1
|
Kulasegaran T, Oliveira N. Metastatic Castration-Resistant Prostate Cancer: Advances in Treatment and Symptom Management. Curr Treat Options Oncol 2024; 25:914-931. [PMID: 38913213 PMCID: PMC11236885 DOI: 10.1007/s11864-024-01215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/25/2024]
Abstract
OPINION STATEMENT The management of metastatic castrate-resistant prostate cancer (mCRPC) has evolved in the past decade due to substantial advances in understanding the genomic landscape and biology underpinning this form of prostate cancer. The implementation of various therapeutic agents has improved overall survival but despite the promising advances in therapeutic options, mCRPC remains incurable. The focus of treatment should be not only to improve survival but also to preserve the patient's quality of life (QoL) and ameliorate cancer-related symptoms such as pain. The choice and sequence of therapy for mCRPC patients are complex and influenced by various factors, such as side effects, disease burden, treatment history, comorbidities, patient preference and, more recently, the presence of actionable genomic alterations or biomarkers. Docetaxel is the first-line treatment for chemo-naïve patients with good performance status and those who have yet to progress on docetaxel in the castration-sensitive setting. Novel androgen agents (NHAs), such as abiraterone and enzalutamide, are effective treatment options that are utilized as second-line options. These medications can be considered upfront in frail patients or patients who are NHA naïve. Current guidelines recommend genetic testing in mCRPC for mutations in DNA repair deficiency genes to inform treatment decisions, as for example in breast cancer gene mutation testing. Other potential biomarkers being investigated include phosphatase and tensin homologues and homologous recombination repair genes. Despite a growing number of studies incorporating biomarkers in their trial designs, to date, only olaparib in the PROFOUND study and lutetium-177 in the VISION trial have improved survival. This is an unmet need, and future trials should focus on biomarker-guided treatment strategies. The advent of novel noncytotoxic agents has enhanced targeted drug delivery and improved treatment responses with favourable toxicity profiling. Trials should continue to incorporate and report health-related QoL scores and functional assessments into their trial designs.
Collapse
Affiliation(s)
- Tivya Kulasegaran
- Mater Hospital Brisbane, Cancer Centre, Raymond Terrace, South Brisbane, QLD, 4104, Australia.
- School of Clinical Medicine, Mater Clinical Unit, The University of Queensland, Brisbane, Queensland, Australia, Raymond Terrace, South Brisbane, QLD, 4101, Australia.
| | - Niara Oliveira
- Mater Hospital Brisbane, Cancer Centre, Raymond Terrace, South Brisbane, QLD, 4104, Australia
- School of Clinical Medicine, Mater Clinical Unit, The University of Queensland, Brisbane, Queensland, Australia, Raymond Terrace, South Brisbane, QLD, 4101, Australia
| |
Collapse
|
2
|
Fleshner NE, Sayyid RK, Hansen AR, Chin JLK, Fernandes R, Winquist E, van der Kwast T, Sweet J, Lajkosz K, Kenk M, Hersey K, Veloso R, Berlin D, Herrera-Caceres JO, Sridhar S, Moussa M, Finelli A, Hamilton RJ, Kulkarni GS, Zlotta AR, Joshua AM. Neoadjuvant Cabazitaxel plus Abiraterone/Leuprolide Acetate in Patients with High-Risk Prostate Cancer: ACDC-RP Phase II Trial. Clin Cancer Res 2023; 29:3867-3874. [PMID: 37439809 DOI: 10.1158/1078-0432.ccr-23-0731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/15/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Early treatment intensification with neoadjuvant therapy may improve outcomes in patients with high-risk, localized prostate cancer treated with radical prostatectomy. Our objective was to compare pathologic, oncologic, and safety outcomes of neoadjuvant abiraterone acetate plus leuprolide acetate with or without cabazitaxel prior to radical prostatectomy in patients with localized, high-risk prostate cancer. PATIENTS AND METHODS This open-label, multicenter, phase II trial randomized men with clinically localized, D'Amico high-risk prostate cancer to neoadjuvant abiraterone acetate (1,000 mg/day) and leuprolide acetate (22.5 mg every 3 months) with or without cabazitaxel (25 mg/m2) prior to radical prostatectomy. The primary outcome was pathologic complete response (pCR) or minimal residual disease (MRD). Secondary outcomes included surgical margins, lymph node involvement, pathologic stage, 12-month biochemical relapse-free survival (BRFS) rates, and safety profile. RESULTS The per-protocol population consisted of 70 patients [cabazitaxel arm (Arm A): 37, no cabazitaxel arm (Arm B): 33]. Median patient age and prostate-specific antigen levels were 63.5 years [interquartile range (IQR), 58.0-68.0] and 21.9 ng/mL (IQR, 14.6-42.8), respectively. pCR/MRD occurred in 16 (43.2%) versus 15 patients (45.5%) in arms A and B, respectively (P = 0.85). pCR occurred in two (5.4%) versus three patients (9.1%) in arms A and B, respectively (P = 0.66). Patients with ≤ 25% total biopsy cores positive had increased odds of pCR/MRD (P = 0.04). Patients with pCR/MRD had superior 12-month BRFS rates (96.0% vs. 62.0%, P = 0.03). Grade 3+ adverse events occurred in 42.5% and 23.7% of patients in arms A and B, respectively (P = 0.078). CONCLUSIONS Neoadjuvant cabazitaxel addition to abiraterone acetate/leuprolide acetate prior to radical prostatectomy did not improve pCR/MRD in clinically localized, high-risk prostate cancer.
Collapse
Affiliation(s)
- Neil E Fleshner
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rashid K Sayyid
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aaron R Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Joseph L K Chin
- Department of Surgery, Division of Urology, Western University, London, Ontario, Canada
| | - Ricardo Fernandes
- Department of Oncology, Division of Medical Oncology, Schulich School of Medicine and Dentistry, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Eric Winquist
- Department of Oncology, Division of Medical Oncology, Schulich School of Medicine and Dentistry, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Theodorus van der Kwast
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joan Sweet
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Lajkosz
- Department of Biostatistics, University of Toronto, Toronto, Ontario, Canada
| | - Miran Kenk
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Karen Hersey
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rosette Veloso
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Doron Berlin
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jaime O Herrera-Caceres
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Srikala Sridhar
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Madeleine Moussa
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Antonio Finelli
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Robert J Hamilton
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Girish S Kulkarni
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alexandre R Zlotta
- Department of Surgery, Urology, Sinai Health System, Toronto, Ontario, Canada
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincent's Hospital, Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
3
|
Yanagisawa T, Rajwa P, Quhal F, Kawada T, Bekku K, Laukhtina E, Deimling MV, Chlosta M, Karakiewicz PI, Kimura T, Shariat SF. Neoadjuvant Androgen Receptor Signaling Inhibitors before Radical Prostatectomy for Non-Metastatic Advanced Prostate Cancer: A Systematic Review. J Pers Med 2023; 13:jpm13040641. [PMID: 37109028 PMCID: PMC10142264 DOI: 10.3390/jpm13040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Several phase II studies, including randomized controlled trials (RCTs), assessed the efficacy of adding androgen receptor signaling inhibitors (ARSIs) to androgen deprivation therapy (ADT) as a neoadjuvant treatment in patients treated with radical prostatectomy (RP) for prostate cancer (PCa). Summarizing the early results of these studies could help in designing phase III trials and patient counseling. (2) Methods: We queried three databases in January 2023 for studies that included PCa patients treated with neoadjuvant ARSI-based combination therapy before RP. The outcomes of interest were oncologic outcomes and pathologic responses, such as pathologic complete response (pCR) and minimal residual disease (MRD). (3) Results: Overall, twenty studies (eight RCTs) were included in this systematic review. Compared to ADT or ARSI alone, ARSI + ADT was associated with higher pCR and MRD rates; this effect was less evident when adding a second ARSI or chemotherapy. Nevertheless, ARSI + ADT resulted in relatively low pCR rates (0-13%) with a high proportion of ypT3 (48-90%) in the resected specimen. PTEN loss, ERG positive, or intraductal carcinoma seem to be associated with worse pathologic response. One study that adjusted for the effects of possible confounders reported that neoadjuvant ARSI + ADT improved time to biochemical recurrence and metastasis-free survival compared to RP alone. (4) Conclusions: Neoadjuvant ARSI + ADT combination therapy results in improved pathologic response compared to either alone or none in patients with non-metastatic advanced PCa. Ongoing phase III RCTs with long-term oncologic outcomes, as well as biomarker-guided studies, will clarify the indication, oncologic benefits, and adverse events of ARSI + ADT in patients with clinically and biologically aggressive PCa.
