1
|
Zsoldos B, Nagy N, Donkó-Tóth V, Keglevich P, Weber M, Dékány M, Nehr-Majoros A, Szőke É, Helyes Z, Hazai L. Novel Piperazine Derivatives of Vindoline as Anticancer Agents. Int J Mol Sci 2024; 25:7929. [PMID: 39063170 PMCID: PMC11277489 DOI: 10.3390/ijms25147929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
A series of novel vindoline-piperazine conjugates were synthesized by coupling 6 N-substituted piperazine pharmacophores at positions 10 and 17 of Vinca alkaloid monomer vindoline through different types of linkers. The in vitro antiproliferative activity of the 17 new conjugates was investigated on 60 human tumor cell lines (NCI60). Nine compounds presented significant antiproliferative effects. The most potent derivatives showed low micromolar growth inhibition (GI50) values against most of the cell lines. Among them, conjugates containing [4-(trifluoromethyl)benzyl]piperazine (23) and 1-bis(4-fluorophenyl)methyl piperazine (25) in position 17 of vindoline were outstanding. The first one was the most effective on the breast cancer MDA-MB-468 cell line (GI50 = 1.00 μM), while the second one was the most effective on the non-small cell lung cancer cell line HOP-92 (GI50 = 1.35 μM). The CellTiter-Glo Luminescent Cell Viability Assay was performed with conjugates 20, 23, and 25 on non-tumor Chinese hamster ovary (CHO) cells to determine the selectivity of the conjugates for cancer cells. These compounds exhibited promising selectivity with estimated half-maximal inhibitory concentration (IC50) values of 2.54 μM, 10.8 μM, and 6.64 μM, respectively. The obtained results may have an impact on the design of novel vindoline-based anticancer compounds.
Collapse
Affiliation(s)
- Bernadett Zsoldos
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Nóra Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Viktória Donkó-Tóth
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter Keglevich
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Márton Weber
- Spectroscopic Research Department, Gedeon Richter Plc., P.O. Box 27, H-1475 Budapest, Hungary
| | - Miklós Dékány
- Spectroscopic Research Department, Gedeon Richter Plc., P.O. Box 27, H-1475 Budapest, Hungary
| | - Andrea Nehr-Majoros
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- HUN-REN PTE Chronic Pain Research Group, H-7624 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- HUN-REN PTE Chronic Pain Research Group, H-7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- HUN-REN PTE Chronic Pain Research Group, H-7624 Pécs, Hungary
| | - László Hazai
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
2
|
Han X, Matsuda N, Ishibashi Y, Shibata M, Suzuki I. An In Vitro Assessment Method for Chemotherapy-Induced Peripheral Neurotoxicity Caused by Anti-Cancer Drugs Based on Electrical Measurement of Impedance Value and Spontaneous Activity. Pharmaceutics 2023; 15:2788. [PMID: 38140128 PMCID: PMC10748260 DOI: 10.3390/pharmaceutics15122788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a major adverse event of anti-cancer drugs, which still lack standardized measurement and treatment methods. In the present study, we attempted to evaluate neuronal dysfunctions in cultured rodent primary peripheral neurons using a microelectrode array system. After exposure to typical anti-cancer drugs (i.e., paclitaxel, vincristine, oxaliplatin, and bortezomib), we successfully detected neurotoxicity in dorsal root ganglia neurons by measuring electrical activities, including impedance value and spontaneous activity. The impedance value decreased significantly for all compounds, even at low concentrations, which indicated cell loss and/or neurite degeneration. The spontaneous activity was also suppressed after exposure, which suggested neurotoxicity again. However, an acute response was observed for paclitaxel and bortezomib before toxicity, which showed different mechanisms based on compounds. Therefore, MEA measurement of impedance value could provide a simple assessment method for CIPN, combined with neuronal morphological changes.
Collapse
Affiliation(s)
| | | | | | | | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai 9828577, Japan; (X.H.); (N.M.); (Y.I.); (M.S.)
| |
Collapse
|
3
|
Verma R, Kumar Gupta S, Lamba NP, Singh BK, Singh S, Bahadur V, Chauhan MS. Graphene and Graphene Based Nanocomposites for Bio‐Medical and Bio‐safety Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Renu Verma
- Amity University Rajasthan Jaipur India- 303002
| | | | | | | | | | - Vijay Bahadur
- Alliance University Chandapura-Anekal Main Road Bengaluru India- 562106
- Department of Pharmaceutical and Pharmacological science, University of Houston Houston USA- 77204
| | | |
Collapse
|
4
|
Mayer S, Keglevich P, Keglevich A, Hazai L. New Anticancer Vinca Alkaloids in the Last Decade - A Mini-Review. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210216123256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chemistry and pharmacology of the important Vinca alkaloids such as vinblastine
and vincristine used in anticancer therapy are still investigated widely. Several new
derivatives, e.g., vinflunine, vinorelbine, and vindesine, have been synthesized and become
successful medicines in anti-cancer therapy. In 2012, we published a paper that reviewed the
Vinca derivatives. Nevertheless, the interest in the preparation of new modified structures is
not decreasing either in recent years. In this review, the vinblastine-type molecules with several
substituents, e.g., amide, nitrile, hydrazide, substituted side chains, etc. in different positions
of catharanthine and/or vindoline cores are presented. An important part of the review is
the derivatization of the monomer alkaloid vindoline, which possesses no antitumor effect.
Additionally, new hybrid molecules of these alkaloids are also discussed in this mini-review.
Collapse
Affiliation(s)
- Szabolcs Mayer
- Department of Organic Chemistry and Technology, University of Technology and Economics, Budapest, Hungary, H-1111 Budapest, Gellert ter 4,Hungary
| | - Péter Keglevich
- Department of Organic Chemistry and Technology, University of Technology and Economics, Budapest, Hungary, H-1111 Budapest, Gellert ter 4,Hungary
| | - András Keglevich
- Department of Organic Chemistry and Technology, University of Technology and Economics, Budapest, Hungary, H-1111 Budapest, Gellert ter 4,Hungary
| | - László Hazai
- Department of Organic Chemistry and Technology, University of Technology and Economics, Budapest, Hungary, H-1111 Budapest, Gellert ter 4,Hungary
| |
Collapse
|