1
|
Wang BY, Yuan ZY, Li YD, Meng FL. Immune to temperature interference sensor of carbon dioxide gas concentration based on a single modified fiber Bragg grating. OPTICS EXPRESS 2024; 32:6277-6290. [PMID: 38439335 DOI: 10.1364/oe.509223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/05/2023] [Indexed: 03/06/2024]
Abstract
In this study, a novel method that can detect carbon dioxide (CO2) concentration and realize temperature immunity based on only one fiber Bragg grating (FBG) is proposed. The outstanding contribution lies in solving the temperature crosstalk issue of FBG and ensuring the accuracy of detection results under the condition of anti-temperature interference. To achieve immunity to temperature interference without changing the initial structure of FBG, the optical fiber cladding of FBG and adjacent optical fiber cladding at both ends of FBG are modified by a polymer coating. Moreover, a universal immune temperature demodulation algorithm is derived. The experimental results demonstrate that the temperature response sensitivity of the improved FBG is controlled within the range of 0.00407 nm/°C. Compared with the initial FBG (the temperature sensitivity of the initial FBG is 0.04 nm/°C), it decreases by nearly 10 times. Besides, the gas response sensitivity of FBG reaches 1.6 pm/ppm and has overwhelmingly ideal linearity. The detection error results manifest that the gas concentration error in 20 groups of data does not exceed 3.16 ppm. The final reproducibility research shows that the difference in detection sensitivity between the two sensors is 0.08 pm/ppm, and the relative error of linearity is 1.07%. In a word, the proposed method can accurately detect the concentration of CO2 gas and is efficiently immune to temperature interference. The sensor we proposed has the advantages of a simple production process, low cost, and satisfactory reproducibility. It also has the prospect of mass production.
Collapse
|
2
|
Babicheva VE. Optical Processes behind Plasmonic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1270. [PMID: 37049363 PMCID: PMC10097005 DOI: 10.3390/nano13071270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Plasmonics is a revolutionary concept in nanophotonics that combines the properties of both photonics and electronics by confining light energy to a nanometer-scale oscillating field of free electrons, known as a surface plasmon. Generation, processing, routing, and amplification of optical signals at the nanoscale hold promise for optical communications, biophotonics, sensing, chemistry, and medical applications. Surface plasmons manifest themselves as confined oscillations, allowing for optical nanoantennas, ultra-compact optical detectors, state-of-the-art sensors, data storage, and energy harvesting designs. Surface plasmons facilitate both resonant characteristics of nanostructures and guiding and controlling light at the nanoscale. Plasmonics and metamaterials enable the advancement of many photonic designs with unparalleled capabilities, including subwavelength waveguides, optical nanoresonators, super- and hyper-lenses, and light concentrators. Alternative plasmonic materials have been developed to be incorporated in the nanostructures for low losses and controlled optical characteristics along with semiconductor-process compatibility. This review describes optical processes behind a range of plasmonic applications. It pays special attention to the topics of field enhancement and collective effects in nanostructures. The advances in these research topics are expected to transform the domain of nanoscale photonics, optical metamaterials, and their various applications.
Collapse
Affiliation(s)
- Viktoriia E Babicheva
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
3
|
Arcadio F, Seggio M, Zeni L, Bossi AM, Cennamo N. Estradiol Detection for Aquaculture Exploiting Plasmonic Spoon-Shaped Biosensors. BIOSENSORS 2023; 13:bios13040432. [PMID: 37185507 PMCID: PMC10136336 DOI: 10.3390/bios13040432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
In this work, a surface plasmon resonance (SPR) biosensor based on a spoon-shaped waveguide combined with an estrogen receptor (ERα) was developed and characterized for the detection and the quantification of estradiol in real water samples. The fabrication process for realizing the SPR platform required a single step consisting of metal deposition on the surface of a polystyrene spoon-shaped waveguide featuring a built-in measuring cell. The biosensor was achieved by functionalizing the bowl sensitive surface with a specific estrogen receptor (ERα) that was able to bind the estradiol. In a first phase, the biosensor tests were performed in a phosphate buffer solution obtaining a limit of detection (LOD) equal to 0.1 pM. Then, in order to evaluate the biosensor's response in different real matrices related to aquaculture, its performances were examined in seawater and freshwater. The experimental results support the possibility of using the ERα-based biosensor for the screening of estradiol in both matrices.
