1
|
Boyes NG, Khan MR, Luchkanych AMS, Marshall RA, Bare I, Haddad T, Abdalla S, Al-Azem IAM, Morse CJ, Zhai A, Haddad H, Marciniuk DD, Olver TD, Tomczak CR. Elevated sympathetic-mediated vasoconstriction at rest but intact functional sympatholysis during exercise in heart failure with reduced ejection fraction. Am J Physiol Heart Circ Physiol 2024; 327:H45-H55. [PMID: 38700474 DOI: 10.1152/ajpheart.00130.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Patients with heart failure with reduced ejection fraction (HFrEF) have exaggerated sympathoexcitation and impaired peripheral vascular conductance. Evidence demonstrating consequent impaired functional sympatholysis is limited in HFrEF. This study aimed to determine the magnitude of reduced limb vascular conductance during sympathoexcitation and whether functional sympatholysis would abolish such reductions in HFrEF. Twenty patients with HFrEF and 22 age-matched controls performed the cold pressor test (CPT) [left foot 2-min in -0.5 (1)°C water] alone and with right handgrip exercise (EX + CPT). Right forearm vascular conductance (FVC), forearm blood flow (FBF), and mean arterial pressure (MAP) were measured. Patients with HFrEF had greater decreases in %ΔFVC and %ΔFBF during CPT (both P < 0.0001) but not EX + CPT (P = 0.449, P = 0.199) compared with controls, respectively. %ΔFVC and %ΔFBF decreased from CPT to EX + CPT in patients with HFrEF (both P < 0.0001) and controls (P = 0.018, P = 0.015), respectively. MAP increased during CPT and EX + CPT in both groups (all P < 0.0001). MAP was greater in controls than in patients with HFrEF during EX + CPT (P = 0.025) but not CPT (P = 0.209). In conclusion, acute sympathoexcitation caused exaggerated peripheral vasoconstriction and reduced peripheral blood flow in patients with HFrEF. Handgrip exercise abolished sympathoexcitatory-mediated peripheral vasoconstriction and normalized peripheral blood flow in patients with HFrEF. These novel data reveal intact functional sympatholysis in the upper limb and suggest that exercise-mediated, local control of blood flow is preserved when cardiac limitations that are cardinal to HFrEF are evaded with dynamic handgrip exercise.NEW & NOTEWORTHY Patients with HFrEF demonstrate impaired peripheral blood flow regulation, evidenced by heightened peripheral vasoconstriction that reduces limb blood flow in response to physiological sympathoexcitation (cold pressor test). Despite evidence of exaggerated sympathetic vasoconstriction, patients with HFrEF demonstrate a normal hyperemic response to moderate-intensity handgrip exercise. Most importantly, acute, simultaneous handgrip exercise restores normal limb vasomotor control and vascular conductance during acute sympathoexcitation (cold pressor test), suggesting intact functional sympatholysis in patients with HFrEF.
Collapse
Affiliation(s)
- Natasha G Boyes
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - M Rafique Khan
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Adam M S Luchkanych
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Rory A Marshall
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Idris Bare
- Division of Cardiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tony Haddad
- Division of Cardiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sherif Abdalla
- Division of Cardiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Cameron J Morse
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Alexander Zhai
- Division of Cardiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Haissam Haddad
- Division of Cardiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Darcy D Marciniuk
- Division of Respirology, College of Medicine, University of Saskstchewan, Saskatoon, Saskatchewan, Canada
| | - T Dylan Olver
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Corey R Tomczak
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Ishii K, Machino T, Hatori Y, Gwak J, Izaki T, Komine H. Differential relationship between decreased muscle oxygenation and blood pressure recovery during supraventricular and ventricular tachycardia. Sci Rep 2023; 13:15886. [PMID: 37741868 PMCID: PMC10517960 DOI: 10.1038/s41598-023-42908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
Vasoconstriction during tachyarrhythmia contributes to maintenance of arterial pressure (AP) by decreasing peripheral blood flow. This cross-sectional observational study aimed to ascertain whether the relationship between peripheral blood flow and AP recovery occurs during both paroxysmal supraventricular (PSVT, n = 19) and ventricular tachycardias (VT, n = 17). Peripheral blood flow was evaluated using forearm tissue oxygen index (TOI), and mean AP (MAP) was measured using a catheter inserted in the brachial or femoral artery during an electrophysiological study. PSVT and VT rapidly decreased MAP with a comparable heart rate (P = 0.194). MAP recovered to the baseline level at 40 s from PSVT onset, but not VT. The forearm TOI decreased during both tachyarrhythmias (P ≤ 0.029). The TOI response was correlated with MAPrecovery (i.e., MAP recovery from the initial rapid decrease) at 20-60 s from PSVT onset (r = -- 0.652 to - 0.814, P ≤ 0.0298); however, this association was not observed during VT. These findings persisted even after excluding patients who had taken vasoactive drugs. Thus, restricting peripheral blood flow was associated with MAP recovery during PSVT, but not VT. This indicates that AP recovery depends on the type of tachyarrhythmia: different cardiac output and/or vasoconstriction ability during tachyarrhythmia.
