1
|
Zeng Y, Yuan R, Fu H, Xu Z, Wei S. Foodborne pathogen detection using surface acoustic wave biosensors: a review. RSC Adv 2024; 14:37087-37103. [PMID: 39569109 PMCID: PMC11577347 DOI: 10.1039/d4ra06697a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
This paper summarizes several attractive surface acoustic wave (SAW) biosensors, including Love-wave sensors, dual-channel SAW sensors, langasite SAW sensors, and SAW syringe filters. SAW sensors with different piezoelectric materials and high-frequency SAW sensors used for identifying the food pathogenic bacteria Escherichia coli (E. coli) are discussed together with the examples of methods based on such sensing technology that have been effectively utilized in diagnostics and epidemiological research. This review also emphasizes some of the limitations of using these biosensors, which have prompted the increased need for more rapid, sensitive, selective, portable, power-efficient, and low-cost methods for detecting these pathogens. It is envisioned that SAW devices will have remarkable significance in the future.
Collapse
Affiliation(s)
- Yujia Zeng
- School of Electronic Information Engineering, China West Normal University Nanchong 637009 China
| | - Rui Yuan
- School of Electronic Information Engineering, China West Normal University Nanchong 637009 China
| | - Hao Fu
- School of Electronic Information Engineering, China West Normal University Nanchong 637009 China
| | - Zhangliang Xu
- School of Electronic Information Engineering, China West Normal University Nanchong 637009 China
| | - Song Wei
- School of Mechanical and Electrical Engineering Guilin University of Electronic Technology Guilin 541000 China
| |
Collapse
|
2
|
Sadeghi P, Alshawabkeh R, Rui A, Sun NX. A Comprehensive Review of Biomarker Sensors for a Breathalyzer Platform. SENSORS (BASEL, SWITZERLAND) 2024; 24:7263. [PMID: 39599040 PMCID: PMC11598263 DOI: 10.3390/s24227263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Detecting volatile organic compounds (VOCs) is increasingly recognized as a pivotal tool in non-invasive disease diagnostics. VOCs are metabolic byproducts, mostly found in human breath, urine, feces, and sweat, whose profiles may shift significantly due to pathological conditions. This paper presents a thorough review of the latest advancements in sensor technologies for VOC detection, with a focus on their healthcare applications. It begins by introducing VOC detection principles, followed by a review of the rapidly evolving technologies in this area. Special emphasis is given to functionalized molecularly imprinted polymer-based biochemical sensors for detecting breath biomarkers, owing to their exceptional selectivity. The discussion examines SWaP-C considerations alongside the respective advantages and disadvantages of VOC sensing technologies. The paper also tackles the principal challenges facing the field and concludes by outlining the current status and proposing directions for future research.
Collapse
Affiliation(s)
- Pardis Sadeghi
- W.M. Keck Laboratory for Integrated Ferroics, Department of Electrical & Computer Engineering, Northeastern University, Boston, MA 02115, USA; (P.S.)
| | - Rania Alshawabkeh
- W.M. Keck Laboratory for Integrated Ferroics, Department of Electrical & Computer Engineering, Northeastern University, Boston, MA 02115, USA; (P.S.)
| | - Amie Rui
- W.M. Keck Laboratory for Integrated Ferroics, Department of Electrical & Computer Engineering, Northeastern University, Boston, MA 02115, USA; (P.S.)
| | - Nian Xiang Sun
- W.M. Keck Laboratory for Integrated Ferroics, Department of Electrical & Computer Engineering, Northeastern University, Boston, MA 02115, USA; (P.S.)
