1
|
Algmaal SE, Mahmoud AM, Boltia SA, El-Saharty YS, Ghoniem NS. Eco-friendly bupropion detection sensor with co-formulated dextromethorphan in AUVELITY tablet and spiked plasma. Sci Rep 2024; 14:29305. [PMID: 39592800 PMCID: PMC11599272 DOI: 10.1038/s41598-024-80227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Molecularly Imprinted Polymers (MIPs) are synthetic materials designed to selectively recognize and bind to specific target molecules. The process of determining Bupropion (BUP) using MIPs involves preparing the MIP, extracting the target molecule, and conducting subsequent analysis. A bio-inspired MIP-based electrochemical sensor was developed to detect BUP, utilizing the specific binding of MIPs to Bupropion molecules, enabling precise and sensitive detection. The combination of molecular imprinting and electrochemistry in this approach allows for the development of a highly reliable and effective sensor specifically designed for BUP detection. In this method, copolymerization conditions were carefully optimized to ensure selectivity and sensitivity in detecting BUP. Different monomers, including o-phenylenediamine, 4-aminophenol, L-dopa, and 1,4-phenylenediamine, were explored, with the best interaction observed for L-dopa and 1,4-phenylenediamine. Consequently, their copolymer was implemented to create selective MIPs through a straightforward electropolymerization process on a disposable pencil graphite electrode (PGE) substrate for BUP detection. The functionality of the copolymer of L-dopa and 1,4-phenylenediamine as an electroactive copolymer in preparing electro-polymerized MIP films was investigated for the first time. This was demonstrated by constructing a novel electrochemical sensor for the selective recognition of BUP in different matrices. The interactions between L-dopa and 1,4-phenylenediamine, used as functional monomers, and the template were studied experimentally using UV spectroscopy. BUP was used as the template, and the copolymer was electrografted onto PGE. The constructed sensor was characterized using cyclic voltammetry (CV), and BUP binding to the MIP cavities was measured indirectly with differential pulse voltammetry (DPV) using a ferrocyanide/ferricyanide redox probe. A linear and repeatable response was displayed by the sensor across a range of 1.0 × 10⁻13 M to 1.0 × 10⁻11 M of BUP, with a limit of detection of 3.18 × 10⁻14 M. The sensor demonstrated robust selectivity for BUP over interfering drugs, such as dextromethorphan, in pharmaceutical dosage forms and spiked human plasma. The environmental impact of the proposed approach was evaluated using green analytical chemistry principles, including the Green Analytical Procedure Index (GAPI) and the Analytical GREEnness (AGREE) metric.
Collapse
Affiliation(s)
- Shrouk E Algmaal
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, ET-11562, Egypt.
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, ET-11562, Egypt
| | - Shereen A Boltia
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, ET-11562, Egypt
| | - Yasser S El-Saharty
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, ET-11562, Egypt
| | - Nermine S Ghoniem
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, ET-11562, Egypt
| |
Collapse
|
2
|
Meskher H, Achi F. Electrochemical Sensing Systems for the Analysis of Catechol and Hydroquinone in the Aquatic Environments: A Critical Review. Crit Rev Anal Chem 2024; 54:1354-1367. [PMID: 36007064 DOI: 10.1080/10408347.2022.2114784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Because of their unique physical, chemical, and biological characteristics, conductive nanomaterials have a lot of potential for applications in materials science, energy storage, environmental science, biomedicine, sensors/biosensors, and other fields. Recent breakthroughs in the manufacture of carbon materials, conductive polymers, metals, and metal oxide nanoparticles based electrochemical sensors and biosensors for applications in environmental monitoring by detection of catechol (CC) and hydroquinone (HQ) are presented in this review. To achieve this goal, we first introduced recent works that discuss the effects of phenolic compounds and the need for accurate, inexpensive, and quick monitoring, and then we focused on the use of the most important applications of nanomaterials, such as carbon-based materials, metals, and metal oxides nanoparticles, and conductive polymers, to develop sensors to monitor catechol and hydroquinone. Finally, we identified challenges and limits in the field of sensors and biosensors, as well as possibilities and recommendations for developing the field for better future applications. Meanwhile, electrochemical sensors and biosensors for catechol and hydroquinone measurement and monitoring were highlighted and discussed particularly. This review, we feel, will aid in the promotion of nanomaterials for the development of innovative electrical sensors and nanodevices for environmental monitoring.