Collapse
Affiliation(s)
- Kei Ishii
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Takeshi Machino
- Department of Cardiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuhiro Hatori
- Research Institute of Electrical Communication, Tohoku University, Sendai, Miyagi, Japan
| | - Jongseong Gwak
- Department of Computer Science, Takushoku University, Hachioji, Tokyo, Japan
| | - Tsubasa Izaki
- School of Economics and Management, Kochi University of Technology, Kochi, Kochi, Japan
| | - Hidehiko Komine
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
3
|
Wang Y, Anesi J, Maier MC, Myers MA, Oqueli E, Sobey CG, Drummond GR, Denton KM. Sympathetic Nervous System and Atherosclerosis. Int J Mol Sci 2023; 24:13132. [PMID: 37685939 PMCID: PMC10487841 DOI: 10.3390/ijms241713132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Atherosclerosis is characterized by the narrowing of the arterial lumen due to subendothelial lipid accumulation, with hypercholesterolemia being a major risk factor. Despite the recent advances in effective lipid-lowering therapies, atherosclerosis remains the leading cause of mortality globally, highlighting the need for additional therapeutic strategies. Accumulating evidence suggests that the sympathetic nervous system plays an important role in atherosclerosis. In this article, we reviewed the sympathetic innervation in the vasculature, norepinephrine synthesis and metabolism, sympathetic activity measurement, and common signaling pathways of sympathetic activation. The focus of this paper was to review the effectiveness of pharmacological antagonists or agonists of adrenoceptors (α1, α2, β1, β2, and β3) and renal denervation on atherosclerosis. All five types of adrenoceptors are present in arterial blood vessels. α1 blockers inhibit atherosclerosis but increase the risk of heart failure while α2 agonism may protect against atherosclerosis and newer generations of β blockers and β3 agonists are promising therapies against atherosclerosis; however, new randomized controlled trials are warranted to investigate the effectiveness of these therapies in atherosclerosis inhibition and cardiovascular risk reduction in the future. The role of renal denervation in atherosclerosis inhibition in humans is yet to be established.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Jack Anesi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Michelle C. Maier
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Mark A. Myers
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Ernesto Oqueli
- Cardiology Department, Grampians Health Ballarat, Ballarat, VIC 3350, Australia
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3216, Australia
| | - Christopher G. Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Kate M. Denton
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
4
|
Chronic isoprenaline/phenylephrine vs. exclusive isoprenaline stimulation in mice: critical contribution of alpha 1-adrenoceptors to early cardiac stress responses. Basic Res Cardiol 2022; 117:15. [PMID: 35286475 PMCID: PMC8921177 DOI: 10.1007/s00395-022-00920-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/31/2023]
Abstract
Hyperactivity of the sympathetic nervous system is a major driver of cardiac remodeling, exerting its effects through both α-, and β-adrenoceptors (α-, β-ARs). As the relative contribution of subtype α1-AR to cardiac stress responses remains poorly investigated, we subjected mice to either subcutaneous perfusion with the β-AR agonist isoprenaline (ISO, 30 mg/kg × day) or to a combination of ISO and the stable α1-AR agonist phenylephrine (ISO/PE, 30 mg/kg × day each). Telemetry analysis revealed similar hemodynamic responses under both ISO and ISO/PE treatment i.e., permanently increased heart rates and only transient decreases in mean blood pressure during the first 24 h. Echocardiography and single cell analysis after 1 week of exposure showed that ISO/PE-, but not ISO-treated animals established α1-AR-mediated inotropic responsiveness to acute adrenergic stimulation. Morphologically, additional PE perfusion limited concentric cardiomyocyte growth and enhanced cardiac collagen deposition during 7 days of treatment. Time-course analysis demonstrated a diverging development in transcriptional patterns at day 4 of treatment i.e., increased expression of selected marker genes Xirp2, Nppa, Tgfb1, Col1a1, Postn under chronic ISO/PE treatment which was either less pronounced or absent in the ISO group. Transcriptome analyses at day 4 via RNA sequencing demonstrated that additional PE treatment caused a marked upregulation of genes allocated to extracellular matrix and fiber organization along with a more pronounced downregulation of genes involved in metabolic processes, muscle adaptation and cardiac electrophysiology. Consistently, transcriptome changes under ISO/PE challenge more effectively recapitulated early transcriptional alterations in pressure overload-induced experimental heart failure and in human hypertrophic cardiomyopathy.