- Winchester Technologies LLC, Burlington, MA 01803, USA
| |
Collapse
|
3
|
Baris E, Tanoren B, Dipcin B, Guzelcimen F. Determination of the significance of atomic concentration on surface properties of Ba x Mg 1-x F 2 alloy coatings via microscopic and spectroscopic techniques. RSC Adv 2024; 14:26043-26049. [PMID: 39161445 PMCID: PMC11331579 DOI: 10.1039/d4ra05211k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
Both BaF2 and MgF2 compounds and Ba x Mg1-x F2 alloy thin films were deposited on glass and silicon (Si) substrates in nanometric sizes (100 ± 10 nm) in a high vacuum environment by radio frequency (rf) magnetron sputtering. Using BaF2 (99% purity) and MgF2 (99% purity) target materials and adjusting the power levels applied to these targets, Ba x Mg1-x F2 alloy coatings at different atomic concentrations were formed under the same vacuum conditions. The microstructure and surface characteristics of the samples were analysed with the help of spectroscopic and microscopic methods. For the surface characterization, with scanning acoustic microscopy (SAM), 2-dimensional surface acoustic images of the samples were mapped, the surface acoustic impedance values were determined, and information about the micro hardness of the materials was obtained. Surface roughness values and grain sizes were obtained by taking 3-dimensional surface images of investigated materials using atomic force microscopy (AFM). Average nanometric particle sizes were determined for each sample with scanning electron microscopy (SEM), therefore, information about surface homogeneity was obtained. For the microstructural characterization, quantitative elemental analysis was performed using scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDS), and stoichiometric ratios of atomic compositions were identified. By evaluating the data obtained from the microscopic and spectroscopic measurements, the effect of the atomic concentration parameter on the morphological properties of the material was determined. The usability of the produced binary fluoride alloy thin film coatings is promising for emerging optoelectronic, ceramic industry, biomedical and surface acoustic wave applications.
Collapse
Affiliation(s)
- Ezgi Baris
- Institute of Graduate Studies in Sciences, Istanbul University Istanbul Turkey +90 212 4400000
| | - Bukem Tanoren
- Department of Natural Sciences, Faculty of Engineering and Natural Sciences, Acibadem University Istanbul Turkey +90 216 5765076 +90 216 5004156
| | - Beste Dipcin
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem University Istanbul Turkey
| | - Feyza Guzelcimen
- Department of Physics, Faculty of Science, Istanbul University Istanbul Turkey +90 212 4555766 +90 212 4555700
| |
Collapse
|
4
|
Filipescu M, Dobrescu S, Bercea AI, Bonciu AF, Marascu V, Brajnicov S, Palla-Papavlu A. Polypyrrole-Tungsten Oxide Nanocomposite Fabrication through Laser-Based Techniques for an Ammonia Sensor: Achieving Room Temperature Operation. Polymers (Basel) 2023; 16:79. [PMID: 38201744 PMCID: PMC10780584 DOI: 10.3390/polym16010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
A highly sensitive ammonia-gas sensor based on a tungsten trioxide and polypyrrole (WO3/PPy) nanocomposite synthesized using pulsed-laser deposition (PLD) and matrix-assisted pulsed-laser evaporation (MAPLE) is presented in this study. The WO3/PPy nanocomposite is prepared through a layer-by-layer alternate deposition of the PPy thin layer on the WO3 mesoporous layer. Extensive characterization using X-ray diffraction, FTIR and Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and water contact angle are carried out on the as-prepared layers. The gas-sensing properties of the WO3/PPy nanocomposite layers are systematically investigated upon exposure to ammonia gas. The results demonstrate that the WO3/PPy nanocomposite sensor exhibits a lower detection limit, higher response, faster response/recovery time, and exceptional repeatability compared to the pure PPy and WO3 counterparts. The significant improvement in gas-sensing properties observed in the WO3/PPy nanocomposite layer can be attributed to the distinctive interactions occurring at the p-n heterojunction established between the n-type WO3 and p-type PPy. Additionally, the enhanced surface area of the WO3/PPy nanocomposite, achieved through the PLD and MAPLE synthesis techniques, contributes to its exceptional gas-sensing performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexandra Palla-Papavlu
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (M.F.); (S.D.); (A.I.B.); (A.F.B.); (V.M.); (S.B.)
| |
Collapse
|
5
|
Radojković M, Gugliandolo G, Latino M, Marinković Z, Crupi G, Donato N. Development and Validation of an ANN-Based Approach for Temperature-Dependent Equivalent Circuit Modeling of SAW Resonators. MICROMACHINES 2023; 14:mi14050967. [PMID: 37241591 DOI: 10.3390/mi14050967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
In this paper, a novel approach is proposed for modeling the temperature-dependent behavior of a surface acoustic wave (SAW) resonator, by using a combination of a lumped-element equivalent circuit model and artificial neural networks (ANNs). More specifically, the temperature dependence of the equivalent circuit parameters/elements (ECPs) is modeled using ANNs, making the equivalent circuit model temperature-dependent. The developed model is validated by using scattering parameter measurements performed on a SAW device with a nominal resonant frequency of 423.22 MHz and under different temperature conditions (i.e., from 0 °C to 100 °C). The extracted ANN-based model can be used for simulation of the SAW resonator RF characteristics in the considered temperature range without the need for further measurements or equivalent circuit extraction procedures. The accuracy of the developed ANN-based model is comparable to that of the original equivalent circuit model.