Collapse
Affiliation(s)
- Hicham Meskher
- Laboratory of Valorization and Promotion of Saharian Ressources (VPSR), Kasdi-Merbah University, Ouargla, Algeria
| | - Fethi Achi
- Laboratory of Valorization and Promotion of Saharian Ressources (VPSR), Kasdi-Merbah University, Ouargla, Algeria
| |
Collapse
|
3
|
Zhang Z, Zhu L, Zhang Y, Zong Y, Li Y, Zheng Y, Meng M, Zhang Z. Development and application of a CNT-Ag-Cu-Al/PS-based paper electrode for detecting diverse analytes in complex matrices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3949-3956. [PMID: 38842287 DOI: 10.1039/d4ay00550c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Electrochemical sensors play a crucial role in the detection of different analytes in complex matrices, and their performance is highly dependent on the electrode capacity. However, most of the available electrodes can only be used for single-component detection, so it is urgent to develop electrodes with high sensitivity and selectivity for different components. Herein, we report an amphiprotic amino-bonded carbon nanotube-Ag/Cu/Al nanoparticle/polystyrene-coated paper electrode (CNT-Ag-Cu-Al/PS electrode), which can be used for the measurement of glucose (Glc), oxytetracycline (OTC), and hydroquinone (HQ), respectively. The results showed that the analytical sensitivity and selectivity of the CNT-Ag-Cu-Al/PS electrode were comparable to those of single metal-coated paper substrate. The developed electrode also exhibited excellent linear responses for Glc, OTC, and HQ in the ranges of 1.0-1000.0 μM, 1.0 × 10-2 to 10.0 μM, and 5.0 × 10-3 to 50.0 μM, and the limits of detection (LODs) were 0.2055 μM (Glc), 0.0074 μM (OTC), and 0.0048 μM (HQ). Owing to the characteristics of good selectivity, anti-interference, stability, and reproducibility, the CNT-Ag-Cu-Al/PS paper electrode has been successfully applied to the detection of these analytes in complex human body fluids, food, and environmental waters. The paper electrode is promising for the detection of target compounds in complex matrices.
Collapse
Affiliation(s)
- Zhiming Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Lixuan Zhu
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yanan Zong
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
- Xianyang Product Quality Supervision and Inspection Institute, Xianyang 712000, China
| | - Yun Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yajun Zheng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Mei Meng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| |
Collapse
|
4
|
Patel B, Gundaliya R, Desai B, Shah M, Shingala J, Kaul D, Kandya A. Groundwater arsenic contamination: impacts on human health and agriculture, ex situ treatment techniques and alleviation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1331-1358. [PMID: 35962925 DOI: 10.1007/s10653-022-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Groundwater is consumed by a large number of people as their primary source of drinking water globally. Among all the countries worldwide, nations in South Asia, particularly India and Bangladesh, have severe problem of groundwater arsenic (As) contamination so are on our primary focus in this study. The objective of this review study is to provide a viewpoint about the source of As, the effect of As on human health and agriculture, and available treatment technologies for the removal of As from water. The source of As can be either natural or anthropogenic and exposure mediums can either be air, drinking water, or food. As-polluted groundwater may lead to a reduction in crop yield and quality as As enters the food chain and disrupts it. Chronic As exposure through drinking water is highly associated with the disruption of many internal systems and organs in the human body including cardiovascular, respiratory, nervous, and endocrine systems, soft organs, and skin. We have critically reviewed a complete spectrum of the available ex situ technologies for As removal including oxidation, coagulation-flocculation, adsorption, ion exchange, and membrane process. Along with that, pros and cons of different techniques have also been scrutinized on the basis of past literatures reported. Among all the conventional techniques, coagulation is the most efficient technique, and considering the advanced and emerging techniques, electrocoagulation is the most prominent option to be adopted. At last, we have proposed some mitigation strategies to be followed with few long and short-term ideas which can be adopted to overcome this epidemic.
