a milder inhibition of antioxidant defenses. By electron microscopy, RT-qPCR and image cytometry analyses, we showed that As2O3-treated cells display an overall autophagic response, combined with mitophagy and an unfolded protein response, characteristics that were not observed following a NaAsO2 treatment. As previous works showed that As2O3 reactivates EBV in P3HR1 cells, we treated the EBV- Ramos-1 cells and showed that autophagy was not induced in these EBV- cells upon As2O3 treatment suggesting that the boost of autophagy observed in As2O3-treated P3HR1 cells could be due to the presence of EBV in these cells. Overall, our results suggest that As2O3 is an autophagic inducer which action is enhanced when EBV is present in the cells, in contrast to NaAsO2, which induces cell death. That's why As2O3 is combined with other chemicals, as all-trans retinoic acid, to better target cancer cells in therapeutic treatments.
Collapse
Affiliation(s)
- Nathan Earl Rainey
- CNRS UMR 8003 Paris University, SSPIN, Neuroscience Institute, Team “Mitochondria, Apoptosis and Autophagy Signaling”, Campus Saint-Germain, Paris, France
| | - Anne-Sophie Armand
- INSERM U1151, Institut Necker Enfants Malades (INEM), Campus Necker, Université Paris Cité, Paris, France
| | - Patrice X. Petit
- CNRS UMR 8003 Paris University, SSPIN, Neuroscience Institute, Team “Mitochondria, Apoptosis and Autophagy Signaling”, Campus Saint-Germain, Paris, France
| |
Collapse
|
5
|
Oyarbide U, Crane GM, Corey SJ. The metabolic basis of inherited neutropenias. Br J Haematol 2024; 204:45-55. [PMID: 38049194 DOI: 10.1111/bjh.19192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
Neutrophils are the shortest-lived blood cells, which requires a prodigious degree of proliferation and differentiation to sustain physiologically sufficient numbers and be poised to respond quickly to infectious emergencies. More than 107 neutrophils are produced every minute in an adult bone marrow-a process that is tightly regulated by a small group of cytokines and chemical mediators and dependent on nutrients and energy. Like granulocyte colony-stimulating factor, the primary growth factor for granulopoiesis, they stimulate signalling pathways, some affecting metabolism. Nutrient or energy deficiency stresses the survival, proliferation, and differentiation of neutrophils and their precursors. Thus, it is not surprising that monogenic disorders related to metabolism exist that result in neutropenia. Among these are pathogenic mutations in HAX1, G6PC3, SLC37A4, TAFAZZIN, SBDS, EFL1 and the mitochondrial disorders. These mutations perturb carbohydrate, lipid and/or protein metabolism. We hypothesize that metabolic disturbances may drive the pathogenesis of a subset of inherited neutropenias just as defects in DNA damage response do in Fanconi anaemia, telomere maintenance in dyskeratosis congenita and ribosome formation in Diamond-Blackfan anaemia. Greater understanding of metabolic pathways in granulopoiesis will identify points of vulnerability in production and may point to new strategies for the treatment of neutropenias.
Collapse
Affiliation(s)
- Usua Oyarbide
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pediatrics, Cleveland Clinic, Cleveland, Ohio, USA
| | - Genevieve M Crane
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Seth J Corey
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pediatrics, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Wann SR, Lo HR, Chang YT, Liao JB, Wen ZH, Chi PL. P2X7 receptor blockade reduces pyroptotic inflammation and promotes phagocytosis in Vibrio vulnificus infection. J Cell Physiol 2023; 238:2316-2334. [PMID: 37724600 DOI: 10.1002/jcp.31114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 09/21/2023]
Abstract
Vibrio vulnificus, a gram-negative bacterium, causes serious wound infections and septicemia. Once it develops into early phase sepsis, hyperinflammatory immune responses result in poor prognosis in patients. The present study aimed to examine the possible underlying pathogenic mechanism and explore potential agents that could protect against V. vulnificus cytotoxicity. Here, we report that infection of mouse macrophages with V. vulnificus triggers antiphagocytic effects and pyroptotic inflammation via ATP-mediated purinergic P2X7 receptor (P2X7R) signaling. V. vulnificus promoted P2X7-dependent nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 translocation, modulating the expression of the inflammasome sensor NLR family pyrin domain containing 3 (NLRP3), adaptor apoptosis-associated speck-like protein containing a card (ASC), and pyroptotic protein gasdermin D (GSDMD) in mouse macrophages. V. vulnificus induced the NLRP3/caspase-1 inflammasome signaling complex expression that drives GSDMD transmembrane pore formation and secretion of interleukin (IL)-1β, IL-18, and macrophage inflammatory protein-2 (MIP-2). This effect was blocked by P2X7R antagonists, indicating that the P2X7R mediates GSDMD-related pyroptotic inflammation in macrophages through the NF-κB/NLRP3/caspase-1 signaling pathway. Furthermore, blockade of P2X7R reduced V. vulnificus-colony-forming units in the spleen, immune cell infiltration into the skin and lung tissues, and serum concentrations of IL-1β, IL-18, and MIP-2 in mice. These results indicate that P2X7R plays a vital role in mediating phagocytosis by macrophages and pyroptotic inflammation during V. vulnificus infection and provides new opportunities for therapeutic intervention in bacterial infections.