Collapse
Affiliation(s)
- Miloš Radojković
- Faculty of Electronic Engineering, University of Niš, 18000 Niš, Serbia
| | | | - Mariangela Latino
- Department of Engineering, University of Messina, 98166 Messina, Italy
| | | | - Giovanni Crupi
- BIOMORF Department, University of Messina, 98125 Messina, Italy
| | - Nicola Donato
- Department of Engineering, University of Messina, 98166 Messina, Italy
| |
Collapse
|
6
|
Ba Hashwan SS, Khir MHM, Nawi IM, Ahmad MR, Hanif M, Zahoor F, Al-Douri Y, Algamili AS, Bature UI, Alabsi SS, Sabbea MOB, Junaid M. A review of piezoelectric MEMS sensors and actuators for gas detection application. NANOSCALE RESEARCH LETTERS 2023; 18:25. [PMID: 36847870 DOI: 10.1186/s11671-023-03779-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/25/2023] [Indexed: 05/24/2023]
Abstract
Piezoelectric microelectromechanical system (piezo-MEMS)-based mass sensors including the piezoelectric microcantilevers, surface acoustic waves (SAW), quartz crystal microbalance (QCM), piezoelectric micromachined ultrasonic transducer (PMUT), and film bulk acoustic wave resonators (FBAR) are highlighted as suitable candidates for highly sensitive gas detection application. This paper presents the piezo-MEMS gas sensors' characteristics such as their miniaturized structure, the capability of integration with readout circuit, and fabrication feasibility using multiuser technologies. The development of the piezoelectric MEMS gas sensors is investigated for the application of low-level concentration gas molecules detection. In this work, the various types of gas sensors based on piezoelectricity are investigated extensively including their operating principle, besides their material parameters as well as the critical design parameters, the device structures, and their sensing materials including the polymers, carbon, metal-organic framework, and graphene.
Collapse
Affiliation(s)
- Saeed S Ba Hashwan
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia.
| | - Mohd Haris Md Khir
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Illani Mohd Nawi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mohamad Radzi Ahmad
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mehwish Hanif
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Furqan Zahoor
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Y Al-Douri
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- Department of Mechanical Engineering, Faculty of Engineering, Piri Reis University, Eflatun Sk. No: 8, 34940, Tuzla, Istanbul, Turkey
- Department of Applied Science and Astronomy, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Saleh Algamili
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Usman Isyaku Bature
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Sami Sultan Alabsi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mohammed O Ba Sabbea
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Muhammad Junaid
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
- Department of Electronic Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| |
Collapse
|
7
|
Epping R, Koch M. On-Site Detection of Volatile Organic Compounds (VOCs). Molecules 2023; 28:1598. [PMID: 36838585 PMCID: PMC9966347 DOI: 10.3390/molecules28041598] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Volatile organic compounds (VOCs) are of interest in many different fields. Among them are food and fragrance analysis, environmental and atmospheric research, industrial applications, security or medical and life science. In the past, the characterization of these compounds was mostly performed via sample collection and off-site analysis with gas chromatography coupled to mass spectrometry (GC-MS) as the gold standard. While powerful, this method also has several drawbacks such as being slow, expensive, and demanding on the user. For decades, intense research has been dedicated to find methods for fast VOC analysis on-site with time and spatial resolution. We present the working principles of the most important, utilized, and researched technologies for this purpose and highlight important publications from the last five years. In this overview, non-selective gas sensors, electronic noses, spectroscopic methods, miniaturized gas chromatography, ion mobility spectrometry and direct injection mass spectrometry are covered. The advantages and limitations of the different methods are compared. Finally, we give our outlook into the future progression of this field of research.