Collapse
Affiliation(s)
- Bhavi Patel
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Rohan Gundaliya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Bhavya Desai
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Manan Shah
- Department of Chemical Engineering School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.
| | - Jainish Shingala
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Daya Kaul
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Anurag Kandya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Høj PH, Møller-Sørensen J, Wissing AL, Alatraktchi FA. Electrochemical biosensors for monitoring of selected pregnancy hormones during the first trimester: A systematic review. Talanta 2023; 258:124396. [PMID: 36870154 DOI: 10.1016/j.talanta.2023.124396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The hormones human chorionic gonadotropin, progesterone, estrogen and four of its metabolites (estradiol, estrone, estriol, estetrol), as well as relaxin play an essential role in the development of the fetus during the first trimester. Imbalances in these hormones during the first trimester have been directly linked to miscarriages. However, frequent monitoring of the hormones is limited by the current conventional centralized analytical tools that do not allow a rapid response time. Electrochemical sensing is considered an ideal tool to detect hormones owing to its advantages such as quick response, user-friendliness, low economic costs, and possibility of use in point-of-care settings. Electrochemical detection of pregnancy hormones is an emerging field that has been demonstrated primarily at research level. Thus, it is timely with a comprehensive overview of the characteristics of the reported detection techniques. This is the first extensive review focusing on the advances related to electrochemical detection of hormones linked to the first trimester of pregnancy. Additionally, this review offers insights into the main challenges that must be addressed imminently to ensure progress from research to clinical applications.
Collapse
Affiliation(s)
- Pernille Hagen Høj
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jon Møller-Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | |
Collapse
|
6
|
Fenech-Salerno B, Holicky M, Yao C, Cass AEG, Torrisi F. A sprayed graphene transistor platform for rapid and low-cost chemical sensing. NANOSCALE 2023; 15:3243-3254. [PMID: 36723120 DOI: 10.1039/d2nr05838c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We demonstrate a novel and versatile sensing platform, based on electrolyte-gated graphene field-effect transistors, for easy, low-cost and scalable production of chemical sensor test strips. The Lab-on-PCB platform is enabled by low-boiling, low-surface-tension sprayable graphene ink deposited on a substrate manufactured using a commercial printed circuit board process. We demonstrate the versatility of the platform by sensing pH and Na+ concentrations in an aqueous solution, achieving a sensitivity of 143 ± 4 μA per pH and 131 ± 5 μA per log10Na+, respectively, in line with state-of-the-art graphene chemical sensing performance.
Collapse
Affiliation(s)
- Benji Fenech-Salerno
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
| | - Martin Holicky
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
| | - Chengning Yao
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
| | - Anthony E G Cass
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
| | - Felice Torrisi
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
- Dipartimento di Fisica e Astronomia, Universita' di Catania & CNR-IMM (Catania Università), Via S. Sofia 64, 95123 Catania, Italy
| |
Collapse
|
7
|
Kim S, Kang S, Choe J, Moon C, Choi H, Kim JY, Choi JW. A Microfluidic System for Investigating Anticipatory Medication Effects on Dopamine Homeostasis in Dopaminergic Cells. Anal Chem 2023; 95:3153-3159. [PMID: 36656793 DOI: 10.1021/acs.analchem.2c04923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dopamine (DA) homeostasis influences emotions, neural circuit development, cognition, and the reward system. Dysfunctions in DA regulation can lead to neurological disorders, including depression, developmental disorders, and addiction. DA homeostasis disruption is a primary cause of Parkinson's Disease (PD). Therefore, understanding the relationship between DA homeostasis and PD progression may clarify the mechanisms for pharmacologically treating PD. This study developed a novel in vitro DA homeostasis platform which consists of three main parts: (1) a microfluidic device for culturing DAergic neurons, (2) an optical detection system for reading DA levels, and (3) an automatic closed-loop control system that establishes when and how much medication to infuse; this uses a microfluidic device that can cultivate DAergic neurons, perfuse solutions, perform in vitro PD modeling, and continuously monitor DA concentrations. The automatically controlled closed-loop control system simultaneously monitors pharmacological PD treatment to support long-term monitoring of DA homeostasis. SH-SY5Y neuroblastoma cells were chosen as DAergic neurons. They were cultivated in the microfluidic device, and real-time cellular DA level measurements successfully achieved long-term monitoring and modulation of DA homeostasis. When applied in combination with multiday cell culture, this advanced system can be used for drug screening and fundamental biological studies.