Collapse
Affiliation(s)
- Takafumi Yanagisawa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Wahringer Gurtel 43 18-20, 1090 Vienna, Austria
- Department of Urology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Pawel Rajwa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Wahringer Gurtel 43 18-20, 1090 Vienna, Austria
- Department of Urology, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Fahad Quhal
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Wahringer Gurtel 43 18-20, 1090 Vienna, Austria
- Department of Urology, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Tatsushi Kawada
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Wahringer Gurtel 43 18-20, 1090 Vienna, Austria
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan
| | - Kensuke Bekku
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Wahringer Gurtel 43 18-20, 1090 Vienna, Austria
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan
| | - Ekaterina Laukhtina
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Wahringer Gurtel 43 18-20, 1090 Vienna, Austria
- Institute for Urology and Reproductive Health, Sechenov University, 119435 Moscow, Russia
| | - Markus von Deimling
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Wahringer Gurtel 43 18-20, 1090 Vienna, Austria
- Department of Urology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Marcin Chlosta
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Wahringer Gurtel 43 18-20, 1090 Vienna, Austria
- Clinic of Urology and Urological Oncology, Jagiellonian University, 30-688 Krakow, Poland
| | - Pierre I Karakiewicz
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montreal Health Center, Montreal, QC H2X 0A9, Canada
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Wahringer Gurtel 43 18-20, 1090 Vienna, Austria
- Institute for Urology and Reproductive Health, Sechenov University, 119435 Moscow, Russia
- Division of Urology, Department of Special Surgery, The University of Jordan, Amman 19328, Jordan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Urology, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
- Department of Urology, Weill Cornell Medical College, New York, NY 10021, USA
- Karl Landsteiner Institute of Urology and Andrology, 1090 Vienna, Austria
| |
Collapse
|
4
|
Xie LY, Huang HY, Hao YL, Yu M, Zhang W, Wei E, Gao C, Wang C, Zeng L. Development and validation of a tumor immune cell infiltration-related gene signature for recurrence prediction by weighted gene co-expression network analysis in prostate cancer. Front Genet 2023; 14:1067172. [PMID: 37007952 PMCID: PMC10061146 DOI: 10.3389/fgene.2023.1067172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: Prostate cancer (PCa) is the second most common malignancy in men. Despite multidisciplinary treatments, patients with PCa continue to experience poor prognoses and high rates of tumor recurrence. Recent studies have shown that tumor-infiltrating immune cells (TIICs) are associated with PCa tumorigenesis.Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used to derive multi-omics data for prostate adenocarcinoma (PRAD) samples. The CIBERSORT algorithm was used to calculate the landscape of TIICs. Weighted gene co-expression network analysis (WGCNA) was performed to determine the candidate module most significantly associated with TIICs. LASSO Cox regression was applied to screen a minimal set of genes and construct a TIIC-related prognostic gene signature for PCa. Then, 78 PCa samples with CIBERSORT output p-values of less than 0.05 were selected for analysis. WGCNA identified 13 modules, and the MEblue module with the most significant enrichment result was selected. A total of 1143 candidate genes were cross-examined between the MEblue module and active dendritic cell-related genes.Results: According to LASSO Cox regression analysis, a risk model was constructed with six genes (STX4, UBE2S, EMC6, EMD, NUCB1 and GCAT), which exhibited strong correlations with clinicopathological variables, tumor microenvironment context, antitumor therapies, and tumor mutation burden (TMB) in TCGA-PRAD. Further validation showed that the UBE2S had the highest expression level among the six genes in five different PCa cell lines.Discussion: In conclusion, our risk-score model contributes to better predicting PCa patient prognosis and understanding the underlying mechanisms of immune responses and antitumor therapies in PCa.