Collapse
Affiliation(s)
- Ruben Epping
- Division of Organic Trace and Food Analysis, Bundesanstalt für Materialforschung und -Prüfung, 12489 Berlin, Germany
| | - Matthias Koch
- Division of Organic Trace and Food Analysis, Bundesanstalt für Materialforschung und -Prüfung, 12489 Berlin, Germany
| |
Collapse
|
8
|
Radu ER, Voicu SI, Thakur VK. Polymeric Membranes for Biomedical Applications. Polymers (Basel) 2023; 15:polym15030619. [PMID: 36771921 PMCID: PMC9919920 DOI: 10.3390/polym15030619] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes are selective materials used in a wide range of applications that require separation processes, from water filtration and purification to industrial separations. Because of these materials' remarkable properties, namely, selectivity, membranes are also used in a wide range of biomedical applications that require separations. Considering the fact that most organs (apart from the heart and brain) have separation processes associated with the physiological function (kidneys, lungs, intestines, stomach, etc.), technological solutions have been developed to replace the function of these organs with the help of polymer membranes. This review presents the main biomedical applications of polymer membranes, such as hemodialysis (for chronic kidney disease), membrane-based artificial oxygenators (for artificial lung), artificial liver, artificial pancreas, and membranes for osseointegration and drug delivery systems based on membranes.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Correspondence: (S.I.V.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
- Correspondence: (S.I.V.); (V.K.T.)
| |
Collapse
|
9
|
Recent Progress on Nanomaterials for NO 2 Surface Acoustic Wave Sensors. NANOMATERIALS 2022; 12:nano12122120. [PMID: 35745459 PMCID: PMC9227767 DOI: 10.3390/nano12122120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/15/2022]
Abstract
NO2 gas surface acoustic wave (SAW)sensors are under continuous development due to their high sensitivity, reliability, low cost and room temperature operation. Their integration ability with different receptor nanomaterials assures a boost in the performance of the sensors. Among the most exploited nano-materials for sensitive detection of NO2 gas molecules are carbon-based nanomaterials, metal oxide semiconductors, quantum dots, and conducting polymers. All these nanomaterials aim to create pores for NO2 gas adsorption or to enlarge the specific surface area with ultra-small nanoparticles that increase the active sites where NO2 gas molecules can diffuse. This review provides a general overview of NO2 gas SAW sensors, with a focus on the different sensors’ configurations and their fabrication technology, on the nanomaterials used as sensitive NO2 layers and on the test methods for gas detection. The synthesis methods of sensing nanomaterials, their functionalization techniques, the mechanism of interaction between NO2 molecules and the sensing nanomaterials are presented and discussed.
Collapse
|
10
|
The Use of Graphene and Its Derivatives for the Development of Polymer Matrix Composites by Stereolithographic 3D Printing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant advances in graphene-based materials have facilitated the development of various composites structures in a diverse range of industry sectors. At present, the preparation of graphene-added materials is mainly developed through traditional methods. However, in recent years, additive manufacturing emerged as a promising approach that enables the printing of complex objects in a layer-by-layer fashion, without the need for moulds or machining equipment. This paper reviews the most recent reports on graphene-based photopolymerizable resins developed for stereolithography (SLA), with particular consideration for medical applications. The characteristics of the SLA technology, the most suitable raw materials and formulations and the properties of final 3D products are described. Throughout, a specific focus is placed on the mechanical properties and biocompatibility of the final 3D-printed object. Finally, remaining challenges and future directions are also discussed.
Collapse
|
11
|
Mandal D, Banerjee S. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:820. [PMID: 35161565 PMCID: PMC8839725 DOI: 10.3390/s22030820] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/20/2022]
Abstract
Surface acoustic waves (SAWs) are the guided waves that propagate along the top surface of a material with wave vectors orthogonal to the normal direction to the surface. Based on these waves, SAW sensors are conceptualized by employing piezoelectric crystals where the guided elastodynamic waves are generated through an electromechanical coupling. Electromechanical coupling in both active and passive modes is achieved by integrating interdigitated electrode transducers (IDT) with the piezoelectric crystals. Innovative meta-designs of the periodic IDTs define the functionality and application of SAW sensors. This review article presents the physics of guided surface acoustic waves and the piezoelectric materials used for designing SAW sensors. Then, how the piezoelectric materials and cuts could alter the functionality of the sensors is explained. The article summarizes a few key configurations of the electrodes and respective guidelines for generating different guided wave patterns such that new applications can be foreseen. Finally, the article explores the applications of SAW sensors and their progress in the fields of biomedical, microfluidics, chemical, and mechano-biological applications along with their crucial roles and potential plans for improvements in the long-term future in the field of science and technology.
Collapse
Affiliation(s)
| | - Sourav Banerjee
- Integrated Material Assessment and Predictive Simulation Laboratory, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
12
|
Yan X, Qu H, Chang Y, Duan X. Application of Metal-Organic Frameworks in Gas Pre-concentration, Pre-separation and Detection. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|