Collapse
Affiliation(s)
- Shue-Ren Wann
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- Department of Medicine, Pingtung Veterans General Hospital, Pingtung City, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Horng-Ren Lo
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung City, Taiwan
| | - Yun-Te Chang
- Department of Emergency & Critical Care Medicine, Pingtung Veterans General Hospital, Pingtung City, Taiwan
| | - Jia-Bin Liao
- Department of Pathology and Laboratory, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
7
|
Basu L, Bhagat V, Ching MEA, Di Giandomenico A, Dostie S, Greenberg D, Greenberg M, Hahm J, Hilton NZ, Lamb K, Jentz EM, Larsen M, Locatelli CAA, Maloney M, MacGibbon C, Mersali F, Mulchandani CM, Najam A, Singh I, Weisz T, Wong J, Senior PA, Estall JL, Mulvihill EE, Screaton RA. Recent Developments in Islet Biology: A Review With Patient Perspectives. Can J Diabetes 2023; 47:207-221. [PMID: 36481263 PMCID: PMC9640377 DOI: 10.1016/j.jcjd.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Navigating the coronavirus disease-2019 (COVID-19, now COVID) pandemic has required resilience and creativity worldwide. Despite early challenges to productivity, more than 2,000 peer-reviewed articles on islet biology were published in 2021. Herein, we highlight noteworthy advances in islet research between January 2021 and April 2022, focussing on 5 areas. First, we discuss new insights into the role of glucokinase, mitogen-activated protein kinase-kinase/extracellular signal-regulated kinase and mitochondrial function on insulin secretion from the pancreatic β cell, provided by new genetically modified mouse models and live imaging. We then discuss a new connection between lipid handling and improved insulin secretion in the context of glucotoxicity, focussing on fatty acid-binding protein 4 and fetuin-A. Advances in high-throughput "omic" analysis evolved to where one can generate more finely tuned genetic and molecular profiles within broad classifications of type 1 diabetes and type 2 diabetes. Next, we highlight breakthroughs in diabetes treatment using stem cell-derived β cells and innovative strategies to improve islet survival posttransplantation. Last, we update our understanding of the impact of severe acute respiratory syndrome-coronavirus-2 infection on pancreatic islet function and discuss current evidence regarding proposed links between COVID and new-onset diabetes. We address these breakthroughs in 2 settings: one for a scientific audience and the other for the public, particularly those living with or affected by diabetes. Bridging biomedical research in diabetes to the community living with or affected by diabetes, our partners living with type 1 diabetes or type 2 diabetes also provide their perspectives on these latest advances in islet biology.