Collapse
|
5
|
Grassi G, Mancia G, Esler M. CENTRAL AND PERIPHERAL SYMPATHETIC ACTIVATION IN HEART FAILURE. Cardiovasc Res 2021; 118:1857-1871. [PMID: 34240147 DOI: 10.1093/cvr/cvab222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/02/2021] [Indexed: 11/12/2022] Open
Abstract
The sympathetic nervous system overdrive occurring in heart failure has been reported since more than half a century. Refinements in the methodological approaches to assess human sympathetic neural function have allowed during recent years to better define various aspects related to the neuroadrenergic alteration. These include 1) the different participation of the individual regional sympathetic cardiovascular districts at the process, 2) the role of the central nervous system in determining the neuroadrenergic overdrive, 3) the involvement of baroreflex, cardiopulmonary reflex and chemoreflex mechanisms in the phoenomenon, which is also closely linked to inflammation and the immune reaction, 4) the relationships with the severity of the disease, its ischaemic or idiopathic nature and the preserved or reduced left ventricular ejection fraction and 5) the adverse functional and structural impact of the sympathetic activation on cardiovascular organs, such as the brain, the heart and the kidneys. Information have been also gained on the active role exerted by the sympathetic activation on the disease outcome and its potential relevance as target of the therapeutic interventions based on non-pharmacological, pharmacological and invasive approaches, including the renal denervation, the splanchnic sympathetic nerve ablation and the carotid baroreflex stimulation. The still undefined aspects of the neurogenic alterations and the unmet goals of the therapeutic approach having the sympathetic activation as a target of the intervention will be finally mentioned.
Collapse
Affiliation(s)
- Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca
| | - Giuseppe Mancia
- Policlinico di Monza and University Milano-Bicocca, Milan, Italy
| | - Murray Esler
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
6
|
Colombe AS, Pidoux G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells 2021; 10:cells10040922. [PMID: 33923648 PMCID: PMC8073060 DOI: 10.3390/cells10040922] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Under physiological conditions, cAMP signaling plays a key role in the regulation of cardiac function. Activation of this intracellular signaling pathway mirrors cardiomyocyte adaptation to various extracellular stimuli. Extracellular ligand binding to seven-transmembrane receptors (also known as GPCRs) with G proteins and adenylyl cyclases (ACs) modulate the intracellular cAMP content. Subsequently, this second messenger triggers activation of specific intracellular downstream effectors that ensure a proper cellular response. Therefore, it is essential for the cell to keep the cAMP signaling highly regulated in space and time. The temporal regulation depends on the activity of ACs and phosphodiesterases. By scaffolding key components of the cAMP signaling machinery, A-kinase anchoring proteins (AKAPs) coordinate both the spatial and temporal regulation. Myocardial infarction is one of the major causes of death in industrialized countries and is characterized by a prolonged cardiac ischemia. This leads to irreversible cardiomyocyte death and impairs cardiac function. Regardless of its causes, a chronic activation of cardiac cAMP signaling is established to compensate this loss. While this adaptation is primarily beneficial for contractile function, it turns out, in the long run, to be deleterious. This review compiles current knowledge about cardiac cAMP compartmentalization under physiological conditions and post-myocardial infarction when it appears to be profoundly impaired.
Collapse
|
7
|
Lymperopoulos A, Cora N, Maning J, Brill AR, Sizova A. Signaling and function of cardiac autonomic nervous system receptors: Insights from the GPCR signalling universe. FEBS J 2021; 288:2645-2659. [PMID: 33599081 DOI: 10.1111/febs.15771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Ava R. Brill
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| |
Collapse
|