Collapse
Affiliation(s)
- Samhwan Kim
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.,Brain Engineering Convergence Research Center, DGIST, Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.,Research Advanced Centre for Olfaction, DGIST, Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Seongtak Kang
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jiyun Choe
- Department of Brain Sciences, DGIST, Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Cheil Moon
- Department of Brain Sciences, DGIST, Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.,Research Advanced Centre for Olfaction, DGIST, Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Hongsoo Choi
- Department of Robotics and Mechatronics Engineering, DGIST, Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.,DGIST-ETH Microrobotic Research Center, DGIST, Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jin-Young Kim
- Brain Engineering Convergence Research Center, DGIST, Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.,Department of Robotics and Mechatronics Engineering, DGIST, Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.,DGIST-ETH Microrobotic Research Center, DGIST, Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.,Division of Biotechnology, DGIST, Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Ji-Woong Choi
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.,Brain Engineering Convergence Research Center, DGIST, Techno jungang-daero 333, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| |
Collapse
|
8
|
Singh S, Kumar Naik TSS, Chauhan V, Shehata N, Kaur H, Dhanjal DS, Marcelino LA, Bhati S, Subramanian S, Singh J, Ramamurthy PC. Ecological effects, remediation, distribution, and sensing techniques of chromium. CHEMOSPHERE 2022; 307:135804. [PMID: 35932914 DOI: 10.1016/j.chemosphere.2022.135804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Chromium is detected in most ecosystems due to the increased anthropogenic activities in addition to that developed from natural pollution. Chromium contamination in the food chain results due to its persistent and non-degradable nature. The release of chromium in the ecosystem accretes and thereafter impacts different life forms, including humans, aquatic and terrestrial organisms. Leaching of chromium into the ground and surface water triggers several health ailments, such as dermatitis, eczematous skin, allergic reactions, mucous and skin membrane ulcerations, allergic asthmatic reactions, bronchial carcinoma and gastroenteritis. Physiological and biological treatments for the removal of chromium have been discussed in depth in the present communication. Adsorption and biological treatment methods are proven to be alternatives to chemical removal techniques in terms of cost-effectiveness and low sludge formation. Chromium sensing is an alternative approach for regular monitoring of chromium in different water bodies. This review intended to explore different classes of sensors for chromium monitoring. However, the spectrochemical methods are more sensitive in chromium ions sensing than electrochemical methods. Future study should focus on miniaturization for portability and on-site measurements without requiring a large instrument provides a good aspect for future research.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - T S Sunil Kumar Naik
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Vishakha Chauhan
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Daljeet Singh Dhanjal
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Liliana Aguilar Marcelino
- Centro Nacional de Investigación Disciplinariaen Salud Animal e Inocuidad, INIFAP, Jiutepec, Morelos, C.P, 62550, Mexico
| | - Shipra Bhati
- Department of Chemistry, The Oxford College of Engineering, Bangalore, Karnataka, 560068, India
| | - S Subramanian
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Joginder Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India.
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
9
|
Easy, rapid and high-throughput analytical sensing platform for theobromine quantification in chocolate and cocoa products based on batch injection analysis with amperometric detection. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
K J A, Reddy S, Acharya S, B L, Deepak K, Naveen CS, Harish KN, Ramakrishna S. A review on nanomaterial-based electrodes for the electrochemical detection of chloramphenicol and furazolidone antibiotics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3228-3249. [PMID: 35997206 DOI: 10.1039/d2ay00941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To grow food for people, antibiotics were used, and these antibiotics can accumulate in the human body through food metabolism, which may have remarkably harmful effects on human health and safety. Therefore, low-cost sensors are needed for the detection of antibiotic residues in food samples. Recently, nanomaterial-based electrochemical sensors such as carbon nanoparticles, graphene nanoparticles, metal oxide nanoparticles, metal nanoparticles, and metal-organic nanostructures have been successfully used as sensing materials for the detection of chloramphenicol (CP) and furazolidone (FZ) antibiotics. However, additional efforts are still needed to fabricate effective multi-functional nanomaterial-based electrodes for the preparation of portable electrochemical sensor devices. The current review focuses on a quick introduction to CP and FZ antibiotics, followed by an outline of the current electrochemical analytical methods. In addition, we have discussed in-depth different nanoparticle supports for the electrochemical detection of CP and FZ in different matrices such as food, environmental, and biological samples. Finally, a summary of the current problems and future perspectives in this area are also highlighted.