Collapse
Affiliation(s)
- Lahari Basu
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Vriti Bhagat
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ma Enrica Angela Ching
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | | | - Sylvie Dostie
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Dana Greenberg
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Marley Greenberg
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Jiwon Hahm
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - N Zoe Hilton
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Krista Lamb
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Emelien M Jentz
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Matt Larsen
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Cassandra A A Locatelli
- University of Ottawa Heart Institute, Energy Substrate Laboratory, Ottawa, Ontario, Canada; Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - MaryAnn Maloney
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | | | - Farida Mersali
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | | | - Adhiyat Najam
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Ishnoor Singh
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Tom Weisz
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Jordan Wong
- Alberta Diabetes Institute and Department of Pharmacology, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Peter A Senior
- Alberta Diabetes Institute and Department of Medicine, Edmonton, Alberta, Canada
| | - Jennifer L Estall
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada; Institut de recherches cliniques de Montréal, Center for Cardiometabolic Health, Montréal, Québec, Canada
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Energy Substrate Laboratory, Ottawa, Ontario, Canada; Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert A Screaton
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW We review pathophysiology and clinical features of mitochondrial disorders manifesting with cardiomyopathy. RECENT FINDINGS Mechanistic studies have shed light into the underpinnings of mitochondrial disorders, providing novel insights into mitochondrial physiology and identifying new therapeutic targets. Mitochondrial disorders are a group of rare genetic diseases that are caused by mutations in mitochondrial DNA (mtDNA) or in nuclear genes that are essential to mitochondrial function. The clinical picture is extremely heterogeneous, the onset can occur at any age, and virtually, any organ or tissue can be involved. Since the heart relies primarily on mitochondrial oxidative metabolism to fuel contraction and relaxation, cardiac involvement is common in mitochondrial disorders and often represents a major determinant of their prognosis.
Collapse
Affiliation(s)
- Tudor-Alexandru Popoiu
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany
| | - Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany.
- Department of Internal Medicine and Specialties (Di.M.I.), University of Genoa, Genoa, Italy.
| |
Collapse
|
9
|
Zhang J, Liu X, Nie J, Shi Y. Restoration of mitophagy ameliorates cardiomyopathy in Barth syndrome. Autophagy 2022; 18:2134-2149. [PMID: 34985382 PMCID: PMC9466615 DOI: 10.1080/15548627.2021.2020979] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Barth syndrome (BTHS) is an X-linked genetic disorder caused by mutations in the TAFAZZIN/Taz gene which encodes a transacylase required for cardiolipin remodeling. Cardiolipin is a mitochondrial signature phospholipid that plays a pivotal role in maintaining mitochondrial membrane structure, respiration, mtDNA biogenesis, and mitophagy. Mutations in the TAFAZZIN gene deplete mature cardiolipin, leading to mitochondrial dysfunction, dilated cardiomyopathy, and premature death in BTHS patients. Currently, there is no effective treatment for this debilitating condition. In this study, we showed that TAFAZZIN deficiency caused hyperactivation of MTORC1 signaling and defective mitophagy, leading to accumulation of autophagic vacuoles and dysfunctional mitochondria in the heart of Tafazzin knockdown mice, a rodent model of BTHS. Consequently, treatment of TAFAZZIN knockdown mice with rapamycin, a potent inhibitor of MTORC1, not only restored mitophagy, but also mitigated mitochondrial dysfunction and dilated cardiomyopathy. Taken together, these findings identify MTORC1 as a novel therapeutic target for BTHS, suggesting that pharmacological restoration of mitophagy may provide a novel treatment for BTHS.Abbreviations: BTHS: Barth syndrome; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CL: cardiolipin; EIF4EBP1/4E-BP1: eukaryotic translation initiation factor 4E binding protein 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; KD: knockdown; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; LV: left ventricle; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; OCR: oxygen consumption rate; PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced putative kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; qRT-PCR: quantitative real-time polymerase chain reaction; RPS6KB/S6K: ribosomal protein S6 kinase beta; SQSTM1/p62: sequestosome 1; TLCL: tetralinoleoyl cardiolipin; WT: wild-type.
Collapse
Affiliation(s)
- Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xueling Liu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jia Nie
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People’s Republic of China,CONTACT Yuguang Shi Joe R. & Teresa Lozano Long Distinguished Chair in Metabolic Biology, Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center, San Antonio 4939 Charles Katz Drive, San Antonio, TX78229, USA
| |
Collapse
|
10
|
Liang Z, Schmidtke MW, Greenberg ML. Current Knowledge on the Role of Cardiolipin Remodeling in the Context of Lipid Oxidation and Barth Syndrome. Front Mol Biosci 2022; 9:915301. [PMID: 35693555 PMCID: PMC9184736 DOI: 10.3389/fmolb.2022.915301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 01/31/2023] Open
Abstract
Barth syndrome (BTHS, OMIM 302060) is a genetic disorder caused by variants of the TAFAZZIN gene (G 4.5, OMIM 300394). This debilitating disorder is characterized by cardio- and skeletal myopathy, exercise intolerance, and neutropenia. TAFAZZIN is a transacylase that catalyzes the second step in the cardiolipin (CL) remodeling pathway, preferentially converting saturated CL species into unsaturated CLs that are susceptible to oxidation. As a hallmark mitochondrial membrane lipid, CL has been shown to be essential in a myriad of pathways, including oxidative phosphorylation, the electron transport chain, intermediary metabolism, and intrinsic apoptosis. The pathological severity of BTHS varies substantially from one patient to another, even in individuals bearing the same TAFAZZIN variant. The physiological modifier(s) leading to this disparity, along with the exact molecular mechanism linking CL to the various pathologies, remain largely unknown. Elevated levels of reactive oxygen species (ROS) have been identified in numerous BTHS models, ranging from yeast to human cell lines, suggesting that cellular ROS accumulation may participate in the pathogenesis of BTHS. Although the exact mechanism of how oxidative stress leads to pathogenesis is unknown, it is likely that CL oxidation plays an important role. In this review, we outline what is known about CL oxidation and provide a new perspective linking the functional relevance of CL remodeling and oxidation to ROS mitigation in the context of BTHS.