Collapse
Affiliation(s)
- Lin-Ying Xie
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Han-Ying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu-Lei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Miaomiao Yu
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Wenju Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Enwei Wei
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Chunfeng Gao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Chang Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Chang Wang, ; Lei Zeng,
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
- *Correspondence: Chang Wang, ; Lei Zeng,
| |
Collapse
|
5
|
Zhang H, Zhou Y, Xing Z, Sah RK, Hu J, Hu H. Androgen Metabolism and Response in Prostate Cancer Anti-Androgen Therapy Resistance. Int J Mol Sci 2022; 23:ijms232113521. [PMID: 36362304 PMCID: PMC9655897 DOI: 10.3390/ijms232113521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
All aspects of prostate cancer evolution are closely related to androgen levels and the status of the androgen receptor (AR). Almost all treatments target androgen metabolism pathways and AR, from castration-sensitive prostate cancer (CSPC) to castration-resistant prostate cancer (CRPC). Alterations in androgen metabolism and its response are one of the main reasons for prostate cancer drug resistance. In this review, we will introduce androgen metabolism, including how the androgen was synthesized, consumed, and responded to in healthy people and prostate cancer patients, and discuss how these alterations in androgen metabolism contribute to the resistance to anti-androgen therapy.
Collapse
Affiliation(s)
- Haozhe Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Zhou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zengzhen Xing
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rajiv Kumar Sah
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junqi Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-0755-88018249
| |
Collapse
|
6
|
The Role of Histology-Agnostic Drugs in the Treatment of Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2022; 23:ijms23158535. [PMID: 35955671 PMCID: PMC9369092 DOI: 10.3390/ijms23158535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
Precision medicine has opened up a new era in the development of anti-cancer agents that is focused on identifying biomarkers predictive of treatment response regardless of tumor histology. Since 2017, the Food and Drug Administration has approved six drugs with histology-agnostic indications: pembrolizumab (both for tumors with the mismatch-repair deficiency (dMMR)/high microsatellite instability (MSI-H) phenotype and for those with the high tumor mutational burden (TMB-H) phenotype), dostarlimab (for dMMR tumors), larotrectinib and entrectinib (for tumors harboring neurotrophic tyrosine receptor kinase (NTRK) fusions), and the combination of dabrafenib plus trametinib (for BRAF V600E-mutated tumors). The genomic alterations targeted by these antineoplastic agents are rare in metastatic castration-resistant prostate cancer (mCRPC). Furthermore, only a small number of mCRPC patients were enrolled in the clinical trials that led to the approval of the above-mentioned drugs. Therefore, we critically reviewed the literature on the efficacy of histology-agnostic drugs in mCRPC patients. Although the available evidence derives from retrospective studies and case reports, our results confirmed the efficacy of pembrolizumab in dMMR/MSI-H mCRPC. In contrast, few data are available for dostarlimab, larotrectinib, entrectinib, and dabrafenib-trametinib in this subset of patients. Large, multi-institutional registries aimed at collecting real-world data are needed to better comprehend the role of tissue-agnostic drugs in mCRPC patients.
