1
|
Yan Z, Yang Q, Wang P, Gun S. Transcriptional Profiling of Testis Development in Pre-Sexually-Mature Hezuo Pig. Curr Issues Mol Biol 2024; 47:10. [PMID: 39852125 PMCID: PMC11763623 DOI: 10.3390/cimb47010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Spermatogenesis is an advanced biological process, relying on intricate interactions between somatic and germ cells in testes. Investigating various cell types is challenging because of cellular heterogeneity. Single-cell RNA sequencing (scRNA-seq) offers a method to analyze cellular heterogeneity. In this research, we performed 10× Genomics scRNA-seq to conduct an unbiased single-cell transcriptomic analysis in Hezuo pig (HZP) testis at one month of age during prepuberty. We collected 14,276 cells and identified 8 cell types (including 2 germ cells types and 6 somatic cell types). Pseudo-timing analysis demonstrated that Leydig cells (LCs) and myoid cells (MCs) originated from a shared progenitor cell lineage. Moreover, the functional enrichment analyses showed that the genes of differential expression were enriched in spermatogonia (SPG) and were enriched in the cell cycle, reproduction, and spermatogenesis. Expressed genes in spermatocytes (SPCs) were enriched in the cAMP, cell cycle, male gamete generation, reproductive system development, and sexual reproduction, while growth hormone synthesis, gamete generation, reproductive process, and spermine synthase activity were enriched in Sertoli cells (SCs). Additionally, chemokine, B cell receptor, activation of immune response, and enzyme binding were enriched in macrophages. Our study investigated transcriptional alterations across different cell types during spermatogenesis, yielding new understandings of spermatogenic processes and cell development. This research delivers an exploration of spermatogenesis and testicular cell biology in HZP, establishing the groundwork for upcoming breeding initiatives.
Collapse
Affiliation(s)
| | | | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (Q.Y.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (Q.Y.)
| |
Collapse
|
2
|
Xi B, Zhao S, Zhang R, Lu Z, Li J, An X, Yue Y. Transcriptomic Study of Different Stages of Development in the Testis of Sheep. Animals (Basel) 2024; 14:2767. [PMID: 39409717 PMCID: PMC11475124 DOI: 10.3390/ani14192767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Numerous genes govern male reproduction, modulating testicular development and spermatogenesis. Our study leveraged RNA-Seq to explore candidate genes and pivotal pathways influencing fecundity in an F1 hybrid of Southdown × Hu sheep testes across four developmental milestones: M0 (0 months old, newborn), M3 (3 months old, sexually immature), M6 (6 months old, sexually mature), and Y1 (1 years old, adult). Histological examination using hematoxylins and eosin staining revealed that the cross-sectional area of the spermatid tubules and the number of supportive cells increased in the other groups, as compared to the M0 group. The cross-sectional area of the vasculature and the number of supporting cells were found to be significantly increased in all other groups in comparison to the M0 group. We conducted GO and KEGG analyses of the differentially expressed genes (DEGs) in the three comparison groups and identified key pathways, including cAMP, MAPK, ECM-receptor interactions, PI3K-Akt, and FOXO signaling, which are closely related to testicular development and spermatogenesis. Notably, alternative splicing (AS) events were markedly elevated in M6 and Y1 stages. Key genes like GATA4, GATA6, SMAD4, SOX9, YAP1, ITGB1 and MAPK1 emerged as significantly enriched in these pathways, potentially orchestrating the transition from immature to mature testes in sheep. These findings offer valuable insights into male reproductive potential and can inform strategies for optimizing animal breeding.