Collapse
|
11
|
Dudek J, Maack C. Mechano-energetic aspects of Barth syndrome. J Inherit Metab Dis 2022; 45:82-98. [PMID: 34423473 DOI: 10.1002/jimd.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Energy-demanding organs like the heart are strongly dependent on oxidative phosphorylation in mitochondria. Oxidative phosphorylation is governed by the respiratory chain located in the inner mitochondrial membrane. The inner mitochondrial membrane is the only cellular membrane with significant amounts of the phospholipid cardiolipin, and cardiolipin was found to directly interact with a number of essential protein complexes, including respiratory chain complexes I to V. An inherited defect in the biogenesis of cardiolipin causes Barth syndrome, which is associated with cardiomyopathy, skeletal myopathy, neutropenia and growth retardation. Energy conversion is dependent on reducing equivalents, which are replenished by oxidative metabolism in the Krebs cycle. Cardiolipin deficiency in Barth syndrome also affects Krebs cycle activity, metabolite transport and mitochondrial morphology. During excitation-contraction coupling, calcium (Ca2+ ) released from the sarcoplasmic reticulum drives sarcomeric contraction. At the same time, Ca2+ influx into mitochondria drives the activation of Krebs cycle dehydrogenases and the regeneration of reducing equivalents. Reducing equivalents are essential not only for energy conversion, but also for maintaining a redox buffer, which is required to detoxify reactive oxygen species (ROS). Defects in CL may also affect Ca2+ uptake into mitochondria and thereby hamper energy supply and demand matching, but also detoxification of ROS. Here, we review the impact of cardiolipin deficiency on mitochondrial function in Barth syndrome and discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Oemer G, Koch J, Wohlfarter Y, Lackner K, Gebert REM, Geley S, Zschocke J, Keller MA. The lipid environment modulates cardiolipin and phospholipid constitution in wild type and tafazzin-deficient cells. J Inherit Metab Dis 2022; 45:38-50. [PMID: 34494285 DOI: 10.1002/jimd.12433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022]
Abstract
Deficiency of the transacylase tafazzin due to loss of function variants in the X-chromosomal TAFAZZIN gene causes Barth syndrome (BTHS) with severe neonatal or infantile cardiomyopathy, neutropenia, myopathy, and short stature. The condition is characterized by drastic changes in the composition of cardiolipins, a mitochondria-specific class of phospholipids. Studies examining the impact of tafazzin deficiency on the metabolism of other phospholipids have so far generated inhomogeneous and partly conflicting results. Recent studies showed that the cardiolipin composition in cells and different murine tissues is highly dependent on the surrounding lipid environment. In order to study the relevance of different lipid states and tafazzin function for cardiolipin and phospholipid homeostasis we conducted systematic modulation experiments in a CRISPR/Cas9 knock-out model for BTHS. We found that-irrespective of tafazzin function-the composition of cardiolipins strongly depends on the nutritionally available lipid pool. Tafazzin deficiency causes a consistent shift towards cardiolipin species with more saturated and shorter acyl chains. Interestingly, the typical biochemical BTHS phenotype in phospholipid profiles of HEK 293T TAZ knock-out cells strongly depends on the cellular lipid context. In response to altered nutritional lipid compositions, we measured more pronounced changes on phospholipids that were largely masked under standard cell culturing conditions, therewith giving a possible explanation for the conflicting results reported so far on BTHS lipid phenotypes.