Collapse
|
7
|
Dalmasso B, Puccini A, Catalano F, Borea R, Iaia ML, Bruno W, Fornarini G, Sciallero S, Rebuzzi SE, Ghiorzo P. Beyond BRCA: The Emerging Significance of DNA Damage Response and Personalized Treatment in Pancreatic and Prostate Cancer Patients. Int J Mol Sci 2022; 23:ijms23094709. [PMID: 35563100 PMCID: PMC9099822 DOI: 10.3390/ijms23094709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/07/2022] Open
Abstract
The BRCA1/2 germline and/or somatic pathogenic variants (PVs) are key players in the hereditary predisposition and therapeutic response for breast, ovarian and, more recently, pancreatic and prostate cancers. Aberrations in other genes involved in homologous recombination and DNA damage response (DDR) pathways are being investigated as promising targets in ongoing clinical trials. However, DDR genes are not routinely tested worldwide. Due to heterogeneity in cohort selection and dissimilar sequencing approaches across studies, neither the burden of PVs in DDR genes nor the prevalence of PVs in genes in common among pancreatic and prostate cancer can be easily quantified. We aim to contextualize these genes, altered in both pancreatic and prostate cancers, in the DDR process, to summarize their hereditary and somatic burden in different studies and harness their deficiency for cancer treatments in the context of currently ongoing clinical trials. We conclude that the inclusion of DDR genes, other than BRCA1/2, shared by both cancers considerably increases the detection rate of potentially actionable variants, which are triplicated in pancreatic and almost doubled in prostate cancer. Thus, DDR alterations are suitable targets for drug development and to improve the outcome in both pancreatic and prostate cancer patients. Importantly, this will increase the detection of germline pathogenic variants, thereby patient referral to genetic counseling.
Collapse
Affiliation(s)
- Bruna Dalmasso
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, 16132 Genoa, Italy; (B.D.); (W.B.)
| | - Alberto Puccini
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Fabio Catalano
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Roberto Borea
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Maria Laura Iaia
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - William Bruno
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, 16132 Genoa, Italy; (B.D.); (W.B.)
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
| | - Giuseppe Fornarini
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Stefania Sciallero
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Sara Elena Rebuzzi
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
- Ospedale San Paolo, Medical Oncology, 17100 Savona, Italy
| | - Paola Ghiorzo
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, 16132 Genoa, Italy; (B.D.); (W.B.)
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
- Correspondence:
| |
Collapse
|
8
|
Neoadjuvant hormonal therapy before radical prostatectomy in high-risk prostate cancer. Nat Rev Urol 2021; 18:739-762. [PMID: 34526701 DOI: 10.1038/s41585-021-00514-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Patients with high-risk prostate cancer treated with curative intent are at an increased risk of biochemical recurrence, metastatic progression and cancer-related death compared with patients treated for low-risk or intermediate-risk disease. Thus, these patients often need multimodal therapy to achieve complete disease control. Over the past two decades, multiple studies on the use of neoadjuvant treatment have been performed using conventional androgen deprivation therapy, which comprises luteinizing hormone-releasing hormone agonists or antagonists and/or first-line anti-androgens. However, despite results from these studies demonstrating a reduction in positive surgical margins and tumour volume, no benefit has been observed in hard oncological end points, such as cancer-related death. The introduction of potent androgen receptor signalling inhibitors (ARSIs), such as abiraterone, apalutamide, enzalutamide and darolutamide, has led to a renewed interest in using neoadjuvant hormonal treatment in high-risk prostate cancer. The addition of ARSIs to androgen deprivation therapy has demonstrated substantial survival benefits in the metastatic castration-resistant, non-metastatic castration-resistant and metastatic hormone-sensitive settings. Intuitively, a similar survival effect can be expected when applying ARSIs as a neoadjuvant strategy in high-risk prostate cancer. Most studies on neoadjuvant ARSIs use a pathological end point as a surrogate for long-term oncological outcome. However, no consensus yet exists regarding the ideal definition of pathological response following neoadjuvant hormonal therapy and pathologists might encounter difficulties in determining pathological response in hormonally treated prostate specimens. The neoadjuvant setting also provides opportunities to gain insight into resistance mechanisms against neoadjuvant hormonal therapy and, consequently, to guide personalized therapy.