Collapse
Affiliation(s)
- Binpeng Xi
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.X.); (R.Z.); (Z.L.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Rui Zhang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.X.); (R.Z.); (Z.L.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.X.); (R.Z.); (Z.L.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianye Li
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.X.); (R.Z.); (Z.L.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.X.); (R.Z.); (Z.L.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yaojing Yue
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.X.); (R.Z.); (Z.L.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
3
|
Yan Z, Wang P, Yang Q, Gun S. Single-Cell RNA Sequencing Reveals an Atlas of Hezuo Pig Testis Cells. Int J Mol Sci 2024; 25:9786. [PMID: 39337274 PMCID: PMC11431743 DOI: 10.3390/ijms25189786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Spermatogenesis is a complex biological process crucial for male reproduction and is characterized by intricate interactions between testicular somatic cells and germ cells. Due to the cellular heterogeneity of the testes, investigating different cell types across developmental stages has been challenging. Single-cell RNA sequencing (scRNA-seq) has emerged as a valuable approach for addressing this limitation. Here, we conducted an unbiased transcriptomic study of spermatogenesis in sexually mature 4-month-old Hezuo pigs using 10× Genomics-based scRNA-seq. A total of 16,082 cells were collected from Hezuo pig testes, including germ cells (spermatogonia (SPG), spermatocytes (SPCs), spermatids (SPTs), and sperm (SP)) and somatic cells (Sertoli cells (SCs), Leydig cells (LCs), myoid cells (MCs), endothelial cells (ECs), and natural killer (NK) cells/macrophages). Pseudo-time analysis revealed that LCs and MCs originated from common progenitors in the Hezuo pig. Functional enrichment analysis indicated that the differentially expressed genes (DEGs) in the different types of testicular germ cells were enriched in the PI3K-AKT, Wnt, HIF-1, and adherens junction signaling pathways, while the DEGs in testicular somatic cells were enriched in ECM-receptor interaction and antigen processing and presentation. Moreover, genes related to spermatogenesis, male gamete generation, sperm part, sperm flagellum, and peptide biosynthesis were expressed throughout spermatogenesis. Using immunohistochemistry, we verified several stage-specific marker genes (such as UCHL1, WT1, SOX9, and ACTA2) for SPG, SCs, and MCs. By exploring the changes in the transcription patterns of various cell types during spermatogenesis, our study provided novel insights into spermatogenesis and testicular cells in the Hezuo pig, thereby laying the foundation for the breeding and preservation of this breed.
Collapse
Affiliation(s)
| | | | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (P.W.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (P.W.)
| |
Collapse
|
4
|
Yan Y, Zhu S, Jia M, Chen X, Qi W, Gu F, Valencak TG, Liu JX, Sun HZ. Advances in single-cell transcriptomics in animal research. J Anim Sci Biotechnol 2024; 15:102. [PMID: 39090689 PMCID: PMC11295521 DOI: 10.1186/s40104-024-01063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024] Open
Abstract
Understanding biological mechanisms is fundamental for improving animal production and health to meet the growing demand for high-quality protein. As an emerging biotechnology, single-cell transcriptomics has been gradually applied in diverse aspects of animal research, offering an effective method to study the gene expression of high-throughput single cells of different tissues/organs in animals. In an unprecedented manner, researchers have identified cell types/subtypes and their marker genes, inferred cellular fate trajectories, and revealed cell‒cell interactions in animals using single-cell transcriptomics. In this paper, we introduce the development of single-cell technology and review the processes, advancements, and applications of single-cell transcriptomics in animal research. We summarize recent efforts using single-cell transcriptomics to obtain a more profound understanding of animal nutrition and health, reproductive performance, genetics, and disease models in different livestock species. Moreover, the practical experience accumulated based on a large number of cases is highlighted to provide a reference for determining key factors (e.g., sample size, cell clustering, and cell type annotation) in single-cell transcriptomics analysis. We also discuss the limitations and outlook of single-cell transcriptomics in the current stage. This paper describes the comprehensive progress of single-cell transcriptomics in animal research, offering novel insights and sustainable advancements in agricultural productivity and animal health.
Collapse
Affiliation(s)
- Yunan Yan
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Senlin Zhu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minghui Jia
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyi Chen
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenlingli Qi
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fengfei Gu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Teresa G Valencak
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Agency for Health and Food Safety Austria, 1220, Vienna, Austria
| | - Jian-Xin Liu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Lyons A, Brown J, Davenport KM. Single-Cell Sequencing Technology in Ruminant Livestock: Challenges and Opportunities. Curr Issues Mol Biol 2024; 46:5291-5306. [PMID: 38920988 PMCID: PMC11202421 DOI: 10.3390/cimb46060316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Advancements in single-cell sequencing have transformed the genomics field by allowing researchers to delve into the intricate cellular heterogeneity within tissues at greater resolution. While single-cell omics are more widely applied in model organisms and humans, their use in livestock species is just beginning. Studies in cattle, sheep, and goats have already leveraged single-cell and single-nuclei RNA-seq as well as single-cell and single-nuclei ATAC-seq to delineate cellular diversity in tissues, track changes in cell populations and gene expression over developmental stages, and characterize immune cell populations important for disease resistance and resilience. Although challenges exist for the use of this technology in ruminant livestock, such as the precise annotation of unique cell populations and spatial resolution of cells within a tissue, there is vast potential to enhance our understanding of the cellular and molecular mechanisms underpinning traits essential for healthy and productive livestock. This review intends to highlight the insights gained from published single-cell omics studies in cattle, sheep, and goats, particularly those with publicly accessible data. Further, this manuscript will discuss the challenges and opportunities of this technology in ruminant livestock and how it may contribute to enhanced profitability and sustainability of animal agriculture in the future.