Collapse
Affiliation(s)
- Abhishek K J
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - Sathish Reddy
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - Shubha Acharya
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - Lakshmi B
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - K Deepak
- Department of Physics, School of Applied Science, REVA University, Bangalore, 560064, India
| | - C S Naveen
- Department of Physics, School of Engineering, Presidency University, Bengaluru-560064, India
| | - K N Harish
- Department of Chemistry, Dayananda Sagar College of Engineering, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru, 560078, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore
| |
Collapse
|
11
|
Point-of-care diagnostics for therapeutic monitoring of levofloxacin in human plasma utilizing electrochemical sensor mussel-inspired molecularly imprinted copolymer. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Moldovan R, Vereshchagina E, Milenko K, Iacob BC, Bodoki AE, Falamas A, Tosa N, Muntean CM, Farcău C, Bodoki E. Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications. Anal Chim Acta 2022; 1209:339250. [PMID: 35569862 DOI: 10.1016/j.aca.2021.339250] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
The discovery of surface enhanced Raman scattering (SERS) from an electrochemical (EC)-SERS experiment is known as a historic breakthrough. Five decades have passed and Raman spectroelectrochemistry (SEC) has developed into a common characterization tool that provides information about the electrode-electrolyte interface. Recently, this technique has been successfully explored for analytical purposes. EC was found to highly improve the performances of SERS sensors, providing, among others, controlled adsorption of analytes and increased reproducibility. In this review, we highlight the potential of EC-SERS sensors to be implemented for point-of-need (PON) analyses as miniaturized devices, and their ability to revolutionize fields like quality control, diagnosis or environmental and food safety. Important developments have been achieved in Raman spectroelectrochemistry, which now represents a promising alternative to conventional analytical methods and interests more and more researchers. The studies included in this review open endless possibilities for real-life EC-SERS analytical applications.
Collapse
Affiliation(s)
- Rebeca Moldovan
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Elizaveta Vereshchagina
- Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Karolina Milenko
- Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Andreea Elena Bodoki
- General and Inorganic Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, 12, Ion Creangă, 400010, Cluj-Napoca, Romania
| | - Alexandra Falamas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Nicoleta Tosa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cristina M Muntean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cosmin Farcău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania.
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania.
| |
Collapse
|
13
|
Tran TTT, Do MN, Dang TNH, Tran QH, Le VT, Dao AQ, Vasseghian Y. A state-of-the-art review on graphene-based nanomaterials to determine antibiotics by electrochemical techniques. ENVIRONMENTAL RESEARCH 2022; 208:112744. [PMID: 35065928 DOI: 10.1016/j.envres.2022.112744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics might build up into the human body by foodstuff metabolism, posing a serious threat to human health and safety. Establishing simple and sensitive technology for quick antibiotic evaluation is thus extremely important. Nanomaterials (or NMTs) with the advantage of possessing merits such as remarkable optical, thermal, mechanical, and electrical capabilities have been highlighted as a piece of the best promising materials for rising new paths in the creation of the future generation biosensors. This paper presents the most recent advances in the use of graphene NMTs-based biosensors to determine antibiotics. Gr-NMTs (or graphene nanomaterials) have been used in the development of a biosensor for the electrochemical signal-transducing process. The rising issues and potential chances of this field are contained to give a plan for forthcoming research orientations. As a result, this review provides a comprehensive evaluation of the nanostructured electrochemical sensing approach for antibiotic residues in various systems. In this review, various electrochemical techniques such as CV, DPV, Stripping, EIS, LSV, chronoamperometry, SWV were employed to determine antibiotics. Additionally, this also demonstrates how graphene nanomaterials are employed to detect antibiotics.