Collapse
|
9
|
Taavitsainen S, Engedal N, Cao S, Handle F, Erickson A, Prekovic S, Wetterskog D, Tolonen T, Vuorinen EM, Kiviaho A, Nätkin R, Häkkinen T, Devlies W, Henttinen S, Kaarijärvi R, Lahnalampi M, Kaljunen H, Nowakowska K, Syvälä H, Bläuer M, Cremaschi P, Claessens F, Visakorpi T, Tammela TLJ, Murtola T, Granberg KJ, Lamb AD, Ketola K, Mills IG, Attard G, Wang W, Nykter M, Urbanucci A. Single-cell ATAC and RNA sequencing reveal pre-existing and persistent cells associated with prostate cancer relapse. Nat Commun 2021; 12:5307. [PMID: 34489465 PMCID: PMC8421417 DOI: 10.1038/s41467-021-25624-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is heterogeneous and patients would benefit from methods that stratify those who are likely to respond to systemic therapy. Here, we employ single-cell assays for transposase-accessible chromatin (ATAC) and RNA sequencing in models of early treatment response and resistance to enzalutamide. In doing so, we identify pre-existing and treatment-persistent cell subpopulations that possess regenerative potential when subjected to treatment. We find distinct chromatin landscapes associated with enzalutamide treatment and resistance that are linked to alternative transcriptional programs. Transcriptional profiles characteristic of persistent cells are able to stratify the treatment response of patients. Ultimately, we show that defining changes in chromatin and gene expression in single-cell populations from pre-clinical models can reveal as yet unrecognized molecular predictors of treatment response. This suggests that the application of single-cell methods with high analytical resolution in pre-clinical models may powerfully inform clinical decision-making.
Collapse
Affiliation(s)
- S Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - N Engedal
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - S Cao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - F Handle
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - A Erickson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - S Prekovic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - D Wetterskog
- University College London Cancer Institute, London, UK
| | - T Tolonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - E M Vuorinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - A Kiviaho
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - R Nätkin
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - T Häkkinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - W Devlies
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Urology, UZ Leuven, Leuven, Belgium
| | - S Henttinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - R Kaarijärvi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - M Lahnalampi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - H Kaljunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - K Nowakowska
- University College London Cancer Institute, London, UK
| | - H Syvälä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - M Bläuer
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - P Cremaschi
- University College London Cancer Institute, London, UK
| | - F Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - T Visakorpi
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
- Fimlab Laboratories, Ltd, Tampere University Hospital, Tampere, Finland
| | - T L J Tammela
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - T Murtola
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - K J Granberg
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - A D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Department of Urology, Churchill Hospital Cancer Centre, Oxford, UK
| | - K Ketola
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - I G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast, UK
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - G Attard
- University College London Cancer Institute, London, UK
| | - W Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland.
| | - A Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
10
|
Devlies W, Handle F, Devos G, Joniau S, Claessens F. Preclinical Models in Prostate Cancer: Resistance to AR Targeting Therapies in Prostate Cancer. Cancers (Basel) 2021; 13:915. [PMID: 33671614 PMCID: PMC7926818 DOI: 10.3390/cancers13040915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is an androgen-driven tumor. Different prostate cancer therapies consequently focus on blocking the androgen receptor pathway. Clinical studies reported tumor resistance mechanisms by reactivating and bypassing the androgen pathway. Preclinical models allowed the identification, confirmation, and thorough study of these pathways. This review looks into the current and future role of preclinical models to understand resistance to androgen receptor-targeted therapies. Increasing knowledge on this resistance will greatly improve insights into tumor pathophysiology and future treatment strategies in prostate cancer.
Collapse
Affiliation(s)
- Wout Devlies
- Laboratory of Molecular Endocrinology, KU Leuven, 3000 Leuven, Belgium;
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (S.J.)
| | - Florian Handle
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Gaëtan Devos
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (S.J.)
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (S.J.)
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
11
|
Montironi R, Cimadamore A, Lopez-Beltran A, Cheng L, Scarpelli M. Update on Prostate Cancer Diagnosis, Prognosis, and Prediction to Response to Therapy. Cells 2020; 10:cells10010020. [PMID: 33374303 PMCID: PMC7824536 DOI: 10.3390/cells10010020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (M.S.)
- Correspondence: ; Tel.: +39-071-596-4830; Fax: +39-071-889-985
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (M.S.)
| | | | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Marina Scarpelli
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (M.S.)
| |
Collapse
|