Collapse
|
6
|
Ge T, Wen Y, Li B, Huang X, Jiang S, Zhang E. Single-cell sequencing reveals the reproductive variations between primiparous and multiparous Hu ewes. J Anim Sci Biotechnol 2023; 14:144. [PMID: 37964337 PMCID: PMC10644470 DOI: 10.1186/s40104-023-00941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/20/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND In the modern sheep production systems, the reproductive performance of ewes determines the economic profitability of farming. Revealing the genetic mechanisms underlying differences in the litter size is important for the selection and breeding of highly prolific ewes. Hu sheep, a high-quality Chinese sheep breed, is known for its high fecundity and is often used as a model to study prolificacy traits. In the current study, animals were divided into two groups according to their delivery rates in three consecutive lambing seasons (namely, the high and low reproductive groups with ≥ 3 lambs and one lamb per season, n = 3, respectively). The ewes were slaughtered within 12 h of estrus, and unilateral ovarian tissues were collected and analyzed by 10× Genomics single-cell RNA sequencing. RESULTS A total of 5 types of somatic cells were identified and corresponding expression profiles were mapped in the ovaries of each group. Noticeably, the differences in the ovary somatic cell expression profiles between the high and low reproductive groups were mainly clustered in the granulosa cells. Furthermore, four granulosa cell subtypes were identified. GeneSwitches analysis revealed that the abundance of JPH1 expression and the reduction of LOC101112291 expression could lead to different evolutionary directions of the granulosa cells. Additionally, the expression levels of FTH1 and FTL in mural granulosa cells of the highly reproductive group were significantly higher. These genes inhibit necroptosis and ferroptosis of mural granulosa cells, which helps prevent follicular atresia. CONCLUSIONS This study provides insights into the molecular mechanisms underlying the high fecundity of Hu sheep. The differences in gene expression profiles, particularly in the granulosa cells, suggest that these cells play a critical role in female prolificacy. The findings also highlight the importance of genes such as JPH1, LOC101112291, FTH1, and FTL in regulating granulosa cell function and follicular development.
Collapse
Affiliation(s)
- Ting Ge
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yifan Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Bo Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyu Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shaohua Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Enping Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
7
|
Goszczynski DE, Navarro M, Mutto AA, Ross PJ. Review: Embryonic stem cells as tools for in vitro gamete production in livestock. Animal 2023; 17 Suppl 1:100828. [PMID: 37567652 DOI: 10.1016/j.animal.2023.100828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 08/13/2023] Open
Abstract
The goal of in vitro gametogenesis is to reproduce the events of sperm and oocyte development in the laboratory. Significant advances have been made in the mouse in the last decade, but evolutionary divergence from the murine developmental program has prevented the replication of these advances in large mammals. In recent years, intensive work has been done in humans, non-human primates and livestock to elucidate species-specific differences that regulate germ cell development, due to the number of potential applications. One of the most promising applications is the use of in vitro gametes to optimize the spread of elite genetics in cattle. In this context, embryonic stem cells have been posed as excellent candidates for germ cell platforms. Here, we present the most relevant advances in in vitro gametogenesis of interest to livestock science, including new types of pluripotent stem cells with potential for germline derivation, characterization of the signaling environment in the gonadal niche, and experimental systems used to reproduce different stages of germ cell development in the laboratory.
Collapse
Affiliation(s)
- D E Goszczynski
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - M Navarro
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - A A Mutto
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - P J Ross
- Department of Animal Science, University of California Davis, Davis, CA, USA; STgenetics, Navasota, TX, USA.
