1
|
Ouedraogo LJ, Trznadel MJ, Kling M, Nasirian V, Borst AG, Shirsavar MA, Makowski A, McNamara MC, Montazami R, Hashemi NN. Hydrodynamic Assembly of Astrocyte Cells in Conductive Hollow Microfibers. Adv Biol (Weinh) 2024; 8:e2300455. [PMID: 37953458 DOI: 10.1002/adbi.202300455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Indexed: 11/14/2023]
Abstract
The manufacturing of 3D cell scaffoldings provides advantages for modeling diseases and injuries as it enables the creation of physiologically relevant platforms. A triple-flow microfluidic device is developed to rapidly fabricate alginate/graphene hollow microfibers based on the gelation of alginate induced with CaCl2 . This five-channel microdevice actualizes continuous mild fabrication of hollow fibers under an optimized flow rate ratio of 300:200:100 µL min-1 . The polymer solution is 2.5% alginate in 0.1% graphene and a 30% polyethylene glycol solution is used as the sheath and core solutions. The biocompatibility of these conductive microfibers by encapsulating mouse astrocyte cells (C8D1A) within the scaffolds is investigated. The cells can successfully survive both the manufacturing process and prolonged encapsulation for up to 8 days, where there is between 18-53% of live cells on both the alginate microfibers and alginate/graphene microfibers. These unique 3D hollow scaffolds can significantly enhance the available surface area for nutrient transport to the cells. In addition, these conductive hollow scaffolds illustrate unique advantages such as 0.728 cm3 gr-1 porosity and two times more electrical conductivity in comparison to alginate scaffolds. The results confirm the potential of these scaffolds as a microenvironment that supports cell growth.
Collapse
Affiliation(s)
- Lionel J Ouedraogo
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Mychal J Trznadel
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - McKayla Kling
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
- Neuroscience Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | - Vahid Nasirian
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Alexandra G Borst
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
- Neuroscience Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | | | - Andrew Makowski
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
- Neuroscience Graduate Program, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
2
|
Olguín Y, Selva M, Benavente D, Orellana N, Montenegro I, Madrid A, Jaramillo-Pinto D, Otero MC, Corrales TP, Acevedo CA. Effect of Electrical Stimulation on PC12 Cells Cultured in Different Hydrogels: Basis for the Development of Biomaterials in Peripheral Nerve Tissue Engineering. Pharmaceutics 2023; 15:2760. [PMID: 38140099 PMCID: PMC10747664 DOI: 10.3390/pharmaceutics15122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Extensive damage to peripheral nerves is a health problem with few therapeutic alternatives. In this context, the development of tissue engineering seeks to obtain materials that can help recreate environments conducive to cellular development and functional repair of peripheral nerves. Different hydrogels have been studied and presented as alternatives for future treatments to emulate the morphological characteristics of nerves. Along with this, other research proposes the need to incorporate electrical stimuli into treatments as agents that promote cell growth and differentiation; however, no precedent correlates the simultaneous effects of the types of hydrogel and electrical stimuli. This research evaluates the neural differentiation of PC12 cells, relating the effect of collagen, alginate, GelMA, and PEGDA hydrogels with electrical stimulation modulated in four different ways. Our results show significant correlations for different cultivation conditions. Electrical stimuli significantly increase neural differentiation for specific experimental conditions dependent on electrical frequency, not voltage. These backgrounds allow new material treatment schemes to be formulated through electrical stimulation in peripheral nerve tissue engineering.
Collapse
Affiliation(s)
- Yusser Olguín
- Departamento de Química y Medio Ambiente, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Mónica Selva
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Diego Benavente
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
| | - Nicole Orellana
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Ivan Montenegro
- Centro de Investigaciones Biomédicas, Escuela de Obstetricia, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2390123, Chile;
| | - Diego Jaramillo-Pinto
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - María Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Republica 252, Santiago 8370071, Chile;
| | - Tomas P. Corrales
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Cristian A. Acevedo
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| |
Collapse
|
3
|
McNamara MC, Aykar SS, Alimoradi N, Niaraki Asli AE, Pemathilaka RL, Wrede AH, Montazami R, Hashemi NN. Behavior of Neural Cells Post Manufacturing and After Prolonged Encapsulation within Conductive Graphene-Laden Alginate Microfibers. Adv Biol (Weinh) 2021; 5:e2101026. [PMID: 34626101 DOI: 10.1002/adbi.202101026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Engineering conductive 3D cell scaffoldings offer advantages toward the creation of physiologically relevant platforms with integrated real-time sensing capabilities. Dopaminergic neural cells are encapsulated into graphene-laden alginate microfibers using a microfluidic approach, which is unmatched for creating highly-tunable microfibers. Incorporating graphene increases the conductivity of the alginate microfibers by 148%, creating a similar conductivity to native brain tissue. The cell encapsulation procedure has an efficiency of 50%, and of those cells, ≈30% remain for the entire 6-day observation period. To understand how the microfluidic encapsulation affects cell genetics, tyrosine hydroxylase, tubulin beta 3 class 3, interleukin 1 beta, and tumor necrosis factor alfa are analyzed primarily with real-time reverse transcription-quantitative polymerase chain reaction and secondarily with enzyme-linked immunosorbent assay, immediately after manufacturing, after encapsulation in polymer matrix for 6 days, and after encapsulation in the graphene-polymer composite for 6 days. Preliminary data shows that the manufacturing process and combination with alginate matrix affect the expression of the studied genes immediately after manufacturing. In addition, the introduction of graphene further changes gene expressions. Long-term encapsulation of neural cells in alginate and 6-day exposure to graphene also leads to changes in gene expressions.
Collapse
Affiliation(s)
- Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Saurabh S Aykar
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nima Alimoradi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | | | - Alex H Wrede
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
McNamara MC, Aykar SS, Montazami R, Hashemi NN. Targeted Microfluidic Manufacturing to Mimic Biological Microenvironments: Cell-Encapsulated Hollow Fibers. ACS Macro Lett 2021; 10:732-736. [PMID: 35549107 DOI: 10.1021/acsmacrolett.1c00159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
At present, the blood-brain barrier (BBB) poses a challenge for treating a wide range of central nervous system disorders; reliable BBB models are still needed to understand and manipulate the transfer of molecules into the brain, thereby improving the efficiency of treatments. In this study, hollow, cell-laden microfibers are fabricated and investigated as a starting point for generating BBB models. The genetic effects of the manufacturing process are analyzed to understand the implications of encapsulating cells in this manner. These fibers are created using different manufacturing parameters to understand the effects on wall thickness and overall diameter. Then, dopaminergic rat cells are encapsulated into hollow fibers, which maintained at least 60% live cells throughout the three-day observation period. Lastly, genetic changes tyrosine hydroxylase (TH) and tubulin beta 3 class III (TUBB-3) are investigated to elucidate the effects on cell health and behavior; while the TH levels in encapsulated cells were similar to control cells, showing similar levels of TH synthesis, TUBB-3 was downregulated, indicating lower amounts of cellular neurogenesis.
Collapse
Affiliation(s)
- Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Saurabh S Aykar
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|