Collapse
Affiliation(s)
- Gregor Oemer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Lackner
- Institute of Biological Chemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Rita E M Gebert
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Gottschalk B, Madreiter-Sokolowski CT, Graier WF. Cristae junction as a fundamental switchboard for mitochondrial ion signaling and bioenergetics. Cell Calcium 2022; 101:102517. [PMID: 34915234 DOI: 10.1016/j.ceca.2021.102517] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022]
Abstract
OPA1 and MICU1 are both involved in the regulation of mitochondrial Ca2+ uptake and the stabilization of the cristae junction, which separates the inner mitochondrial membrane into the interboundary membrane and the cristae membrane. In this mini-review, we focus on the synergetic control of OPA1 and MICU1 on the cristae junction that serves as a fundamental regulator of multiple mitochondrial functions. In particular, we point to the critical role of an adaptive cristae junction permeability in mitochondrial Ca2+ signaling, spatial H+ gradients and mitochondrial membrane potential, metabolic activity, and apoptosis. These characteristics bear on a distinct localization of the oxidative phosphorylation machinery, the FoF1-ATPase, and mitochondrial Ca2+uniporter (MCU) within sections of the inner mitochondrial membrane isolated by the cristae junction and regulated by proteins like OPA1 and MICU1. We specifically focus on the impact of MICU1-regulated cristae junction on the activity and distribution of MCU within the complex ultrastructure of mitochondria.
Collapse
Affiliation(s)
- Benjamin Gottschalk
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz, 8010 Austria
| | - Corina T Madreiter-Sokolowski
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz, 8010 Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz, 8010 Austria; BioTechMed, Graz.
| |
Collapse
|
14
|
Ralph-Epps T, Onu CJ, Vo L, Schmidtke MW, Le A, Greenberg ML. Studying Lipid-Related Pathophysiology Using the Yeast Model. Front Physiol 2021; 12:768411. [PMID: 34777024 PMCID: PMC8581491 DOI: 10.3389/fphys.2021.768411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023] Open
Abstract
Saccharomyces cerevisiae, commonly known as baker's yeast, is one of the most comprehensively studied model organisms in science. Yeast has been used to study a wide variety of human diseases, and the yeast model system has proved to be an especially amenable tool for the study of lipids and lipid-related pathophysiologies, a topic that has gained considerable attention in recent years. This review focuses on how yeast has contributed to our understanding of the mitochondrial phospholipid cardiolipin (CL) and its role in Barth syndrome (BTHS), a genetic disorder characterized by partial or complete loss of function of the CL remodeling enzyme tafazzin. Defective tafazzin causes perturbation of CL metabolism, resulting in many downstream cellular consequences and clinical pathologies that are discussed herein. The influence of yeast research in the lipid-related pathophysiologies of Alzheimer's and Parkinson's diseases is also summarized.
Collapse
Affiliation(s)
- Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Chisom J. Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Linh Vo
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Michael W. Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Anh Le
- Muskegon Catholic Central High School, Muskegon, MI, United States
| | - Miriam L. Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
15
|
Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets. Mol Cell Biochem 2021; 476:1605-1629. [PMID: 33415565 DOI: 10.1007/s11010-020-04021-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Barth syndrome is a rare X-linked genetic disease classically characterized by cardiomyopathy, skeletal myopathy, growth retardation, neutropenia, and 3-methylglutaconic aciduria. It is caused by mutations in the tafazzin gene localized to chromosome Xq28.12. Mutations in tafazzin may result in alterations in the level and molecular composition of the mitochondrial phospholipid cardiolipin and result in large elevations in the lysophospholipid monolysocardiolipin. The increased monolysocardiolipin:cardiolipin ratio in blood is diagnostic for the disease, and it leads to disruption in mitochondrial bioenergetics. In this review, we discuss cardiolipin structure, synthesis, and function and provide an overview of the clinical and cellular pathophysiology of Barth Syndrome. We highlight known pharmacological management for treatment of the major pathological features associated with the disease. In addition, we discuss non-pharmacological management. Finally, we highlight the most recent promising therapeutic options for this rare mitochondrial disease including lipid replacement therapy, peroxisome proliferator-activated receptor agonists, tafazzin gene replacement therapy, induced pluripotent stem cells, mitochondria-targeted antioxidants and peptides, and the polyphenolic compound resveratrol.
Collapse
|