| |
Collapse
|
8
|
Wang X, Pei J, Xiong L, Guo S, Cao M, Kang Y, Ding Z, La Y, Liang C, Yan P, Guo X. Single-Cell RNA Sequencing Reveals Atlas of Yak Testis Cells. Int J Mol Sci 2023; 24:ijms24097982. [PMID: 37175687 PMCID: PMC10178277 DOI: 10.3390/ijms24097982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Spermatogenesis is a complex process that involves proliferation and differentiation of diploid male germ cells into haploid flagellated sperm and requires intricate interactions between testicular somatic cells and germ cells. The cellular heterogeneity of this process presents a challenge in analyzing the different cell types at various developmental stages. Single-cell RNA sequencing (scRNA-seq) provides a useful tool for exploring cellular heterogeneity. In this study, we performed a comprehensive and unbiased single-cell transcriptomic study of spermatogenesis in sexually mature 4-year-old yak using 10× Genomics scRNA-seq. Our scRNA-seq analysis identified six somatic cell types and various germ cells, including spermatogonial stem cells, spermatogonia, early-spermatocytes, late-spermatocytes, and spermatids in yak testis. Pseudo-timing analysis showed that Leydig and myoid cells originated from common progenitor cells in yaks. Moreover, functional enrichment analysis demonstrated that the top expressed genes in yak testicular somatic cells were significantly enriched in the cAMP signaling pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, and ECM receptor interactions. Throughout the spermatogenesis process, genes related to spermatogenesis, cell differentiation, DNA binding, and ATP binding were expressed. Using immunohistochemical techniques, we identified candidate marker genes for spermatogonial stem cells and Sertoli cells. Our research provides new insights into yak spermatogenesis and the development of various types of cells in the testis, and presents more reliable marker proteins for in vitro culture and identification of yak spermatogonial stem cells in the later stage.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
9
|
Cao M, Wang X, Guo S, Kang Y, Pei J, Guo X. F1 Male Sterility in Cattle-Yak Examined through Changes in Testis Tissue and Transcriptome Profiles. Animals (Basel) 2022; 12:ani12192711. [PMID: 36230452 PMCID: PMC9559613 DOI: 10.3390/ani12192711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Cattle-yak, a crossbreed of cattle and yak, has evident heterosis but F1 male cattle-yak is unable to generate sperm and is sterile, which limits the fixation of heterosis. This study analyzed the differences in testicular tissue development between four-year-old yak and cattle-yak from the perspective of histomorphological changes and sequenced the testicular tissue of the two using RNA-seq technology, examining the differential gene expression related to spermatogenesis and apoptosis. These findings offer a theoretical explanation for the sterility in F1 male cattle-yak that can help yak hybridization. Abstract Male-derived sterility in cattle-yaks, a hybrid deriving from yak and cattle, is a challenging problem. This study compared and analyzed the histomorphological differences in testis between sexually mature yak and cattle-yak, and examined the transcriptome differences employing RNA-seq. The study found that yak seminiferous tubules contained spermatogenic cells at all levels, while cattle-yak seminiferous tubules had reduced spermatogonia (SPG) and primary spermatocyte (Pri-SPC), fewer secondary spermatocytes (Sec-SPC), an absence of round spermatids (R-ST) and sperms (S), and possessed large vacuoles. All of these conditions could have significantly reduced the volume and weight of cattle-yak testis compared to that of yak. RNA-seq analysis identified 8473 differentially expressed genes (DEGs; 3580 upregulated and 4893 downregulated). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment evaluations for DEGs found their relation mostly to spermatogenesis and apoptosis. Among the DEGs, spermatogonia stem cell (SSCs) marker genes (Gfra1, CD9, SOHLH1, SALL4, ID4, and FOXO1) and genes involved in apoptosis (Fas, caspase3, caspase6, caspase7, caspase8, CTSK, CTSB and CTSC) were significantly upregulated, while differentiation spermatogenic cell marker genes (Ccna1, PIWIL1, TNP1, and TXNDC2) and meiosis-related genes (TEX14, TEX15, MEIOB, STAG3 and M1AP) were significantly downregulated in cattle-yak. Furthermore, the alternative splicing events in cattle-yak were substantially decreased than in yak, suggesting that the lack of protein subtypes could be another reason for spermatogenic arrest in cattle-yak testis.
Collapse
Affiliation(s)
- Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: ; Tel.: +86-18993037854
| |
Collapse
|
10
|
Tian Y, Sun P, Liu WX, Shan LY, Hu YT, Fan HT, Shen W, Liu YB, Zhou Y, Zhang T. Single-cell RNA sequencing of the Mongolia sheep testis reveals a conserved and divergent transcriptome landscape of mammalian spermatogenesis. FASEB J 2022; 36:e22348. [PMID: 35583907 DOI: 10.1096/fj.202200152r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/09/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is a highly coordinated and complex process, and is pivotal for transmitting genetic information between mammalian generations. In this study, we investigated the conservation, differences, and biological functions of homologous genes during spermatogenesis in Mongolia sheep, humans, cynomolgus monkey, and mice using single-cell RNA sequencing technology. We compared X chromosome meiotic inactivation events in Mongolia sheep, humans, cynomolgus monkey, and mice to uncover the concerted activity of X chromosome genes. Subsequently, we focused on the dynamics of gene expression, key biological functions, and signaling pathways at various stages of spermatogenesis in Mongolia sheep and humans. Additionally, the ligand-receptor networks of Mongolia sheep and humans in testicular somatic and germ cells at different developmental stages were mapped to reveal conserved germ cell-soma communication using single-cell resolution. These datasets provided novel information and insights to unravel the molecular regulatory mechanisms of Mongolia sheep spermatogenesis and highlight conservation in gene expression during spermatogenesis between Mongolia sheep and humans, providing a foundation for the establishment of a large mammalian disease model of male infertility.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Peng Sun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China.,Laboratory of Microbiology and Immunology, College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Wen-Xiang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Li-Ying Shan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan-Ting Hu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hai-Tao Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong-Bin Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China.,Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Yang Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|