Collapse
Affiliation(s)
- Thanh Tam Toan Tran
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam
| | - Mai Nguyen Do
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam
| | - Thi Ngoc Hoa Dang
- University of Medicine and Pharmacy, Hue University, 49000, Hue, Viet Nam
| | - Quang Huy Tran
- University of Medicine and Pharmacy, Hue University, 49000, Hue, Viet Nam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam; The Faculty of Environment and Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam
| | - Anh Quang Dao
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, 590000, Viet Nam.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
14
|
Tesfaye G, Negash N, Hailu T, Tessema M. Simultaneous Determination of Gallic acid and Folic acid in Fruit Juice Samples Using Square Wave Voltammetry at Electrochemically Pretreated Carbon Paste Electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gizaw Tesfaye
- Addis Ababa University College of Natural Sciences ETHIOPIA
| | | | - Tesfu Hailu
- Addis Ababa Science and Technology University ETHIOPIA
| | | |
Collapse
|
15
|
Anh NH, Doan MQ, Dinh NX, Huy TQ, Tri DQ, Ngoc Loan LT, Van Hao B, Le AT. Gold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectives. RSC Adv 2022; 12:10950-10988. [PMID: 35425077 PMCID: PMC8988175 DOI: 10.1039/d1ra08311b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Modern society has been facing serious health-related problems including food safety, diseases and illness. Hence, it is urgent to develop analysis methods for the detection and control of food contaminants, disease biomarkers and pathogens. As the traditional instrumental methods have several disadvantages, including being time consuming, and having high cost and laborious procedures, optical nanosensors have emerged as promising alternative or complementary approaches to those traditional ones. With the advantages of simple preparation, high surface-to-volume ratio, excellent biocompatibility, and especially, unique optical properties, gold nanoparticles (AuNPs) have been demonstrated as excellent transducers for optical sensing systems. Herein, we provide an overview of the synthesis of AuNPs and their excellent optical properties that are ideal for the development of optical nanosensors based on local surface plasmon resonance (LSPR), colorimetry, fluorescence resonance energy transfer (FRET), and surface-enhanced Raman scattering (SERS) phenomena. We also review the sensing strategies and their mechanisms, as well as summarizing the recent advances in the monitoring of food contaminants, disease biomarkers and pathogens using developed AuNP-based optical nanosensors in the past seven years (2015-now). Furthermore, trends and challenges in the application of these nanosensors in the determination of those analytes are discussed to suggest possible directions for future developments.
Collapse
Affiliation(s)
- Nguyen Ha Anh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Mai Quan Doan
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Tran Quang Huy
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Electric and Electronics, Phenikaa University Hanoi 12116 Vietnam
| | - Doan Quang Tri
- Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST) 1st Dai Co Viet Road Hanoi Vietnam
| | - Le Thi Ngoc Loan
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon 55113 Vietnam
| | - Bui Van Hao
- Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116
| |
Collapse
|
16
|
Highly sensitive and selective non-enzymatic measurement of glucose using arraying of two separate sweat sensors at physiological pH. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Mackay AS, Payne RJ, Malins LR. Electrochemistry for the Chemoselective Modification of Peptides and Proteins. J Am Chem Soc 2022; 144:23-41. [PMID: 34968405 DOI: 10.1021/jacs.1c11185] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although electrochemical strategies for small-molecule synthesis are flourishing, this technology has yet to be fully exploited for the mild and chemoselective modification of peptides and proteins. With the growing number of diverse peptide natural products being identified and the emergence of modified proteins as therapeutic and diagnostic agents, methods for electrochemical modification stand as alluring prospects for harnessing the reactivity of polypeptides to build molecular complexity. As a mild and inherently tunable reaction platform, electrochemistry is arguably well-suited to overcome the chemo- and regioselectivity issues which limit existing bioconjugation strategies. This Perspective will showcase recently developed electrochemical approaches to peptide and protein modification. The article also highlights the wealth of untapped opportunities for the production of homogeneously modified biomolecules, with an eye toward realizing the enormous potential of electrochemistry for chemoselective bioconjugation chemistry.