Collapse
Affiliation(s)
- Francesco Arcadio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Mimimorena Seggio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| |
Collapse
|
4
|
Kochylas I, Dimitriou A, Apostolaki MA, Skoulikidou MC, Likodimos V, Gardelis S, Papanikolaou N. Enhanced Photoluminescence of R6G Dyes from Metal Decorated Silicon Nanowires Fabricated through Metal Assisted Chemical Etching. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041386. [PMID: 36837016 PMCID: PMC9963757 DOI: 10.3390/ma16041386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 05/17/2023]
Abstract
In this study, we developed active substrates consisting of Ag-decorated silicon nanowires on a Si substrate using a single-step Metal Assisted Chemical Etching (MACE) process, and evaluated their performance in the identification of low concentrations of Rhodamine 6G using surface-enhanced photoluminescence spectroscopy. Different structures with Ag-aggregates as well as Ag-dendrites were fabricated and studied depending on the etching parameters. Moreover, the addition of Au nanoparticles by simple drop-casting on the MACE-treated surfaces can enhance the photoluminescence significantly, and the structures have shown a Limit of Detection of Rhodamine 6G down to 10-12 M for the case of the Ag-dendrites enriched with Au nanoparticles.
Collapse
Affiliation(s)
- Ioannis Kochylas
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Anastasios Dimitriou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece
| | - Maria-Athina Apostolaki
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | | | - Vlassios Likodimos
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Spiros Gardelis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Nikolaos Papanikolaou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece
- Correspondence:
| |
Collapse
|
5
|
Cennamo N, Arcadio F, Seggio M, Maniglio D, Zeni L, Bossi AM. Spoon-shaped polymer waveguides to excite multiple plasmonic phenomena: A multisensor based on antibody and molecularly imprinted nanoparticles to detect albumin concentrations over eight orders of magnitude. Biosens Bioelectron 2022; 217:114707. [PMID: 36116224 DOI: 10.1016/j.bios.2022.114707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
A polymeric multimode waveguide, characterized by a pioneering spoon-shaped geometry, was herein proposed for the first time to devise Surface Plasmon Resonance (SPR) biochemical sensors. The plasmon excitation was enabled by layering a gold nanofilm of ∼60 nm onto the spoon-waveguide. As a consequence of the waveguide's extra-ordinary geometry, two distinct sensing regions were identified: a planar one, located on the spoon's neck, and a concave one on the bowl, with angled surfaces. The bulk sensitivity (Sn) is correlated both to the way the light was launched in/collected from the sensor (parallel or orthogonal to the main axis of the waveguide) and to the sensing area interrogated (planar-neck or angled-bowl), indicating that the sensor's performance can be conveniently tuned, depending on the chosen measuring configuration. The SPR sensor's characterization showed Sn equal to 750 nm/RIU for the neck and to 950 nm/RIU for the bowl. To further inspect the peculiar sensing-features and assess the application niches, the spoon-shaped waveguide was functionalized with two kinds of receptors, both specific for human serum albumin (HSA): an antibody on the bowl region (high Sn); molecularly imprinted nanoparticles (nanoMIPs) on the neck region (low Sn). The experimental results showed a limit of detection (LOD) for the immune-sensor of 280 pM and an LOD for the nanoMIP-sensor of 4.16 fM. The overall response of the HSA multi-sensor encompassed eight orders of magnitude, suggesting that the spoon-shaped waveguide's provides multi-scale detection and holds potential to devise multi-analyte sensing platforms.
Collapse
Affiliation(s)
- Nunzio Cennamo
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Francesco Arcadio
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Mimimorena Seggio
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy
| | - Devid Maniglio
- University of Trento, Department of Industrial Engineering, Via Sommarive 9, 38123, Trento, Italy
| | - Luigi Zeni
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Alessandra Maria Bossi
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
6
|
Bovine Serum Albumin Protein Detection by a Removable SPR Chip Combined with a Specific MIP Receptor. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, the development of simple, fast, and low-cost selective sensors to detect substances of interest is of great importance in several application fields. Among this kind of sensors, those based on surface plasmon resonance (SPR) represent a promising category, since they are highly sensitive, versatile, and label-free. In this work, an SPR probe, based on a poly(methyl methacrylate) (PMMA) slab waveguide covered by a gold nanofilm, combined with a specific molecularly imprinted polymer (MIP) receptor for bovine serum albumin (BSA) protein, has been realized and experimentally characterized. The obtained experimental results have shown a limit of detection (LOD) equal to about 8.5 × 10−9 M. This value is smaller than the one achieved by another SPR probe, based on a D-shaped plastic optical fiber (POF), functionalized with the same MIP receptor; more specifically, the obtained LOD was reduced by about three orders of magnitude with respect to the POF configuration. Moreover, concerning the D-shaped POF configuration, no manufacturing process is present in the proposed sensor configuration. In addition, fibers are used only to connect the simple sensor chip with a light source and a detector, promoting a bio-chemical sensing approach based on disposable, low-cost, and removable chips.
Collapse
|