Collapse
Affiliation(s)
- Angus S Mackay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
18
|
Baluta S, Meloni F, Halicka K, Szyszka A, Zucca A, Pilo MI, Cabaj J. Differential pulse voltammetry and chronoamperometry as analytical tools for epinephrine detection using a tyrosinase-based electrochemical biosensor. RSC Adv 2022; 12:25342-25353. [PMID: 36199318 PMCID: PMC9446417 DOI: 10.1039/d2ra04045j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 12/20/2022] Open
Abstract
The main goal of the presented study was to design a biosensor-based system for epinephrine (EP) detection using a poly-thiophene derivative and tyrosinase as a biorecognition element. We compared two different electroanalytical techniques to select the most prominent technique for analyzing the neurotransmitter. The prepared biosensor system exhibited good parameters; the differential pulse (DPV) technique presented a wide linear range (1–20 μM and 30–200 μM), with a low detection limit (0.18 nM and 1.03 nM). In the case of chronoamperometry (CA), a high signal-to-noise ratio and lower reproducibility were observed, causing a less broad linear range (10–200 μM) and a higher detection limit (125 nM). Therefore, the DPV technique was used for the calculation of sensitivity (0.0011 μA mM−1 cm−2), stability (49 days), and total surface coverage (4.18 × 10−12 mol cm−2). The biosensor also showed very high selectivity in the presence of common interfering species (i.e. ascorbic acid, uric acid, norepinephrine, dopamine) and was successfully applied for EP determination in a pharmaceutical sample. GCE/poly-4,4′-bBT/tyrosinase biosensor for epinephrine was constructed. Comparison of differential pulse voltammetry (DPV) and chronoamperometry was performed. DPV showed more reproducible results giving high selectivity, sensitivity, stability.![]()
Collapse
Affiliation(s)
- Sylwia Baluta
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Francesca Meloni
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Kinga Halicka
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Adam Szyszka
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Antonio Zucca
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Maria Itria Pilo
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
19
|
Evtyugin GA, Porfir’eva AV. Determination of Organic Compounds in Aqueous–Organic and Dispersed Media Using Electrochemical Methods of Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Mohamad Nor N, Ramli NH, Poobalan H, Qi Tan K, Abdul Razak K. Recent Advancement in Disposable Electrode Modified with Nanomaterials for Electrochemical Heavy Metal Sensors. Crit Rev Anal Chem 2021; 53:253-288. [PMID: 34565248 DOI: 10.1080/10408347.2021.1950521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heavy metal pollution has gained global attention due to its high toxicity and non-biodegradability, even at a low level of exposure. Therefore, the development of a disposable electrode that is sensitive, simple, portable, rapid, and cost-effective as the sensor platform in electrochemical heavy metal detection is vital. Disposable electrodes have been modified with nanomaterials so that excellent electrochemical properties can be obtained. This review highlights the recent progress in the development of numerous types of disposable electrodes modified with nanomaterials for electrochemical heavy metal detection. The disposable electrodes made from carbon-based, glass-based, and paper-based electrodes are reviewed. In particular, the analytical performance, fabrication technique, and integration design of disposable electrodes modified with metal (such as gold, tin and bismuth), carbon (such as carbon nanotube and graphene), and metal oxide (such as iron oxide and zinc oxide) nanomaterials are summarized. In addition, the role of the nanomaterials in improving the electrochemical performance of the modified disposable electrodes is discussed. Finally, the current challenges and future prospect of the disposable electrode modified with nanomaterials are summarized.
Collapse
Affiliation(s)
- Noorhashimah Mohamad Nor
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Nurul Hidayah Ramli
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Hemalatha Poobalan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Kai Qi Tan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Khairunisak Abdul Razak
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.,NanoBiotechnology Research & Innovation (NanoBRI), Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| |
Collapse
|
21
|
The Application of Nanomaterials for the Electrochemical Detection of Antibiotics: A Review. MICROMACHINES 2021; 12:mi12030308. [PMID: 33804280 PMCID: PMC8000799 DOI: 10.3390/mi12030308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
Antibiotics can accumulate through food metabolism in the human body which may have a significant effect on human safety and health. It is therefore highly beneficial to establish easy and sensitive approaches for rapid assessment of antibiotic amounts. In the development of next-generation biosensors, nanomaterials (NMs) with outstanding thermal, mechanical, optical, and electrical properties have been identified as one of the most hopeful materials for opening new gates. This study discusses the latest developments in the identification of antibiotics by nanomaterial-constructed biosensors. The construction of biosensors for electrochemical signal-transducing mechanisms has been utilized in various types of nanomaterials, including quantum dots (QDs), metal-organic frameworks (MOFs), magnetic nanoparticles (NPs), metal nanomaterials, and carbon nanomaterials. To provide an outline for future study directions, the existing problems and future opportunities in this area are also included. The current review, therefore, summarizes an in-depth assessment of the nanostructured electrochemical sensing method for residues of antibiotics in different systems.
Collapse
|